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Abstract. Continual learning requires incremental compatibility with
a sequence of tasks. However, the design of model architecture remains
an open question: In general, learning all tasks with a shared set of pa-
rameters suffers from severe interference between tasks; while learning
each task with a dedicated parameter subspace is limited by scalability.
In this work, we theoretically analyze the generalization errors for learn-
ing plasticity and memory stability in continual learning, which can be
uniformly upper-bounded by (1) discrepancy between task distributions,
(2) flatness of loss landscape and (3) cover of parameter space. Then, in-
spired by the robust biological learning system that processes sequential
experiences with multiple parallel compartments, we propose Cooper-
ation of Small Continual Learners (CoSCL) as a general strategy for
continual learning. Specifically, we present an architecture with a fixed
number of narrower sub-networks to learn all incremental tasks in par-
allel, which can naturally reduce the two errors through improving the
three components of the upper bound. To strengthen this advantage, we
encourage to cooperate these sub-networks by penalizing the difference of
predictions made by their feature representations. With a fixed param-
eter budget, CoSCL can improve a variety of representative continual
learning approaches by a large margin (e.g., up to 10.64% on CIFAR-
100-SC, 9.33% on CIFAR-100-RS, 11.45% on CUB-200-2011 and 6.72%
on Tiny-ImageNet) and achieve the new state-of-the-art performance.
Our code is available at https://github.com/lywang3081/CoSCL.
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1 Introduction

The ability to incrementally learn a sequence of tasks is critical for artificial
neural networks. Since the training data distribution is typically dynamic and
unpredictable, this usually requires a careful trade-off between learning plastic-
ity and memory stability. In general, excessive plasticity in learning new tasks
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Fig. 1. Comparison of a single continual learner (SCL) and CoSCL (Ours) on (a)
CIFAR-100-SC and (b) CIFAR-100-RS.

leads to the catastrophic forgetting of old tasks [25], while excessive stability in
remembering old tasks limits the learning of new tasks. Most efforts in continual
learning either use a single model to learn all tasks, which has to sacrifice the
performance of each task to find a shared solution [33]; or allocate a dedicated
parameter subspace for each task to overcome their mutual interference [14, 39],
which usually lacks scalability. Recent work observed that a wider network can
suffer from less catastrophic forgetting [26], while different components such as
batch normalization, skip connections and pooling layers play various roles [27].
Thus, how to achieve effective continual learning in terms of model architecture
remains an open question.

In contrast, the robust biological learning system applies multiple compart-
ments (i.e, sub-networks) to process sequential experiences in parallel, and inte-
grates their outputs in a weighted-sum fashion to guide adaptive behaviors [3,
9, 30]. This provides a promising reference for artificial neural networks.

In this work, we first theoretically analyze the generalization errors of learning
plasticity and memory stability in continual learning. We identify that both as-
pects can be uniformly upper-bounded by (1) discrepancy between task distribu-
tions, (2) flatness of loss landscape and (3) cover of parameter space. Inspired by
the biological strategy, we propose a novel method named Cooperation of Small
Continual Learners (CoSCL). Specifically, we design an architecture with multi-
ple narrower sub-networks1 to learn all incremental tasks in parallel, which can
naturally alleviate the both errors through improving the three components. To
strengthen this advantage, we further encourage the cooperation of sub-networks
by penalizing differences in the predictions of their feature representations.

With a fixed parameter budget, CoSCL can substantially boost a variety of
representative continual learning strategies (e.g., up to 10.64% on CIFAR-100-
SC, 9.33% on CIFAR-100-RS, 11.45% on CUB-200-2011 and 6.72% on Tiny-
ImageNet, detailed in Fig. 1 and Table 1). The superior performance comes

1In contrast to a single continual learning model with a wide network, we refer to
such narrower sub-networks as “small” continual learners.
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from reducing the errors in both learning plasticity and memory stability by
tightening the upper bound, consistent with our theoretical analysis.

Our contributions include: (1) We present a unified form of generalization
bounds for learning plasticity and memory stability in continual learning; (2)
The generalization bounds suggest that the two aspects are not necessarily in
conflict, but can be simultaneously enhanced in a compatible parameter space of
a well-designed model architecture; (3) To achieve this goal, we draw inspirations
from the biological strategy and propose to cooperate multiple (small) continual
learners; (4) Extensive experiments validate the efficacy and generality of our
proposal, which can be adapted to a variety of representative continual learning
approaches and improve their performance by a large margin.

