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1 Lie Group and Transformation

This section describes properties of transformation groups used in the main
paper as a reference. Lengthy derivations are omitted and more details can be
found in a technical report [3].

1.1 Lie group and Lie algebra

A Lie group T is a smooth differentiable manifold as well as a group. The
collection of matrices s ∈ SO(3) ⊂ Rn×n forms a Lie group. The multiplication
and inversion operations defined for the group SO(3) are implemented as matrix
multiplication and inversion. As this group forms a specific subset of non-singular
n× n matrices, its degrees of freedom are less than n2.

Consider the Lie group T represented in Rn×n, with k degrees of freedom.
The Lie algebra g is the tangent space around the identity of T . This tangent
space is a k-dimensional vector space with basis elements {G1, · · · , Gk} which is
named generators. Elements of g are represented as matrices in Rn×n, but under
addition and scalar multiplication, rather than matrix multiplication. For such
a Lie algebra g, we denote the linear combination of generators {Gi} specified
by a vector of coefficients g as alg(g):

alg(g) : Rk → g ⊂ Rn×n, g 7→
k∑

i=1

giGi . (1)

Note that the tangent vector is in fact an n× n matrix and can be represented
as the vector of coefficients of the generators.

1.2 Exponential map

The exponential map takes elements g in the algebra to elements in the group T .
It moves along the group (transformation) manifold in the differential direction
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specified by the tangent vector in the algebra. For matrix groups, the exponential
map is matrix exponentiation defined as:

exp(X) : g → T , X 7→
∞∑
k=0

1

k!
Xk, ∀X ∈ g . (2)

1.3 SO(3) transformation

SO(3) is the group of rotations in 3D space, represented by 3 × 3 orthogonal
matrices with unit determinant. It has three degrees of freedom: one for each
rotation axis. The identity element in SO(3) is e = I3×3.

The Lie algebra so(3) is the set of antisymmetric 3 × 3 matrices, generated
by the differential rotations along each axis:

G1 =

0 0 0
0 0 −1
0 1 0

 , G2 =

 0 0 1
0 0 0
−1 0 0

 , G3 =

0 −1 0
1 0 0
0 0 0

 . (3)

The mapping alg(g) : R3 → so(3) sends a 3-dimensional vector to a skew matrix:

alg(g) =

 0 −c b
c 0 −a
−b a 0

 , ∀g = [a, b, c]⊤ ∈ R3 . (4)

1.4 Retraction from θ to M(P )

Given the adversarial transformation parameter θas computed along the search
direction g, and let Gi (defined in Eq. 3) be the basis of the tangent space TeT
where T = SO(3), also denoted as g in above, at the identity element e = I3×3

of the transformation group T , the retraction [12] at Pt can be summarized as:

1. Mapping θas to a tangent vector in TeT using Gi defined in Eq. 4 as alg(θas ) =∑2
j=0 θ

a
s [i]Gi;

2. Mapping the resultant tangent vector alg(θas ) in TeT to a transformation
ta ∈ T using exponential map defined in Eq. 2 as ta = exp(alg(θas )) =

exp
(∑2

j=0 θ
a
s [i]Gi

)
;

3. Mapping the resultant transformation ta ∈ T back to PCAM M(P ) using
RPt

(g) = Pta .

1.5 Jacobian matrix of point cloud

Given a transformation t parameterized by θt ∈ RM and we denote the m-th
parameter of t as θmt where m ∈ {1, 2, · · · ,M}. The jacobian matrix JPt

∈
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R(N×3)×M of the action of t on a point cloud P with N points {pi}Ni=1 is defined
as follows:

JPt
=

[
∂Pt

∂θ1
t

∂Pt

∂θ2
t
· · · ∂Pt

∂θM
t

]
=



∂p1

∂θ1
t

∂p1

∂θ2
t
· · · ∂p1

∂θM
t

∂p2

∂θ1
t

∂p2

∂θ2
t
· · · ∂p2

∂θM
t

...
...

. . .
...

∂pN

∂θ1
t

∂pN

∂θ2
t
· · · ∂pN

∂θM
t

 . (5)

We define ∂θmt as the m-th entry of a small perturbation ∆θ added to θt, and
∂pi as the difference between pi and the nearest point (under the L2 metric in
Euclidean space) p ∈ P ′

t , where P ′
t is the point cloud transformed from P by

t ◦∆t (i.e., changing the parameters from θt to θt +∆θ).

2 Dataset Description

The Sim-to-Real benchmarks proposed in [10] consist of two synthetic datasets,
ModelNet [30] and ShapeNet [2], and a real-scanned dataset ScanObjectNN [24].
The three datasets are calibrated to serve as three domains. ModelNet40 is a col-
lection of clean 3D CAD models which consists of 9,843 training shapes and 2,468
test shapes across 40 categories. ShapeNetCore is a subset of a larger ShapeNet
dataset and it contains around 51,300 models covering 55 categories. Scanob-
jectNN includes about 15,000 models across 15 categories which are captured
from real-scanned indoor scene. We use the shared categories in each dataset as
shown in Tab. 1 as proposed in [10]. The categories with similar object appear-
ance but different names are merged together.

