
1

A Complete Proof of Theoretical Analysis

A.1 Proof of Proposition 1

Proposition 1. Let Θ be a cover of a parameter space with VC dimension d.
If D1, · · · ,Dt are the distributions of the continually learned 1 : t tasks, then
for any δ ∈ (0, 1) with probability at least 1 − δ, for every solution θ1:t of the
continually learned 1 : t tasks in parameter space Θ, i.e., θ1:t ∈ Θ:

EDt(θ1:t) < Êb
D1:t−1

(θ1:t) +
1

2(t− 1)

t−1∑
k=1

Div(Dk,Dt) +

√
d ln(N1:t−1/d) + ln(1/δ)

N1:t−1
, (1)

ED1:t−1(θ1:t) < Êb
Dt

(θ1:t) +
1

2(t− 1)

t−1∑
k=1

Div(Dt,Dk) +

√
d ln(Nt/d) + ln(1/δ)

Nt
, (2)

where Div(Di,Dj) := 2 suph∈H |PDi
(I(h))−PDj

(I(h))| is the H-divergence for the

distribution Di and Dj (I(h) is the characteristic function). N1:t−1 =
∑t−1

k=1 Nk

is the total number of training samples over all old tasks.

We assume that a distribution D is with input space X and a global label
function h : X → Y, where Y denotes a label space, and h(x) generates target
label for all the input, i.e., y = h(x). Consider a bounded loss function ℓ : Y×Y →
[0, c] (where c is the upper bound), such that ℓ(y1, y2) = 0 holds if and only if
y1 = y2. Then, we define a population loss over the distribution D by ED(θ) =
ED(fθ, h) := E(x,y)∼D[ℓ(fθ(x), h(x))]. Let D denote a training set following the
distribution D with N data-label pairs. To minimize ED(θ), we can minimize an
empirical risk over the training set D in a parameter space, i.e., minθ ÊD(θ).
Further, to find a flat solution, we define a robust empirical risk by the worst
case of the neighborhood in parameter space as Êb

D(θ) := max∥∆∥≤bÊD(θ +∆),
where b is the radius around θ and ∥·∥ denotes the L2 norm.

Below are one important definition and three critical lemmas for the proof
of Proposition 1.

Definition 1. (Based on Definition 1 of [2]) Given two distributions, T and
S, let H be a hypothesis class on input space X and denote by I(h) the set for
which h ∈ H is the characteristic function: that is, x ∈ I(h) ⇔ h(x) = 1. The
H-divergence between T and S is

Div(T,S) = 2 sup
h∈H

|PT(I(h))− PS(I(h))|. (3)

Lemma 1. Let S = {Si}si=1 and T be s source distributions and the target dis-
tribution, respectively. The H-divergence between {Si}si=1 and T is bounded as
follows:

Div(S,T) ≤ 1

s

s∑
i=1

Div(Si,T). (4)
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Proof. By the definition of H-divergence,

Div(S,T) = 2 sup
h∈H

|PS(I(h))− PT(I(h))|

= 2 sup
h∈H

∣∣∣∣∣
s∑

i=1

1

s
(PSi(I(h))− PT(I(h)))

∣∣∣∣∣
≤ 2 sup

h∈H

s∑
i=1

1

s
|PSi(I(h))− PT(I(h))|

≤ 2

s∑
i=1

1

s
sup
h∈H

|PSi(I(h))− PT(I(h))|

=
1

s

s∑
i=1

Div(Si,T),

(5)

where the first inequality is due to the triangle inequality and the second in-
equality is by the additivity of the sup function. This finishes the proof.

Lemma 2. Given two distributions, T and S, the difference between the popula-
tion loss with T and S is bounded by the divergence between T and S as follows:

|ET(f1, h1)− ES(f1, h1)| ≤
1

2
Div(T,S), (6)

where Div(T,S) := 2 suph∈H |PT(I(h)) − PS(I(h))| is the H-divergence for the
distribution T and S (I(h) is the characteristic function).

Proof. By the definition of H-divergence,

Div(T,S) = 2 sup
h∈H

|PT(I(h))− PS(I(h))|

= 2 sup
f1,h1∈H

∣∣P(x,y)∼T[f1(x) ̸= h1(x)]− P(x,y)∼S[f1(x) ̸= h1(x)]
∣∣

= 2 sup
f1,h1∈H

∣∣E(x,y)∼T[ℓ(f1(x), h1(x))]− E(x,y)∼S[ℓ(f1(x), h1(x))]
∣∣

= 2 sup
f1,h1∈H

|ET(f1, h1)− ES(f1, h1)|

≥ 2|ET(f1, h1)− ES(f1, h1)|.