2 Related Work

Continual Learning requires effective learning of incremental tasks without
severe catastrophic forgetting. Representative strategies include weight regular-
ization [18, 50, 1], memory replay [34, 42, 44], parameter isolation [39, 17] and
dynamic architecture [14, 48]. These strategies either learn all tasks with a sin-
gle model, which have to compromise the performance of each task to obtain a
shared solution [33]; or allocate parameter subspace for each task to prevent mu-
tual interference, yet limited by scalability. Several recent work tried to improve
continual learning in terms of architecture, such as by using neural architecture
search [32] or learning an additional set of shared parameters [16], but to a lim-
ited extent. [33] proposed a model zoo that incrementally adds sub-networks to
learn new tasks, which had to store a large amount of old training samples.

Flatness of Loss Landscape provides a conceptual explanation of gener-
alization for deep neural networks, which is recently introduced to understand
catastrophic forgetting in continual learning [29, 40, 11, 6, 23]. The core idea is
that convergence to a smooth region will be more robust to (mild) parameter
changes. [29, 12] analyzed that the forgetting of old tasks in continual learning
can be bounded by the variation of parameters between tasks and the eigenvalues
of the Hessian matrix, where the lower eigenvalues indicate a flatter curvature of
the solution. [6, 40, 11] explicitly encouraged the network to find a flat minima
and empirically validated its efficacy in continual learning.

Ensemble Model is a powerful architecture to improve generalization, but
is still under explored in continual learning. Most current applications focus on
learning each single task with a sub-network [37, 2, 47], which can be seen as
a special case of dynamic architecture. The main limitation is that the total
amount of parameters (resp., the storage and computational cost) might grow
linearly with the number of incremental tasks. [45] proposed an efficient ensemble
strategy to reduce extra parameter cost for task-specific sub-networks. Similar
to ours, a concurrent work [13] also observed that ensemble of multiple continual
learning models brings huge benefits. They further exploited recent advances of
mode connectivity [28] and neural network subspace [46] to save computational
cost, but had to use old training samples [13]. Besides, [20] achieved more ef-
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fective weight regularization by ensemble of multiple auxiliary classifiers learned
from extra out-of-distribution data (e.g., SVHN [31] for CIFAR-100 [19]).

Main Advantages of Our Work are summarized in three aspects: (1)
The generalization bounds presented in our work demonstrate the direct link
between continual learning performance and flatness of loss landscape (as well
as other components). (2) We use a fixed number of sub-networks, which are
all continual learners rather than single-task learners, and adjust their width
accordingly, so no additional or growing parameters are needed. (3) We mainly
focus on a restrict setting where old training samples or extra data sources are
not needed, which is more general and realistic for continual learning.

3 Preliminary Analysis

In this section, we first introduce the problem formulation and representative
continual learning strategies, and then present the generalization bounds.

3.1 Problem Formulation

Let’s consider a general setting of continual learning: A neural network with
parameter θ incrementally learns T tasks, called a continual learner. The training
set and test set of each task follow the same distribution Dt (t = 1, 2, ..., T ),
where the training set Dt = {(xt,n, yt,n)}Nt

n=1 includes Nt data-label pairs. For
classification task, it might include one or several classes. After learning each
task, the performance of all the tasks ever seen is evaluated on their test sets.
Although Dt is only available when learning task t, an ideal continual learner
should behave as if training them jointly. To achieve this goal, it is critical
to balance learning plasticity of new tasks and memory stability of old tasks.
Accordingly, the loss function for continual learning can typically be defined as

LCL(θ) = Lt(θ) + λL̂1:t−1(θ), (1)

where Lt(·) is the task-specific loss for learning task t (e.g., cross-entropy for su-
pervised classification), and L̂1:t−1(·) provides the constraint to achieve a proper
trade-off between new and old tasks. For example, L̂1:t−1(θ) =

∑
i I1:t−1,i(θi −

θ∗1:t−1,i)
2 for weight regularization [18, 1, 50], where θ∗1:t−1 denotes the continually-

learned solution for old tasks and I1:t−1 indicates the “importance” of each pa-
rameter. L̂1:t−1(θ) =

∑t−1
k=1 Lk(θ; D̂k) for memory replay [34, 42, 44], where D̂k is

an approximation of Dk through storing old training samples or learning a gener-
ative model. For parameter isolation [39, 17], θ = {

