
Hierarchically Self-Supervised Transformer for
Human Skeleton Representation Learning

(Supplementary Material)

Yuxiao Chen1, Long Zhao2, Jianbo Yuan3, Yu Tian3, Zhaoyang Xia1, Shijie
Geng1, Ligong Han1, and Dimitris N. Metaxas1

1 Rutgers University, 2 Google Research, 3 ByteDance Inc.

1 Implementation Details of Pre-training

The implementation details for pre-training are introduced in this section.

Data Augmentation. During training, data augmentations are applied to
both the spatial and temporal domains of a skeleton sequence. Specifically, the
spatial augmentation method includes: (1) shearing [3]: the skeleton of each
frame is sheared at a random angle by applying a linear transformation matrix
whose elements are uniformly sampled from the range [-0.5, 0.5]; (2) adding noise:
a noise sampled from the uniform distribution with the range [-0.2, 0.2] is added
to 5 randomly sampled joints at each frame. The temporal augmentation method
contains: (1) time interpolation [6]: it generates a new skeleton sequence by
linearly interpolating the positions of each joint between consecutive time with
a random scale whose range is from 0 to 1; (2) temporal cropping: it temporally
crops a random portion of frames from the original sequence as the training
sample. Note that for each training sample, only one spatial and one temporal
augmentation method are used.

Model Pre-training. We pre-train the model using the Nvidia A100 GPU.
The batch size is set to 256. The dropout rate [7] is set to 0.2, and the L2
weight decay is set to 0.01. The Adam optimizer [2] with the learning rate of
4 × 10−4 is used for training. We use linear learning rate warmup for the first
1,000 iterations followed by polynomial decay. The model is trained for 30,000
iterations. The window size, stride, and dilate of the sliding window are set to
7, 7, and 2, respectively. For the training samples which contain two subjects,
we divide them into two samples, each of which contains the skeleton sequence
of one subject.

2 Implementation Details of Downstream Tasks

This section describes the implementation details for each downstream task.

Action Recognition. For the action recognition task, we use the entire Hi-
TRS model as the encoder. The outputs from the V-TRS model are fed to
a linear classifier (a fully-connected layer) to predict action categories. To train

2 Y. Chen et al.

our network, the cross-entropy loss and the Adam Optimizer with a learning rate
of 4× 10−4 are used. The batch size is set to 128. The window size, stride, and
dilate of the sliding window are set as 7, 7, and 2, respectively. If the encoder is
pre-trained, the learning rate is divided by 2 at the 20th, 25th, and 30th epochs.
The training process is terminated at the 50th epoch. If the encoder is randomly
initialized, the learning rate is divided by 2 at the 40th, 50th, and 60th epochs.
The training process is terminated at the 70th epoch.

Action Detection. In the action detection task, each skeleton sequence con-
tains multiple different actions [4]. It is formulated as a per-frame classification
problem following the setup in [4]. Specifically, if a frame belongs to an action of
the c-th category, its label is c; otherwise, its label is 0. For a skeleton sequence
with n frames, a sliding window with size 7, stride 1, and dilate 4 is employed
to temporally crop n clips from the sequence. The n-th obtained clip contains
about one-second surrounding information of the n-th frame. It is fed to the
F-TRS and C-TRS models to extract its clip-level embedding. Then, a linear
classifier (a fully-connected layer) is used for predicting the action category of
the n-th frame. The models are trained to minimize the cross-entropy loss by
using the Adam Optimizer. The learning rate and batch size are set as 4× 10−4

and 256, respectively. The model is trained for 5 epochs.

Motion Prediction. The model used in this task consists of an encoder and
a decoder. The encoder is our proposed Hi-TRS. For the decoder, we use the
LSTM-based architecture proposed in [5], and we implement it based on its
Pytorch implementation 1. We train the model to minimize the mean squared
error loss. We set the batch size as 128 and set the dropout rate of the decoder
as 0.5. We train the model for 25 epochs by using the Adam Optimizer. The
initial learning rate is set to 1× 10−4 and is decayed by 0.5 at the 20th epoch.

3 Implementation Details of Previous Methods

Previous work [8,3] only evaluated their methods on the action recognition task.
The reported results for the action detection and motion prediction tasks are
based on our implementation. In this section, we introduce the implementation
details of these methods.

MCC [8]. Since the official implementation of this method is not publicly avail-
able, we implement it by ourselves according to the details in [8]. Specifically,
the ST-GCN encoder [9] and momentum memory bank [1] used by MCC are
implemented based on their officially released codes 2 3. During pre-training,
we completely follow the hyper-parameters settings of MCC [8], such as the
batch size, memory bank size, and learning rate. When conducting downstream
tasks, the pre-trained encoders are fine-tuned following the same settings as our
method for a fair comparison.

1 https://github.com/enriccorona/human-motion-prediction-pytorch
2 https://github.com/yysijie/st-gcn
3 https://github.com/facebookresearch/moco

https://github.com/enriccorona/human-motion-prediction-pytorch
https://github.com/yysijie/st-gcn
https://github.com/facebookresearch/moco

Hierarchically Self-Supervised Skeleton Representation Learning 3

Supervised (Randomly initialized)
Semi-supervised (Randomly initialized)

Supervised (Pre-trained)
Semi-supervised (Pre-trained)

Fig. 1. mAPa (%) results on the action detection task.