(7)

It completes the proof.

Lemma 3. Let Θ be a cover of a parameter space with VC dimension d. Then,
for any δ ∈ (0, 1) with probability at least 1− δ, for any θ ∈ Θ:

|ED(θ)− Êb
D(θ)| ≤

√
d[ln(N/d)] + ln(1/δ)

2N
, (8)

where Êb
D(θ) is a robust empirical risk with N samples in its training set D, and

b is the radius around θ.
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Proof. For the distribution D, we have

P(|ED(θ)− ÊD(θ)| ≥ ϵ) ≤ 2mΘ(N) exp(−2Nϵ2), (9)

where mΘ(N) is the amount of all possible prediction results for N samples,
which implies the model complexity in the parameter space Θ. We set mΘ(N) =

1
2

(
N
d

)d
in our model, and assume a confidence bound ϵ =

√
d[ln(N/d)]+ln(1/δ)

2N .

Then we get

P(|ED(θ)− ÊD(θ)| ≥ ϵ) ≤
(
N

d

)d

exp(−2Nϵ2) = δ. (10)

Hence, the inequality |ED(θ) − ÊD(θ)| ≤ ϵ holds with probability at least 1 − δ.
Further, based on the fact that Êb

D(θ) ≥ ÊD(θ), we have

|ED(θ)− Êb
D(θ)| ≤ |ED(θ)− ÊD(θ)| ≤ ϵ. (11)

It completes the proof.
Proof of Proposition 1 If we continually learn t tasks that follow the distribu-
tion D1, · · · ,Dt, then a solution θ1:t can be obtained. In addition, let θt denote a
solution obtained over the distribution Dt only, and θ1:t−1 be a solution obtained
over the set of distribution D1, · · · ,Dt−1. Then, we have

EDt(θ1:t−1) ≤ ED1:t−1(θ1:t−1) +
1

2
Div(D1:t−1,Dt)

≤ Êb
D1:t−1

(θ1:t−1) +
1

2
Div(D1:t−1,Dt) +

√
d[ln(N1:t−1/d)] + ln(1/δ)

2N1:t−1

≤ Êb
D1:t−1

(θ1:t−1) +
1

2(t− 1)

t−1∑
k=1

Div(Dk,Dt) +

√
d[ln(N1:t−1/d)] + ln(1/δ)

2N1:t−1

≤ Êb
D1:t−1

(θ1:t−1) +
1

2(t− 1)

t−1∑
k=1

Div(Dk,Dt) +

√
d[ln(N1:t−1/d)] + ln(1/δ)

N1:t−1
,

(12)

where the first three inequalities are from Lemma 2, Lemma 3 and Lemma 1,
respectively. D1:t−1 := {Dk}t−1

k=1 and we rewrite a mixture of all the t− 1 distri-

butions as D1:t−1 := 1
t−1

∑t−1
k=1 Dk using convex combination. N1:t−1 =

∑t−1
k=1 Nk

is the total number of training samples over all t− 1 old tasks.
Further, we have

EDt(θ1:t) < EDt(θ1:t−1)

≤ Êb
D1:t−1

(θ1:t−1) +
1

2(t− 1)

t−1∑
k=1

Div(Dk,Dt) +

√
d[ln(N1:t−1/d)] + ln(1/δ)

N1:t−1

≤ Êb
D1:t−1

(θ1:t) +
1

2(t− 1)

t−1∑
k=1

Div(Dk,Dt) +

√
d[ln(N1:t−1/d)] + ln(1/δ)

N1:t−1
.

(13)
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Likewise, we get

ED1:t−1
(θt) ≤ EDt

(θt) +
1

2
Div(Dt,D1:t−1)

≤ Êb
Dt

(θt) +
1

2
Div(Dt,D1:t−1) +

√
d[ln(Nt/d)] + ln(1/δ)

2Nt

≤ Êb
Dt

(θt) +
1

2(t− 1)

t−1∑
k=1

Div(Dt,Dk) +

√
d[ln(Nt/d)] + ln(1/δ)

2Nt

≤ Êb
Dt

(θt) +
1

2(t− 1)

t−1∑
k=1

Div(Dt,Dk) +

√
d[ln(Nt/d)] + ln(1/δ)

Nt
.