⋃t−1
k=1 θ̂k, θ̂free} is dynamically

isolated as multiple task-specific subspaces θ̂k, while θ̂free denotes the “free” pa-
rameters for current and future tasks. So L̂1:t−1(θ) usually serves as a sparsity

regularizer to save θ̂free. For dynamic architecture [14, 48], θ = {
⋃t−1

k=1 θ̂k, θ̂t} at-

tempts to add a new subspace θ̂t on the basis of the previous ones, and L̂1:t−1(θ)
should limit the amount of extra parameters.
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Fig. 2. A conceptual model of two tasks (the learning order of Task A and Task B
does not matter). The dashed line in (b) and (c) is the original solution in (a), where
finding a flatter solution or reducing the discrepancy between tasks help to mitigate
the generalization errors of a shared solution θA,B .

3.2 Generalization Bound for Continual Learning

Formally, the goal of continual learning is to find a solution θ in a parameter space
Θ that can generalize well over a set of distribution Dt and D1:t−1 := {Dk}t−1

k=1.
Let’s consider a bounded loss function ℓ : Y×Y → [0, c] (where Y denotes a label
space and c is the upper bound), such that ℓ(y1, y2) = 0 holds if and only if y1 =
y2. Then, we can define a population loss over the distribution Dt by EDt

(θ) =
E(x,y)∼Dt

[ℓ(fθ(x), y)], where fθ(·) is the prediction of an input parameterized
by θ. Likewise, the population loss over the distribution of old tasks is defined
by ED1:t−1

(θ) = 1
t−1

∑t−1
k=1 E(x,y)∼Dk

[ℓ(fθ(x), y)]. To minimize both EDt
(θ) and

ED1:t−1
(θ), a continual learning model (i.e., a continual learner) needs to minimize

an empirical risk over the current training set Dt in a constrained parameter
space, i.e., minθ∈Θ ÊDt(θ). Specifically, ÊDt(θ) = 1

Nt

∑Nt

n=1 ℓ(fθ(xt,n), yt,n), and
the constrained parameter spaceΘ depends on the previous experience carried by
parameters, data, and/or task labels, so as to prevent catastrophic forgetting.
Likewise, ÊD1:t−1

(θ) denotes an empirical risk over the old tasks. In practice,

sequential learning of each task by minimizing the empirical risk ÊDt
(θ) in Θ

can find multiple solutions, but provides significantly different generalizability
on EDt

(θ) and ED1:t−1
(θ). Several recent studies suggested that a flatter solution

is more robust to catastrophic forgetting [29, 40, 11, 6, 23]. To find such a flat
solution, we define a robust empirical risk by the worst case of the neighborhood
in parameter space as Êb

Dt
(θ) := max∥∆∥≤bÊDt

(θ +∆) [5], where b is the radius

around θ and ∥·∥ denotes the L2 norm, likewise for the old tasks as Êb
D1:t−1

(θ) :=

max∥∆∥≤bÊD1:t−1
(θ + ∆). Then, solving the constrained robust empirical risk

minimization, i.e., minθ∈Θ Êb
Dt

(θ), will find a near solution of a flat optimum
showing better generalizability. In particular, the minima found by the empirical
loss ÊDt(θ) will also be the minima of Êb

Dt
(θ) if the “radius” of its loss landscape

is sufficiently wider than b. Intuitively, such a flat solution helps to mitigate
catastrophic forgetting since it is more robust to parameter changes.

However, this connection is not sufficient. If a new task is too different from
the old tasks, the parameter changes to learn it well might be much larger than
the “radius” of the old minima, resulting in catastrophic forgetting. On the other
hand, staying around the old minima is not a good solution for the new task,
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Fig. 3. Illustration of simultaneously promoting learning plasticity and memory sta-
bility in continual learning, where arrows represent the tightening process.

limiting learning plasticity. Let EDt
(θ1:t) and ED1:t−1

(θ1:t) denote the generaliza-
tion errors of performing the new task and old tasks, respectively. Inspired by
the PAC-Bayes theory [24] and previous work in domain generalization [5, 4], we
present the upper bounds of these two errors as follows (proof in Appendix A):

Proposition 1. Let Θ be a cover of a parameter space with VC dimension d.
If D1, · · · ,Dt are the distributions of the continually learned 1 : t tasks, then
for any δ ∈ (0, 1) with probability at least 1 − δ, for every solution θ1:t of the
continually learned 1 : t tasks in parameter space Θ, i.e., θ1:t ∈ Θ:

EDt(θ1:t) < Êb
D1:t−1

(θ1:t) +
1

2(t− 1)

t−1∑
k=1

Div(Dk,Dt) +

√
d ln(N1:t−1/d) + ln(1/δ)

N1:t−1
, (2)

ED1:t−1(θ1:t) < Êb
Dt

(θ1:t) +
1

2(t− 1)

t−1∑
k=1

Div(Dt,Dk) +

√
d ln(Nt/d) + ln(1/δ)

Nt
, (3)

where Div(Di,Dj) := 2 suph∈H |PDi(I(h))−PDj(I(h))| is the H-divergence for the

distribution Di and Dj (I(h) is the characteristic function). N1:t−1 =
∑t−1

k=1 Nk

is the total number of training samples over all old tasks.