ModelNet40 → ScanObjectNN ShapeNet → ScanObjectNN

Bed Bag
Cabinet (Dresser, Wardrobe) Bed
Chair (Bench, Chair, Stool) Cabinet

Desk Chair
Display (Monitor) Display

Door Pillow
Shelf (Bookshelf) Shelf (Bookshelf)

Sink Sofa
Sofa Table

Table -
Toilet -

Table 1. Shared categories in two domains consisting of three datasets.
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Algorithm 1 Training scheme

Input: source domain S = {Dtr
S , Dval

S }, transformation set T , neural network fw,
memory M , number of the generated adversarial samples M , number of top-N
adversarial samples to move into memory, batch size B, validation error bound ϵ,
number of sampled transformation (per point cloud) K, learning rates η (inner-
loop) and β (outer-loop)

1: Initialize w ← w0

2: while Lval < ϵ do
3: repeat ▷ Training phase
4: Sample {(Pi, yi)}Bi=1 from Dtr

S
5: Sample {tk}Kk=1 from T with uniform distribution ▷ Sample K Tfm.
6: for k = 1, . . . ,K do
7: Apply tk to {Pi}Bi=1 to get {Pi,tk}

B
i=1 ▷ Obtain transformed PCs.

8: if M contains at least B samples then
9: Sample {P a

i }Bi=1 from M
10: end if
11: Merge {Pi,tk}

B
i=1 and {P a

i }Bi=1 to {Pi}2Bi=1

12: Compute Ltr
k (P )← fw({Pi}2Bi=1)

13: w′
k ← w − η∇wLtr

k (P )
14: end for
15: Compute Ltr(P )←

∑K
k=1 L

tr(fw′
k
({Pi}2Bi=1))

16: w ← w − β∇wLtr(P )
17: Compute projected gradient g = J+

Pt
∇PtLtr(Pt) ▷ Eq. 3 in the main text

18: Generate adversarial {P a
i }Mi=1 using retraction ▷ Eq. 7 in the main text

19: Compute geodesic distance dP (e, ti) ▷ Eq. 13 in the main text
20: Compute move-in/out Prob. of {P a

i }Mi=1 ▷ Sec. 3.4 in the main text
21: Select N adversarial from {P a

i }Mi=1 and add into M according to Prob.
22: until end of Dtr

S
23: repeat ▷ Validation phase
24: Sample {(Pi, yi)}Bi=1 from Dval

S
25: Sample {ti}Bi=1 from T with uniform distribution ▷ Sample B Tfm.
26: Compute Lval(P )← Lval(fw({Pi}Bi=1))
27: until end of Dval

S
28: end while

3 Training Scheme

In Algorithm 1, we detail the training scheme which is based on MAML [4], i.e.,
gradient-based model agnostic meta-learning method. We follow the training
scheme as in [10] but incorporate the adversarial samples and adaptive memory.
The referred equations are provided in the main paper.

4 Related Work

Deep learning for point clouds. Various DNN architectures have been pro-
posed to learn point cloud representations for 3D vision tasks. PointNet [19]
and PointNet++ [20] are pioneering works for point cloud classification and
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segmentation by applying 1D convolution to unordered points. PointCNN [15]
proposes special operators to reorganize unordered point clouds and connects
multiple point clouds into a graph. PointConv [29] constructs convolution ker-
nels as nonlinear functions of point coordinates. DGCNN [28] performs graph
convolutions on local neighborhood regions in graphs to capture local geometric
features of point clouds. DeepGCN [14] investigates the benefits of increasing
the depth of graph convolutional networks [31]. ConvPoint [1] proposes to gen-
eralize discrete convolutional neural networks by replacing discrete kernels with
continuous ones. Inspired by Transformer [25] for machine translation, Point
Transformer [35] designs vector self-attention to aggregate geometric features
for each local neighborhood for point cloud. However, all the mentioned works
only focus on a single domain where both training and testing data are sampled
from i.i.d. distributions.

Cross-domain representation learning. Uy et al . [24] shows that DNNs
used for 3D vision have a tendency to overfit to the geometry of synthetic point
clouds, and the performance suffers degradation when applied to real-world
scanned point clouds due to shifts in geometry or changes in density. Cross-
domain representation learning (for both DA and DG) has been extensively
studied in 2D vision tasks [8, 5, 34, 6], but has not yet been fully explored for 3D
models. PointNet [19] adopts jittering as a native way for point cloud augmenta-
tion, but no potential data discrepancy across domains is explicitly considered.
PointDAN [21] minimizes Maximum Mean Discrepancy [9] across domains to
reduce domain gaps for domain adaption. MetaSets [10] designs several geomet-
ric transformations for data augmentation based on the priors of real-scanned
point clouds, aiming to bridge domain gaps. Our work is built upon [10] but
instead we explore adversarial point clouds to construct intermediate domains
for generalizable point cloud representation learning.

Adversarial learning for cross-domain. Szegedy et al . [23] first shows that
DNNs for image classification is fragile to imperceptible image distortion. Ad-
versarial learning [7, 18] aims to increase the robustness of DNNs to adversarial
examples with imperceptible perturbations added to the inputs. Gradient-based
adversarial perturbations are widely adopted to generate adversarial samples to
reduce vulnerability of DNNs [7, 13]. In 3D vision, given benign point clouds, the
works [32, 16, 33, 17] generate adversarial counterparts by perturbing individual
points. Previous works in 2D vision explore to adopt adversarial learning to train
models that are robust to significant perturbations, i.e., OOD samples [22, 11,
27, 26, 36]. These works show that adversarial domain augmentation (ADA) can
effectively improve the generalization performance and robustness of models by
synthesizing virtual images according to distance metrics on domain distribu-
tions. However, few work has explored ADA for cross-domain generalizable point
cloud representation learning. To our best knowledge, we are among the first to
extend ADA for point cloud representation learning for DG. We refer the reader
to supplementary material for detailed related work.
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