(14)

Further, we have

ED1:t−1
(θ1:t) < ED1:t−1

(θt)

≤ Êb
Dt

(θt) +
1

2(t− 1)

t−1∑
k=1

Div(Dt,Dk) +

√
d[ln(Nt/d)] + ln(1/δ)

Nt

≤ Êb
Dt

(θ1:t) +
1

2(t− 1)

t−1∑
k=1

Div(Dt,Dk) +

√
d[ln(Nt/d)] + ln(1/δ)

Nt
,

(15)

where Nt is the number of training samples over the distribution Dt.

Combining all the inequalities above finishes the proof.

A.2 Proof of Proposition 2

Proposition 2. Let θ̂b1:t denote the optimal solution of the continually learned
1 : t tasks by robust empirical risk minimization over the current task, i.e.,

θ̂b1:t = argminθ∈Θ Êb
Dt

(θ), where Θ denotes a cover of a parameter space with
VC dimension d. Then for any δ ∈ (0, 1), with probability at least 1− δ:

EDt(θ̂
b
1:t)−min

θ∈Θ
EDt(θ) ≤ min

θ∈Θ
Êb
D1:t−1

(θ)−min
θ∈Θ

ÊD1:t−1(θ) +
1

t− 1

t−1∑
k=1

Div(Dk,Dt) + λ1,

(16)

ED1:t−1(θ̂
b
1:t)−min

θ∈Θ
ED1:t−1(θ) ≤ min

θ∈Θ
Êb
Dt

(θ)−min
θ∈Θ

ÊDt(θ) +
1

t− 1

t−1∑
k=1

Div(Dt,Dk) + λ2,

(17)

where λ1 = 2
√

d ln(N1:t−1/d)+ln(2/δ)
N1:t−1

, λ2 = 2
√

d ln(Nt/d)+ln(2/δ)
Nt

, and Div(Di,Dj) :=

2 suph∈H |PDi
(I(h)) − PDj

(I(h))| is the H-divergence for the distribution Di and
Dj (I(h) is the characteristic function).
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Proof of Proposition 2 Let θ̂b1:t denote the optimal solution of the continually
learned 1 : t tasks by robust empirical risk minimization over the new task, i.e.,
θ̂b1:t = argminθ∈Θ Êb

Dt
(θ), where Θ denotes a cover of a parameter space with

VC dimension d. Likewise, let θ̂bt be the optimal solution by robust empirical risk

minimization over the distribution Dt only, and θ̂b1:t−1 over the set of distribution

D1, · · · ,Dt−1. That is, θ̂
b
t = argminθ Êb

Dt
(θ) and θ̂b1:t−1 = argminθ Êb

D1:t−1
(θ).

Then, let θt be the optimal solution over the distribution Dt only, i.e., θt =
argminθ EDt

(θ). From Lemma 3, the following inequality holds with probability
at least 1− δ

2 ,

|ED1:t−1(θt)− ÊD1:t−1(θt)| ≤

√
d ln(N1:t−1/d) + ln(2/δ)

2N1:t−1

≤

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1
,

(18)

where N1:t−1 =
∑t−1

k=1 Nk is the total number of training samples over all t − 1
old tasks. Then, we have

min
θ∈Θ

ÊD1:t−1(θ) ≤ ÊD1:t−1(θt)

≤ ED1:t−1(θt) +

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1

≤ EDt(θt) +
1

2
Div(D1:t−1,Dt) +

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1

= min
θ∈Θ

EDt(θ) +
1

2
Div(D1:t−1,Dt) +

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1

≤ min
θ∈Θ

EDt(θ) +
1

2(t− 1)

t−1∑
k=1

Div(Dk,Dt) +

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1
,

(19)

where the third inequality holds from Lemma 2, and the final inequality is from
Lemma 1.

From Proposition 1, the following inequality holds with probability at least
1− δ

2 ,

EDt(θ̂
b
1:t−1) < Êb

D1:t−1
(θ̂b1:t−1) +

1

2(t− 1)

t−1∑
k=1

Div(Dk,Dt) +

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1
.