It can be concluded from Proposition 1 that, the generalization errors over
the new task and old tasks are uniformly constrained by three components: (1)
discrepancy between task distributions; (2) flatness of loss landscape; and (3)
cover of parameter space. By the optimal solution for (robust) empirical loss, we
further demonstrate that the generalization gaps of the new task and old tasks
are upper bounded as follows (proof in Appendix A):

Proposition 2. Let θ̂b1:t denotes the optimal solution of the continually learned
1 : t tasks by robust empirical risk minimization over the current task, i.e.,

θ̂b1:t = argminθ∈Θ Êb
Dt

(θ), where Θ denotes a cover of a parameter space with
VC dimension d. Then for any δ ∈ (0, 1), with probability at least 1− δ:

EDt(θ̂
b
1:t)−min

θ∈Θ
EDt(θ) ≤ min

θ∈Θ
Êb
D1:t−1

(θ)−min
θ∈Θ

ÊD1:t−1(θ) +
1

t− 1

t−1∑
k=1

Div(Dk,Dt) + λ1,

(4)

ED1:t−1(θ̂
b
1:t)−min

θ∈Θ
ED1:t−1(θ) ≤ min

θ∈Θ
Êb
Dt

(θ)−min
θ∈Θ

ÊDt(θ) +
1

t− 1

t−1∑
k=1

Div(Dt,Dk) + λ2,

(5)
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Fig. 4. (a) Fruit flies learn sequential experiences with multiple parallel compartments
(γ 2-5), under the modulation of dopaminergic neurons (DANs) that convey valence.
The figure is modified from [9]. (b) Inspired by the biological learning system, we
propose a general strategy of cooperating multiple (small) continual learners.

where λ1 = 2
√

d ln(N1:t−1/d)+ln(2/δ)
N1:t−1

, λ2 = 2
√

d ln(Nt/d)+ln(2/δ)
Nt

, and Div(Di,Dj) :=

2 suph∈H |PDi(I(h)) − PDj(I(h))| is the H-divergence for the distribution Di and
Dj (I(h) is the characteristic function).

Likewise, the generalization gaps over the new and old tasks are also con-
strained by the three components above. In particular, learning plasticity and
memory stability in continual learning can be simultaneously promoted by using
a more compatible parameter space, as illustrated in Fig. 3. Specifically, com-
patibility with the new task can facilitate a smaller robust empirical risk on the
old tasks as well as improve task discrepancy, then tightening the generalization
bound for learning plasticity through Eqn. (2)/Eqn. (4), and vice versa tighten-
ing the generalization bound for memory stability through Eqn. (3)/Eqn. (5).

4 Method

Unlike artificial neural networks, the robust biological learning system, such
as that of fruit flies, processes sequential experiences with multiple parallel
compartments (i.e, sub-networks) [3, 9]. These compartments are modulated by
dopaminergic neurons (DANs) that convey valence (i.e., supervised signals), and
their outputs are integrated in a weighted-sum fashion to guide adaptive behav-
iors [3, 9, 30] (detailed in Fig. 4, a). Inspired by this, we propose to cooperate
multiple (small) continual learners as a simple yet effective method for contin-
ual learning. We present our proposal in Sec. 4.1, and validate this idea both
theoretically (Sec. 4.2) and empirically (Sec. 5).

4.1 Cooperation of (Small) Continual Learners

Instead of learning all tasks with a single continual learner, we design a bio-
inspired architecture to coordinate multiple continual learners. Specifically, each
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continual learner is implemented with a sub-network fϕi
(·), i = 1, ...,K in a

parameter space for learning all incremental tasks, where the dedicated output
head is removed and the output of the previous layer is weighted by a set of
learnable parameters (usually a fully connected layer). Then, these outputs are
fed into a shared output head hφ(·) for prediction. For a regular classifier, this is
equivalent to making predictions on a weighted-sum of feature representations,
so we refer to this strategy as feature ensemble (FE).