Table 1. Results (%) for the action detection task on the PKUMMD Part I subset
under supervised and semi-supervised settings.

Method
100% data 10% data

mAPa mAPv mAPa mAPv

MCC 58.6 62.3 30.5 44.5
CrosSCLR-3S 60.1 72.4 41.6 60.9

Ours 58.4 66.3 37.9 54.8
Ours-3s 68.2 76.0 42.9 62.9

CrosSCLR [3]. We pre-train the encoders by using its official implementation4,
and fine-tune the pre-trained encoders following the same settings as ours for
action detection and motion prediction.

4 Additional Results of Action Detection

The results for action detection when using the mAPa metric are shown in
Figure 1. We can observe the similar findings when the mAPv metric is used
(shown in the main paper). Additionally, the exact numbers are reported in
Table 1.

Qualitative analysis. We show two action detection examples in Figure 2. We
can see that the temporal boundaries of the actions detected by our methods are
more accurate than the baselines (MCC and CrosSCLR-3S). The results further
demonstrate that the prior knowledge learned through our different-level pretext

4 https://github.com/LinguoLi/CrosSCLR

https://github.com/LinguoLi/CrosSCLR

4 Y. Chen et al.

Ground Truth

MCC

CrosSCLR-3S

Hi-TRS

Hi-TRS-3S

Time

Ground Truth

MCC

CrosSCLR-3S

Hi-TRS

Hi-TRS-3S

Time

Fig. 2. Examples for the action detection task on the PKUMMD Part I subset. The
blue regions represent that there are no actions. The orange regions denotes that the
correspondent actions are detected. Top: An example showing the action detection
results of the one foot jumping action. Bottom: An example showing the action de-
tection results of the touching chest action.

tasks is more useful for extracting short-term information than that learned by
using the baselines’ video-level pretext tasks.

5 Additional Results of Motion Prediction

The correspondent numbers of the main paper’s Figure 3 Right are reported in
Table 2.

Qualitative analysis. We visualize two cases of motion prediction in Figure
3. We can observe that the MCC and CrosSCLR models fail to predict the

Hierarchically Self-Supervised Skeleton Representation Learning 5

Table 2. Results for the motion prediction task on the NTU-60 cross-subject bench-
mark under the supervised and semi-supervised settings.

Method
100% data 10% data

MPJPE ↓ MPJPE ↓

MCC 90.4 109.8
CrosSCLR 89.3 109.3

Ours 85.6 104.7

Table 3. Results (%) of the ablation study for action detection

Pre-trained Level - F C V F+C F+V C+V F+C+V

mAPa 53.4 55.5 55.3 55.9 55.6 57.9 56.3 58.4
mAPv 63.2 64.1 63.9 63.9 65.1 64.0 64.0 66.3

fine-grained movement patterns, such as the motion of the legs and right arm
in Figure 3 Top and Bottom, respectively. This may because they are only
pre-trained to learn coarse video-level motion patterns [8] or discriminative in-
formation [3]. By contrast, our proposed hierarchical pre-training framework
help our encoders capture the motion patterns at different level. As a result, our
method can produce more accurate motion prediction.

6 Additional Results of Ablation Study

We report the results of all model variances for action detection in Table 3. We
observe that pre-training at lower level is beneficial to higher level downstream
tasks. It is consistent with the ablation study for other downstream tasks (see
Table 4 of the paper). Additionally, the results show that leveraging higher level
pre-training also improves lower level downstream tasks.

References

1. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 9729–9738 (2020)

2. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

3. Li, L., Wang, M., Ni, B., Wang, H., Yang, J., Zhang, W.: 3d human action represen-
tation learning via cross-view consistency pursuit. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 4741–4750 (2021)

4. Liu, C., Hu, Y., Li, Y., Song, S., Liu, J.: Pku-mmd: A large scale benchmark for con-
tinuous multi-modal human action understanding. arXiv preprint arXiv:1703.07475
(2017)

6 Y. Chen et al.

Observation Future Motion

GT

MCC

CrosSCLR

Hi-TRS

Time

Observation Future Motion

GT

MCC

CrosSCLR

Hi-TRS

Time

Fig. 3. Examples for the action prediction task on the NTU-60 cross-subject bench-
mark under the supervised setting. “GT” means ground truth.

5. Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent
neural networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2891–2900 (2017)

6. Nunez, J.C., Cabido, R., Pantrigo, J.J., Montemayor, A.S., Velez, J.F.: Convolu-
tional neural networks and long short-term memory for skeleton-based human ac-
tivity and hand gesture recognition. Pattern Recognition 76, 80–94 (2018)

7. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research 15(1), 1929–1958 (2014)

8. Su, Y., Lin, G., Wu, Q.: Self-supervised 3d skeleton action representation learning
with motion consistency and continuity. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 13328–13338 (2021)

9. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for
skeleton-based action recognition. In: Thirty-second AAAI conference on artificial
intelligence (2018)

	Hierarchically Self-Supervised Transformer for Human Skeleton Representation Learning (Supplementary Material)