(20)
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Combining Eqn. 19 and Eqn. 20, we get

EDt(θ̂
b
1:t)−min

θ∈Θ
EDt(θ) ≤ EDt(θ̂

b
1:t−1)−min

θ∈Θ
EDt(θ)

≤ Êb
D1:t−1

(θ̂b1:t−1)−min
θ∈Θ

ÊD1:t−1(θ) +
1

t− 1

t−1∑
k=1

Div(Dk,Dt) + 2

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1

= min
θ∈Θ

Êb
D1:t−1

(θ)−min
θ∈Θ

ÊD1:t−1(θ) +
1

t− 1

t−1∑
k=1

Div(Dk,Dt) + 2

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1
.

(21)

This completes the first part of Proposition 2.
Similarly, let θ1:t be the optimal solution over the distribution D1:t−1 only,

i.e., θ1:t−1 = argminθ ED1:t−1
(θ). From Lemma 3, the following inequality holds

with probability at least 1− δ
2 ,

|EDt
(θ1:t−1)− ÊDt

(θ1:t−1)| ≤

√
d ln(Nt/d) + ln(2/δ)

2Nt

≤

√
d ln(Nt/d) + ln(2/δ)

Nt
,

(22)

where Nt is the number of training samples in the distribution Dt. Then, we
have

min
θ∈Θ

ÊDt(θ) ≤ ÊDt(θ1:t−1)

≤ EDt
(θ1:t−1) +

√
d ln(Nt/d) + ln(2/δ)

Nt

≤ ED1:t−1
(θ1:t−1) +

1

2
Div(Dt,D1:t−1) +

√
d ln(Nt/d) + ln(2/δ)

Nt

= min
θ∈Θ

ED1:t−1(θ) +
1

2
Div(Dt,D1:t−1) +

√
d ln(Nt/d) + ln(2/δ)

Nt

≤ min
θ∈Θ

ED1:t−1
(θ) +

1

2(t− 1)

t−1∑
k=1

Div(Dt,Dk) +

√
d ln(Nt/d) + ln(2/δ)

Nt
,

(23)

where the third inequality holds from Lemma 2, and the final inequality is from
Lemma 1. From Proposition 1, the following inequality holds with probability
at least 1− δ

2 ,

ED1:t−1(θ̂
b
t ) < Êb

Dt
(θ̂bt ) +

1

2(t− 1)

t−1∑
k=1

Div(Dt,Dk) +

√
d ln(Nt/d) + ln(2/δ)

Nt
.

(24)
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Combining Eqn. 23 and Eqn. 24, we get

ED1:t−1
(θ̂b1:t)−min

θ∈Θ
ED1:t−1

(θ) ≤ ED1:t−1
(θ̂bt )−min

θ∈Θ
ED1:t−1

(θ)

≤ Êb
Dt

(θ̂bt )−min
θ∈Θ

ÊDt(θ) +
1

t− 1

t−1∑
k=1

Div(Dt,Dk) + 2

√
d ln(Nt/d) + ln(2/δ)

Nt

= min
θ∈Θ

Êb
Dt

(θ)−min
θ∈Θ

ÊDt
(θ) +

1

t− 1

t−1∑
k=1

Div(Dt,Dk) + 2

√
d ln(Nt/d) + ln(2/δ)

Nt
.

(25)

This completes the second part of Proposition 2.

A.3 Proof of Proposition 3

Proposition 3. Let {Θi ∈ Rr}Ki=1 be a set of K parameter spaces (K > 1 in
general), di be a VC dimension of Θi, and Θ = ∪K

i=1Θi with VC dimension

d. Based on Proposition 2, for θ̂b1:t = argminθ̄∈Θ Êb
Dt

(θ̄), the upper bound of
generalization gap is further tighter with

λ1 = max
i∈[1,K]

√
di ln(N1:t−1/di) + ln(2K/δ)

N1:t−1
+

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1
, (26)

and

λ2 = max
i∈[1,K]

√
di ln(Nt/di) + ln(2K/δ)

Nt
+

√
d ln(Nt/d) + ln(2/δ)

Nt
. (27)

Below is one critical lemma for the proof of Proposition 3.

Lemma 4. Let {Θi ∈ Rr}Ki=1 be a set of K parameter spaces (K > 1 in general),
di be a VC dimension of Θi, and Θ = ∪K

i=1Θi with VC dimension d. Let θi =
argmaxθ∈Θi ED(θ) be a local maximum in the i-th parameter space (i.e., i-th
ball). Then, for any δ ∈ (0, 1) with probability at least 1− δ, for any θ ∈ Θ:

|ED(θ)− Êb
D(θ)| ≤ max

i∈[1,K]

√
di ln(N/di) + ln(K/δ)

2N
, (28)

where Êb
D(θ) is a robust empirical risk with N samples in its training set D, and

b is the radius around θ.