When task labels are available, our architecture can more effectively incorpo-
rate task-specific information by learning an additional set of task-adaptive gates
(TG) for each continual learner’s output. Such a gate is defined as gt,i = σ(s·αt,i)
for learner i to perform task t, where αt,i is a learnable parameter, s is a
scale factor and σ denotes the sigmoid function. Therefore, the final predic-
tion becomes p(·) = hφ(

∑K
i=1 gt,ifϕi(·)), and all optimizable parameters include

θ̄ = {
⋃K

i=1 ϕi,
⋃K

i=1 αt,i, φ}.
To strengthen the advantage of feature ensemble, we encourage to cooperate

the continual learners by penalizing differences in the predictions of their feature
representations (e.g., pi and pj). We choose the widely-used Kullback Leibler
(KL) divergence and define an ensemble cooperation (EC) loss as

LEC(θ̄) =
1

K

K∑
i=1,j ̸=i

DKL(pi||pj) =
1

K

1

Nt

K∑
i=1,j ̸=i

Nt∑
n=1

pi(xt,n) log
pi(xt,n)

pj(xt,n)

=
1

K

1

Nt

K∑
i=1,j ̸=i

Nt∑
n=1

hφ(gt,ifϕi
(xt,n)) log

hφ(gt,ifϕi(xt,n))

hφ(gt,jfϕj
(xt,n))

.

(6)

In practice, we reduce the sub-network width to save parameters, so we call our
method “Cooperation of Small Continual Learners (CoSCL)”. Taking Eqn. (1)
and Eqn. (6) together, the objective of CoSCL is defined as

LCoSCL(θ̄) = LCL(θ̄) + γLEC(θ̄). (7)

4.2 Theoretical Explanation

Here we provide a theoretical explanation of how cooperating multiple continual
learners can mitigate the generalization gaps in continual learning:

Proposition 3. Let {Θi ∈ Rr}Ki=1 be a set of K parameter spaces (K > 1 in
general), di be a VC dimension of Θi, and Θ = ∪K

i=1Θi with VC dimension

d. Based on Proposition 2, for θ̂b1:t = argminθ̄∈Θ Êb
Dt

(θ̄), the upper bound of
generalization gap is further tighter with

λ1 = max
i∈[1,K]

√
di ln(N1:t−1/di) + ln(2K/δ)

N1:t−1
+

√
d ln(N1:t−1/d) + ln(2/δ)

N1:t−1
, (8)

λ2 = max
i∈[1,K]

√
di ln(Nt/di) + ln(2K/δ)

Nt
+

√
d ln(Nt/d) + ln(2/δ)

Nt
. (9)



CoSCL: Cooperation of Small Continual Learners is Stronger than a Big One 9

Comparing Proposition 3 and Proposition 2, we conclude that cooperating K
continual learners facilitates a smaller generalization gap over the new and old
tasks in continual learning than a single one. Due to the space limit, we leave
more details of Proposition 3 in Appendix A, where we also analyze how a com-
patible parameter space of a well-designed model architecture can improve the
discrepancy between task distributions, thus further tightening the generaliza-
tion bounds. Next, we empirically validate our proposal as detailed below.

5 Experiment

In this section, we extensively evaluate CoSCL on visual classification tasks. All
results are averaged over 5 runs with different random seeds and task orders.

Benchmark:We consider four representative continual learning benchmarks.
The first two are with CIFAR-100 dataset [19], which includes 100-class colored
images of the size 32×32. All classes are split into 20 incremental tasks, based on
random sequence (RS) or superclass (SC). The other two are with larger-scale
datasets, randomly split into 10 incremental tasks: CUB-200-2011 [41] includes
200 classes and 11,788 bird images of the size 224×224, and is split as 30 images
per class for training while the rest for testing. Tiny-ImageNet [10] is derived
from iILSVRC-2012 [36], consisting of 200-class natural images of the size 64×64.

Fig. 5. Trade-off between learner number
and width with a fixed parameter budget.