Proof. For the distribution D, we have

P
(

max
i∈[1,K]

|ED(θi)− ÊD(θi)| ≥ ϵ

)
≤

K∑
i=1

P
(
|ED(θi)− ÊD(θi)| ≥ ϵ

)
≤

K∑
i=1

2mΘi(N) exp(−2Nϵ2),

(29)
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where mΘi
(N) is the amount of all possible prediction results for N samples,

which implies the model complexity in the parameter spaceΘi. We setmΘi
(N) =

1
2

(
N
di

)di

in our model, and assume a confidence bound ϵi =
√

di[ln(N/di)]+ln(K/δ)
2N ,

and ϵ = maxi∈[1,K] ϵi. Then we get

P
(

max
i∈[1,K]

|ED(θi)− ÊD(θi)| ≥ ϵ

)
≤

K∑
i=1

2mΘi(N) exp(−2Nϵ2)

=

K∑
i=1

(
N

di

)di

exp(−2Nϵ2)

≤
K∑
i=1

(
N

di

)di

exp(−2Nϵi
2)

=

K∑
i=1

δ

K
= δ.

(30)

Hence, the inequality |ED(θ)−ÊD(θ)| ≤ ϵ holds with probability at least 1−δ.
Further, based on the fact that Êb

D(θ) ≥ ÊD(θ), we have

|ED(θ)− Êb
D(θ)| ≤ |ED(θ)− ÊD(θ)| ≤ ϵ. (31)

It completes the proof.
Proof of Proposition 3 Let {Θi ∈ Rr}Ki=1 be a set ofK parameter spaces (K >
1 in general), di be a VC dimension of Θi, and Θ = ∪K

i=1Θi with VC dimension

d. Let θ̂b1:t denote the optimal solution of the continually learned 1 : t tasks by ro-

bust empirical risk minimization over the new task, i.e., θ̂b1:t = argminθ∈Θ Êb
Dt

(θ),
where Θ denotes a cover of a parameter space with VC dimension d. Likewise,
let θ̂bt be the optimal solution by robust empirical risk minimization over the

distribution Dt only, and θ̂b1:t−1 over the set of distribution D1, · · · ,Dt−1. That

is, θ̂bt = argminθ Êb
Dt

(θ) and θ̂b1:t−1 = argminθ Êb
D1:t−1

(θ).
Then, let θt be the optimal solution over the distribution Dt only, i.e., θt =

argminθ EDt
(θ). From Lemma 3 and Proposition 2, the following inequality holds

with probability at least 1− δ
2 ,

|EDt(θ1:t−1)− ÊDt(θ1:t−1)| ≤

√
d ln(Nt/d) + ln(2/δ)

Nt
, (32)

where N1:t−1 =
∑t−1

k=1 Nk is the total number of training samples over all t − 1
old tasks. Then, we have

min
θ∈Θ

ÊD1:t−1
(θ) ≤ min

θ∈Θ
EDt

(θ) +
1

2(t− 1)

t−1∑
k=1

Div(Dk,Dt) +

√
d ln(Nt/d) + ln(2/δ)

Nt
.

(33)
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From Proposition 1 and Lemma 4, the following inequality holds with prob-
ability at least 1− δ

2 ,

EDt(θ̂
b
1:t−1) < Êb

D1:t−1
(θ̂b1:t−1) +

1

2(t− 1)

t−1∑
k=1

Div(Dk,Dt)

+ max
i∈[1,K]

√
di ln(N1:t−1/di) + ln(2K/δ)

2N1:t−1
.

(34)

Combining Eqn. 33 and Eqn. 34, we get

EDt(θ̂
b
1:t)−min

θ∈Θ
EDt(θ) ≤ EDt(θ̂

b
1:t−1)−min

θ∈Θ
EDt(θ)

≤ Êb
D1:t−1

(θ̂b1:t−1)−min
θ∈Θ

ÊD1:t−1
(θ) +

1

t− 1

t−1∑
k=1

Div(Dk,Dt)

+ max
i∈[1,K]

√
di ln(N1:t−1/di) + ln(2K/δ)

2N1:t−1
+

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1

= min
θ∈Θ

Êb
D1:t−1

(θ)−min
θ∈Θ

ÊD1:t−1(θ) +
1

t− 1

t−1∑
k=1

Div(Dk,Dt)

+ max
i∈[1,K]

√
di ln(N1:t−1/di) + ln(2K/δ)

2N1:t−1
+

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1
.

(35)

This completes the first part of Proposition 3.
Similarly, let θ1:t be the optimal solution over the distribution D1:t−1 only,

i.e., θ1:t−1 = argminθ ED1:t−1
(θ). From Lemma 3 and Proposition 2, the following

inequality holds with probability at least 1− δ
2 ,

|EDt(θ1:t−1)− ÊDt(θ1:t−1)| ≤

√
d ln(Nt/d) + ln(2/δ)

Nt
, (36)

where Nt is the number of training samples in the distribution Dt. Then, we
have

min
θ∈Θ

ÊDt(θ) ≤ min
θ∈Θ

ED1:t−1(θ) +
1

2(t− 1)

t−1∑
k=1

Div(Dt,Dk) +

√
d ln(Nt/d) + ln(2/δ)

Nt
.

(37)

From Proposition 1 and Lemma 4, the following inequality holds with proba-
bility at least 1− δ

2 ,

ED1:t−1(θ̂
b
t ) < Êb

Dt
(θ̂bt ) +

1

2(t− 1)

t−1∑
k=1

Div(Dt,Dk) + max
i∈[1,K]

√
di ln(Nt/di) + ln(2K/δ)

2Nt
.

(38)
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Combining Eqn. 37 and Eqn. 38, we get

ED1:t−1
(θ̂b1:t)−min

θ∈Θ
ED1:t−1

(θ) ≤ ED1:t−1
(θ̂bt )−min

θ∈Θ
ED1:t−1

(θ)

≤ Êb
Dt

(θ̂bt )−min
θ∈Θ

ÊDt(θ) +
1

t− 1

t−1∑
k=1

Div(Dt,Dk)

+ max
i∈[1,K]

√
di ln(Nt/di) + ln(2K/δ)

2Nt
+

√
d ln(Nt/d) + ln(1/δ)

Nt

= min
θ∈Θ

Êb
Dt

(θ)−min
θ∈Θ

ÊDt(θ) +
1

t− 1

t−1∑
k=1

Div(Dt,Dk)

+ max
i∈[1,K]

√
di ln(Nt/di) + ln(2K/δ)

2Nt
+

√
d ln(Nt/d) + ln(1/δ)

Nt
.

(39)

This completes the second part of Proposition 3.
Discrepancy between task distributions: Below are three important

lemmas to prove how cooperating multiple continual learners can optimize the
discrepancy between task distributions, which is measured by H-divergence.

Lemma 5. (Based on Theorem 3.4 of [7] and Lemma 1 of [2]) Let Θ be a cover
of a parameter space with VC dimension d. If T and S are samples of size N
from two distributions T and S, respectively, and D̂iv(T, S) is the empirical H-
divergence between samples, then for any δ ∈ (0, 1), with probability at least 1−δ,

Div(T,S) ≤ D̂iv(T,S) + 4

√
d ln(2N) + ln(2/δ)

N
. (40)

Lemma 6. (Based on Lemma 2 of [2]) Let T and S be samples of size N from
two distributions T and S, respectively. Then the empirical H-divergence between
samples, i.e., D̂iv(T, S) can be computed by finding a classifier which attempts
to separate one distribution from the other. That is,

D̂iv(T, S) = 2

1− 1

N
min
θ∈Θ

 ∑
x:pθ(x)=0

I[x ∈ S] +
∑

x:pθ(x)=1

I[x ∈ T]

 , (41)

where I[x ∈ S] is the binary indicator variable which is 1 when the input x ∈ S,
and 0 when x ∈ T. pθ(·) is the learned prediction function.

Of note, Lemma 6 implies we first find a solution in parameter space which
has minimum error for the binary problem of distinguishing source from target
distributions. By cooperating K parameter spaces, i.e., Θ = ∪K

i=1Θi, we can
improve classification errors so as to decrease H-divergence.