Implementation:Wemainly focus
on the task-incremental setting used
in [43, 17, 6, 39] and follow their imple-
mentation for most experiments if not
specified. For all the baselines, we apply
a 6-layer CNN architecture for CIFAR-
100-SC and CIFAR-100-RS, and an
AlexNet-based architecture for CUB-
200-2011 and Tiny-ImageNet.2 Since
our method consists of multiple contin-
ual learners, we use a similar architec-
ture for each sub-network and accord-
ingly reduce the width (i.e., using fewer
channels) to keep the total number of
parameters comparable to other base-
lines, so as to make the comparison as fair as possible. Then, there is an intuitive
trade-off between the number and width of learners. According to our theoreti-
cal analysis in Proposition 1 and 2, the choice for the number of learners (i.e.,
parameter spaces) K is independent of the training data distribution under a
limited parameter budget. Also, we empirically validate that this trade-off is only
moderately sensitive (see Fig. 5). So we simply set K = 5 for all experiments.

2A concurrent work observed that the regular CNN architecture indeed achieves bet-
ter continual learning performance than more advanced architectures such as ResNet
and ViT with the same amount of parameters [27].
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Table 1. Averaged accuracy (%) of all the tasks learned so far in continual learning
(At for t tasks). All results are cited from [43, 17, 6] or reproduced from their officially-
released code for a fair comparison. CoSCL cooperates 5 continual learners with similar
architectures as other baselines, while reducing the sub-network width accordingly to
keep the total amount of parameters comparable.

CIFAR-100-SC CIFAR-100-RS CUB-200-2011 Tiny-ImageNet

Methods A10 A20 A10 A20 A5 A10 A5 A10

SI [50] 52.20 ±4.37 51.97 ±2.07 68.72 ±1.11 69.21 ±0.77 33.08 ±4.05 42.03 ±3.06 45.61 ±2.05 46.00 ±1.13

RWALK [7] 50.51 ±4.53 49.62 ±3.28 66.02 ±1.89 66.90 ±0.29 32.56 ±3.76 41.94 ±2.35 49.69 ±1.47 48.12 ±0.96

P&C [38] 53.48 ±2.79 52.88 ±1.68 70.10 ±1.22 70.21 ±1.22 33.88 ±4.48 42.79 ±3.29 51.71 ±1.58 50.33 ±0.86

EWC [18] 52.25 ±2.99 51.74 ±1.74 68.72 ±0.24 69.18 ±0.69 32.90 ±2.98 42.29 ±2.34 50.92 ±1.86 48.38 ±0.86

w/ AFEC [43] 56.28 ±3.27 55.24 ±1.61 72.36 ±1.23 72.29 ±1.07 34.36 ±4.39 43.05 ±3.00 51.34 ±1.62 50.58 ±0.74

w/ CPR [6] 54.60 ±2.51 53.37 ±2.06 71.12 ±1.82 70.25 ±1.33 33.36 ±3.25 42.51 ±2.31 50.12 ±1.43 50.29 ±0.89

w/ CoSCL (Ours) 62.89 ±3.05 60.84 ±0.95 78.08 ±1.25 76.05 ±0.65 44.35 ±3.59 48.53 ±2.21 56.10 ±1.77 55.10 ±1.02

MAS [1] 52.76 ±2.85 52.18 ±2.22 67.60 ±1.85 69.41 ±1.27 31.68 ±2.37 42.56 ±1.84 49.69 ±1.50 50.20 ±0.82

w/ AFEC [43] 55.26 ±4.14 54.89 ±2.23 69.57 ±1.73 71.20 ±0.70 34.08 ±3.80 42.93 ±3.51 51.35 ±1.75 50.90 ±1.08

w/ CPR [6] 52.90 ±1.62 53.63 ±1.31 70.69 ±1.85 72.06 ±1.86 33.49 ±2.46 43.07 ±2.56 50.82 ±1.41 51.24 ±1.26

w/ CoSCL (Ours) 62.55 ±1.94 60.69 ±1.53 76.93 ±1.94 76.29 ±2.33 43.67 ±3.73 49.48 ±2.40 55.43 ±1.48 55.11 ±0.89

Fig. 6. Comparison of backward transfer (BWT) and forward transfer (FWT).

The learners’ training differs only in random initialization of the parameters.
The implementations are further detailed in Appendix B.

Overall Performance: We first adapt CoSCL to representative continual
learning strategies, including weight regularization such as EWC [18] and MAS
[1], parameter isolation such as HAT [39] and AGS-CL [17], and experience replay
(ER) of old training samples (20 images per class) [35]. As shown in Fig. 1, our
proposal that cooperates multiple continual learners with narrower sub-networks
can largely improve their performance. Then, we compare with the state-of-the-
art (SOTA) methods under a realistic restriction that old training samples or
additional data sources are not available, as detailed below.

First, we compare with the SOTA methods that can be plug-and-play with
weight regularization baselines, such as AFEC [43] and CPR [6]. AFEC [43]
encouraged the network parameters to resemble the optimal solution for each new
task to mitigate potential negative transfer, while CPR [6] added a regularization
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Table 2. Averaged accuracy (%) of architecture-based methods on CIFAR-100-RS.
Here we use EWC as the default continual learning method for CoSCL.

Methods # Param 20-split 50-split

HAT [39] 6.8M 76.96 80.46

MARK [16] 4.7M 78.31 –

BNS [32] 6.7M – 82.39

CoSCL (Ours) 4.6M 79.43 ±1.01 87.88 ±1.07

term that maximized the entropy of output probability to find a flat minima. In
contrast, CoSCL can more effectively improve the weight regularization baselines
and achieve the new SOTA performance (detailed in Table 1).

At the same time, we consider the SOTA methods that improve continual
learning in terms of architecture, such as BNS [32] and MARK [16]. BNS applied
neural structure search to build a network for preventing catastrophic forgetting
and promoting knowledge transfer, while MARK achieved this goal by learning
an additional set of shared weights among tasks.3 With a smaller parameter
budget, ours largely outperforms the two recent strong baselines (see Table 2).

Detailed Analysis: Now, we use EWC [18] as the default continual learning
method and provide a detailed analysis for the superior performance of CoSCL.
First, we analyze the knowledge transfer among tasks by evaluating the met-
rics of backward transfer (BWT), which is the averaged influence of learning
each new task to the old tasks, and forward transfer (FWT), which is the av-
eraged influence of remembering the old tasks to each new task [22]. As shown
in Fig. 6, CoSCL substantially improves both BWT and FWT of the default
method, and in general far exceeds other representative baselines implemented
in a single model. In particular, CoSCL raises BWT to almost zero, which means
that catastrophic forgetting can be completely avoided. We also evaluate the ex-
pertise of each continual learner across tasks in Appendix C.1. The predictions
made by each continual learner’s representations differ significantly and comple-
ment with each other. The functional diversity can be naturally obtained from
the randomness in architecture, such as the use of dropout and a different ran-
dom initialization for each learner, and is explicitly regulated by our ensemble
cooperation loss (Fig. 7, a, discussed later).

Next, we present the results of an ablation study in Table 3. We first con-
sider a naive baseline that averages the predictions of multiple independently-
trained small continual learners, referred to as the “classifier ensemble (CE)”.
However, such a naive baseline even underperforms the single continual learner
(SCL). In contrast, the proposed feature ensemble (FE) of multiple small contin-
ual learners can naturally achieve a superior performance, where the ensemble
cooperation loss (EC) and the task-adaptive gates (TG) bring obvious benefits
by properly adjusting for functional diversity among learners and exploiting the

3They both are performed against a similar AlexNet-based architecture.
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Table 3. Ablation study. At: averaged accuracy (%) of t tasks learned so far. TG:
task-adaptive gates; EC: ensemble cooperation loss.

CIFAR-100-SC CIFAR-100-RS

Methods #Param A10 A20 A10 A20

Single Continual Learner 837K 52.25 ±2.99 51.74 ±1.74 68.72 ±0.24 69.18 ±0.69

Classifier Ensemble 901K 50.08 ±1.65 43.88 ±0.79 66.80 ±1.45 55.65 ±0.32

Feature Ensemble 773K 58.76 ±3.72 57.69 ±1.42 73.57 ±0.50 73.01 ±1.22

Feature Ensemble + EC 773K 61.12 ±3.11 59.49 ±1.59 75.46 ±1.35 74.76 ±0.84

Feature Ensemble + TG 799K 62.01 ±3.36 59.85 ±1.77 76.11 ±0.98 74.78 ±0.41

Feature Ensemble + EC + TG 799K 62.89 ±3.05 60.84 ±0.95 78.08 ±1.25 76.05 ±0.65

Fig. 7. Effects of hyperparameters in CoSCL. (a) γ for ensemble cooperation (EC) loss;
(b) s for task-adaptive gates (TG). The dashed lines indicate the performance w/o EC
or TG in corresponding benchmarks. The arrows denote the chosen values.

additional information from task labels, respectively. Then we evaluate the effect
of hyperparameters in Fig. 7. The hyperparameters of EC and TG are only
moderately sensitive within a wide range. In this case, an appropriate (positive)
strength of EC constrains the excessive diversity of predictions to improve the
performance, while the continual learners will lose diversity if EC is too strong,
resulting in a huge performance drop. If CoSCL cannot obtain sufficient diversity
from the randomness of its architecture, the use of negative strength of EC can
naturally serve this purpose, left for further work.