Lemma 7. Let {Θi ∈ Rr}Ki=1 be a set of K parameter spaces (K > 1 in general),
di be a VC dimension of Θi, and Θ = ∪K

i=1Θi with VC dimension d. If T and S
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are samples of size N from two distributions T and S, respectively, and D̂iv(T, S)
is the empirical H-divergence between samples, then in the parameter space Θ,
for any δ ∈ (0, 1), with probability at least 1− δ,

Div(T,S) ≤ D̂iv(T,S) + max
i∈[1,K]

4

√
di ln(2N) + ln(2K/δ)

2N
. (42)

Proof. For two distributions T and S, we have

P
(

max
i∈[1,K]

|DivΘi
(T,S)− D̂ivΘi

(T,S)| ≥ ϵ

)
≤

K∑
i=1

P
(
|DivΘi(T,S)− D̂ivΘi(T,S)| ≥ ϵ

)
≤

K∑
i=1

2mΘi(N) exp(−2Nϵ2),

(43)

where mΘi
(N) is the amount of all possible predictions for N samples, which

implies the model complexity in the parameter space Θi. We set mΘi(N) =

16 (2N)
di in our model, and assume a confidence bound ϵi = 4

√
di ln(2N)+ln(2K/δ)

2N ,

and ϵ = maxi∈[1,K] ϵi. Then we get

P
(

max
i∈[1,K]

|DivΘi(T,S)− D̂ivΘi(T,S)| ≥ ϵ

)
≤

K∑
i=1

2mΘi(N) exp(−2Nϵ2)

=

K∑
i=1

32 (2N)
di exp(−2Nϵ2)

≤
K∑
i=1

32 (2N)
di exp(−2Nϵi

2)

=

K∑
i=1

δ

K
= δ.

(44)

Hence, the inequality |DivΘi
(T,S) − D̂ivΘi

(T,S)| ≤ ϵ holds with probability at
least 1− δ. It completes the proof.

Comparing Lemma 5 and Lemma 7, it can be found that by cooperating
K parameter spaces, our proposal can mitigate the discrepancy between tasks,
i.e., Div(T,S), by decreasing the empirical H-divergence (i.e., D̂ivΘi(T,S)) and
another factor.

B Experiment Details

B.1 Implementation

We follow the implementation of [6, 3, 15] for supervised continual learning. For
CIFAR-100-SC and CIFAR-100-RS, we use an Adam optimizer of initial learning
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rate 0.001 and train all methods with batch size of 256 for 100 epochs. For CUB-
200-2011 and Tiny-ImageNet, we use a SGD optimizer of initial learning rate
0.005 and momentum 0.9, and train all methods with batch size of 64 for 40
epochs.

We follow the implementation of [11] for unsupervised continual learning
on CIFAR-100-RS (which is called Split CIFAR-100 in [11]). We use a SGD
optimizer of initial learning rate 0.03, momentum 0.9 and weight decay 5e-4,
and train all methods with batch size of 256 for 200 epochs.

B.2 Hyperparameter

For CIFAR-100-SC, CIFAR-100-RS and CUB-200-2011, we adopt the same hy-
perparameters for the baselines used in [15]. While for other experiments (e.g.,
Tiny-ImageNet) and baselines (e.g., CPR [3]), we make an extensive hyperpa-
rameter search to make the comparison as fair as possible. The hyerparameters
for supervised continual learning are summarized in Table 1.

Table 1. Hyperparamters for supervised continual learning. ∗λ is the same as the
corresponding baseline approach.

Methods CIFAR-100-SC CIFAR-100-RS CUB-200-2011 Tiny-ImageNet

AGS-CL [6] λ(3200), µ(10), ρ(0.3) λ(1600), µ(10), ρ(0.3) – –
HAT [14] c(500), smax(200) c(500), smax(200) – –
EWC [8] λ(40000) λ(10000) λ(1) λ(80)
MAS [1] λ(16) λ(4) λ(0.01) λ(0.1)
SI [16] λ(8) λ(10) λ(6) λ(0.8)

RWALK [4] λ(128) λ(6) λ(48) λ(5)
P&C [13] λ(40000) λ(20000) λ(1) λ(80)

∗AFEC [15] λe(1) λe(1) λe(0.001) λe(0.1)
∗CPR [3] β(1.5) β(1.5) β(1) β(0.6)

∗CoSCL (Ours) γ(0.02), s(100) γ(0.02), s(100) γ(0.0001), s(100) γ(0.001), s(100)

B.3 Architecture

The network architectures used for the main experiments are detailed in Table 2,
3 (the output head is not included).

B.4 Evaluation Metric

We use three metrics to evaluate the performance of continual learning, includ-
ing averaged accuracy (AAC), forward transfer (FWT) and backward transfer
(BWT) [10]:

AAC =
1

T

T∑
i=1

AT,i, (45)

FWT =
1

T− 1

T∑
i=2

Ai−1,i − Âi, (46)
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Table 2. Network architecture for CIFAR-100-SC and CIFAR-100-RS. We set nc = 32
for a single continual learner (#Param=837K) while nc = 8 for 5 small continual
learners in CoSCL (#Param=773K).

Layer Channel Kernel Stride Padding Dropout

Input 3
Conv 1 nc 3×3 1 1
Conv 2 nc 3×3 1 1
MaxPool 2 0 0.25
Conv 3 2nc 3×3 1 1
Conv 4 2nc 3×3 1 1
MaxPool 2 0 0.25
Conv 5 4nc 3×3 1 1
Conv 6 4nc 3×3 1 1
MaxPool 2 1 0.25
Dense 1 256

Table 3. Network architecture for CUB-200-2011 and Tiny-ImageNet. We set nc = 64
for a single continual learner (#Param=57.8M) while nc = 34 for 5 small continual
learners in CoSCL (#Param=57.2M).

Layer Channel Kernel Stride Padding Dropout

Input 3
Conv 1 nc 11×11 4 2
MaxPool 3×3 2 0 0
Conv 2 3nc 5×5 1 2
MaxPool 3×3 2 0 0
Conv 3 6nc 3×3 1 1
Conv 4 4nc 3×3 1 1
Conv 5 4nc 3×3 1 1
MaxPool 3×3 2 0 0
Dense 1 64nc 0.5
Dense 2 64nc 0.5

BWT =
1

T− 1

T−1∑
i=1

AT,i −Ai,i, (47)

where At,i is the test accuracy of task i after incrementally learning task t, and Âi

is the test accuracy of each task i learned from random initialization. Averaged
accuracy (ACC) is the averaged performance of all the tasks ever seen. Forward
transfer (FWT) evaluates the averaged influence of remembering the old tasks
to each new task. Backward transfer (BWT) evaluates the averaged influence of
learning each new task to the old tasks.
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C Additional Results

C.1 Diversity of Expertise across Tasks

To evaluate the diversity of expertise across tasks, we use the feature representa-
tions of each continual learner to make predictions with the shared output head,
and calculate the relative accuracy. As shown in Fig. 1, the solution learned by
each continual learner varies significantly across tasks and complement with each
other.

Fig. 1. Diversity of expertise across tasks. Here we use EWC [8] or Experience Replay
(ER) [12] as the default continual learning method. The relative accuracy for each
task is calculated by subtracting the performance of each learner from the averaged
performance of all learners.
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Fig. 2. Task-discrimination loss in feature space. We plot all baselines from the tenth
task, where significant differences start to arise. Larger loss indicates a smaller H-
divergence. SCL: single continual learner; FE: feature ensemble; TG: task-adaptive
gates; EC: ensemble cooperation loss.

C.2 Discrepancy between Task Distributions

To empirically approximate the H-divergence between tasks in feature space,
we train a discriminator with a fully-connected layer to distinguish whether the
features of input images belong to a task or not [9]. Specifically, the discrimi-
nator is trained with the features of training data and the binary cross-entropy
loss. We use Adam optimizer and initial learning rate 0.0001 with batch size of
256 for 10 epochs. Then we evaluate the H-divergence between tasks with the
features of test data, where a larger discrimination loss indicates a smaller H-
divergence. Since the discrimination becomes increasingly harder as more tasks
are introduced, from the tenth task we start to observe significant differences
between all the baselines. The proposed feature ensemble (FE) and ensemble
cooperation (EC) can largely decrease the discrepancy between tasks, while the
task-adaptive gates (TG) have a moderate effect.

C.3 Results of ResNet

In addition to regular CNN architectures, our method is also applicable to other
architectures such as ResNet. We use a WideResNet-28-2 architecture to per-
form the task incremental learning experiments on CIFAR-100-RS, following
a widely-used implementation code [5]. CoSCL (5 learners with accordingly-
adjusted width) can improve the performance from 69.52% to 73.26% for EWC
and from 62.23% to 68.69% for MAS.
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