Moreover, we empirically validate our theoretical analysis as below. We first
evaluate the H-divergence of feature representations between tasks, which re-
lies on the capacity of a hypothesis space to distinguish them [21]. Specifically,
the H-divergence can be empirically approximated by training a discriminator
to distinguish if the features of input images belong to a task or not, where a
larger discrimination loss indicates a smaller H-divergence. As shown in Fig. 8,
a, the proposed FE together with EC can largely decrease the H-divergence
while TG has a moderate benefit (there is a saturation effect when they are
combined together). Meanwhile, we evaluate the curvature of loss landscape
for the continually-learned solution by permuting the parameters to ten random
directions [11], where the solution obtained by CoSCL enjoys a clearly flatter
loss landscape than SCL (Fig. 8, b).

Taking all results together, cooperating multiple small continual learners can
mitigate the discrepancy between tasks in feature space and improve flatness of
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Fig. 8. Empirical validation of our theoretical analysis. (a) Task-discrimination loss in
feature space. Larger loss indicates a smaller H-divergence. (b) Curvature of the test
loss landscape for the first five incremental tasks on CIFAR-100-SC. Each line indicates
the result of a random direction.

Fig. 9. Adding continual learners in CoSCL is more effective than widening the network
of a single continual learner (SCL). We present the results of cooperating 2-6 continual
learners with the same sub-network width, while accordingly adjust the size of SCL for
a fair comparison.

the continually-learned solution (Fig. 8), thus facilitating both FWT and BWT
(Fig. 6). This is consistent with our theoretical analysis, suggesting that learning
plasticity and memory stability are not necessarily conflicting in continual learn-
ing, but can be simultaneously enhanced by a well-designed model architecture.

Adding Continual Learners is More Effective than Widening a Sin-
gle Network: All of the above experiments are performed under a fixed param-
eter budget. A recent work observed that a wider network usually suffers from
less catastrophic forgetting [26], providing an initial exploration of the effects of
architecture in continual learning. Here we argue that adding continual learners
with CoSCL is a better choice. In Fig. 9 we compare the performance of using
an increasing number of continual learners (the width is the same as that used
in Table 1) and accordingly widening the network of a single continual learner
(SCL). It can be clearly seen that the performance gap between CoSCL and
SCL is growing when more parameters are used. Therefore, CoSCL presents a
promising direction for continual learning that can leverage network parameters
in an efficient and scalable way.
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Table 4. Averaged accuracy (%) of un-
supervised continual learning on CIFAR-
100-RS. The results are reproduced from
the officially-released code of [23].

Methods SimSiam [8] BarlowTwins [49]

Finetune 41.38 ±0.80 63.29 ±0.38

w/ CoSCL 46.33 ±0.51 74.03 ±0.36

Unsupervised Continual Learn-
ing (UCL): has the unique property
of being naturally robust to catas-
trophic forgetting when fine-tuning on
incremental unlabeled data [15, 23].
An empirical explanation is that UCL
achieves a flatter loss landscape and
more meaningful feature representa-
tions [23], which is consistent with our
analysis. We further validate this idea
by adapting CoSCL to UCL4, where
we follow the UCL setting of [23] for
CIFAR-100-RS and use a similar architecture as Table 1. As shown in Table 4,
CoSCL can significantly improve the performance of UCL with two strong un-
supervised learning strategies such as SimSiam [8] and BarlowTwins [49].

6 Conclusion

Numerous efforts in continual learning have been devoted to developing effec-
tive approaches based on a single model, but their efficacy might be limited by
such a priori assumption. In this work, we present a unified form of generaliza-
tion bounds for learning plasticity and memory stability in continual learning,
consisting of three components, and demonstrate that the both aspects can be
simultaneously improved by a compatible parameter space of a well-designed
mode architecture. Inspired by the robust biological learning system, we propose
to cooperate multiple (small) continual learners, which can naturally tighten the
generalization bounds through improving the three components. Our method
can substantially enhance the performance of representative continual learning
strategies by improving both learning plasticity and memory stability. We hope
that this work can serve as a strong baseline to stimulate new ideas for continual
learning from an architecture perspective. A promising direction is to cooperate
a variety of continual learning approaches with properly-designed architectures,
so as to fully leverage task attributes for desired compatibility.
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