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Abstract. Contrastive-based self-supervised learning methods achieved
great success in recent years. However, self-supervision requires extremely
long training epochs (e.g., 800 epochs for MoCo v3) to achieve promising
results, which is unacceptable for the general academic community and
hinders the development of this topic. This work revisits the momentum-
based contrastive learning frameworks and identifies the inefficiency in
which two augmented views generate only one positive pair. We pro-
pose Fast-MoCo - a novel framework that utilizes combinatorial patches
to construct multiple positive pairs from two augmented views, which
provides abundant supervision signals that bring significant accelera-
tion with neglectable extra computational cost. Fast-MoCo trained with
100 epochs achieves 73.5% linear evaluation accuracy, similar to MoCo
v3 (ResNet-50 backbone) trained with 800 epochs. Extra training (200
epochs) further improves the result to 75.1%, which is on par with state-
of-the-art methods. Experiments on several downstream tasks also con-
firm the effectiveness of Fast-MoCo[fl
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1 Introduction

Self-supervision is crucial in some of the most remarkable achievements from
natural language processing (NLP) [I0/2] to computer vision [6]. In particu-
lar, recent advances in contrastive learning produced state-of-the-art results on
self-supervised learning benchmarks [I5J9)29]. Contrastive learning performs an
instance discrimination pretext task by attracting the embedding of positive
samples closer while encouraging the negative samples to be further apart. Some
methods opt to make the sample pairs asymmetric with tools such as momen-
tum encoder [I§], predictor [I5] and stop-grad [8] to provide more flexibility
for architecture design [I5I13].
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Fig.1: (a): Comparison with state-of-the-arts on ImageNet. All methods uses
ResNet-50 encoders and are measured with Top-1 linear evaluation accuracy.
(b): Overview of Fast-MoCo that includes the Split-Encode-Combine pipeline.

While great advances have been achieved in the self-supervised learning area
in the past two years, a major concern about these works is the extremely long
training steps to get a promising performance(e.g., normally 800 epochs, and
even 1000 epochs for some methods [QII5I32ITT]), which makes it hard or even
impossible for many academics to contribute to this area. High training cost also
posts challenges when dealing with large industry scale datasets [II17]. In order
to accelerate training, we spotted one limitation of recent momentum based con-
trastive learning methods [I8I7IT5], which is the two-image-one-pair strategy. In
this strategy, two images (or two augmented views of the same image) are fed
to the deep models separately and then used as one pair for contrastive learning
in [I8I7W9ITT]. Although symmetric loss designs are normally employed to im-
prove the sample efficiency, we argue that the two-image-one-pair mechanism is
sub-optimal. To overcome this issue, we propose combinatorial patches, a novel
mechanism to efficiently generate feature embeddings for arbitrary combina-
tion of local patches. In this strategy, an image pair can be used for generating
multiple positive pairs for contrastive learning. Therefore, in contrast to the
two-image-one-pair mechanism in existing works, our combinatorial patches en-
able the two-image-multi-pair mechanism. With more pairs used for contrastive
learning using this two-image-multi-pair mechanism, our Fast-MoCo method
trained using 100 epochs based on MoCo v3 (two-image-one-pair mechanism)
for ResNet50 can achieve on-par accuracy when compared with MoCo v3 trained
using 800 epochs, as shown in Fig. a).

To implement the two-image-multi-pair mechanism, this paper proposes the
Divide-Encode-Combine and then Contrast pipeline as shown in Fig. b). In
detail, we divide the input into multiple local patches without overlap in the
data preparation stage and encode the local patches by deep models separately,
then combine the encoded features of multiple patches before computing the con-



Fast-MoCo: Boost Momentum-based Contrastive Learning 3

trastive loss. We validate various strategies and hyperparameters for both divide
and combine stages and provided a detailed analysis across different settings.

We evaluate our method on ImageNet with the ResNet-50 backbone. In a
linear evaluation setting, our method achieves 73.5% with only 100 epochs of SSL
pretraining, which is 8 faster than the original MoCo to achieve comparable
performance. A longer training (400 epochs) further boosts the performance
from 73.5% to 75.5%. We also tested the learned embeddings in semi-supervised
learning, object detection, and instance segmentation. Our method performs
better than previous approaches in both settings, which suggests the embeddings
learned with our method are general and transferable.

2 Related Works

2.1 Patch Based Representation Learning

Various self-supervised learning methods [2526)2T[T3I527/TIT7] manipulates im-
age patches. A common way to incorporate patches is to encode them sepa-
rately [2512602TIT3], while Jigsaw Clustering [5] encodes multiple patches at the
same time: patches are augmented independently and stitched to form a new im-
age for encoding, the encoded features are then separated spatially before pooling
to get the embedding for each patch. Either way, the encoded embeddings can
then be used for solving jigsaw puzzles [25/5], contrastive prediction [2612TJ5] or
bag-of-word reconstruction [I3]. On the other hand, Context encoder [27] en-
codes an image with random masking and then learns to reconstruct the missing
part with a decoder. With a ViT encoder, BEIT [I] and MAE [I7] split the image
into a grid of patches and mask out some of them, the rest patches are gathered
and forwarded to get encoded embeddings. They are then optimized for recon-
structing the missing patches at feature-level [I] or pixel-level [I7]. However,
these methods do not construct multiple pairs of samples from combinatorial
patches and thus are different from our Divide-Encode-Combine pipeline.

2.2 Contrastive Learning

Contrastive learning methods [I6J63] have attracted many attentions for their
simplicity and performance. They retrieve useful representations by promoting
instance discrimination, where the positive samples are generated by applying
different data augmentations to the same image while having an identical spa-
tial size. SwAV [3] and NNCLR [11] further extend the semantic gap between a
positive pair with a target embedding being replaced by a learned cluster cen-
ter and a neighborhood embedding. Since the methods in [I6/6I3ITT] are not
momentum-based learning, our method does not aim at improving them. Be-
sides, our proposed Divide-Encode-Combine scheme is not investigated in them.

Momentum-based contrastive learning methods adopt an asymmetric for-
ward path. On the online path, an input image is fed into the encoder. On
the target path, another input image is fed into a slowly moving momentum
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encoder [I8[79]. The two encoded samples from these two paths form a pair
for contrastive learning, which has been proven to be effective in many scenar-
ios [I3I15l4]. However, these works adopt the two-image-one-pair mechanism.
In contrast, our Fast-MoCo adopts a two-image-multi-pair mechanism. At al-
most the same training cost of the two-image-one-pair mechanism, Fast-MoCo
generates more sample pairs in a mini-batch for efficiency.

3 Method

In this Section, we first give preliminaries about MoCo, which is adopted as our
baseline. Then, we introduce the design of combinatorial patches, which boost
both the learning process and performance. Finally, we discuss how the proposed
approach will affect the performance and computation.

3.1 Preliminaries about MoCo

MoCo is a highly recognized framework for self-supervised learning, which has
three versions, i.e., MoCo [I8], MoCo v2 [7], and MoCo v3 [9], which gradually
incorporate some of the best practice in the area. Specifically, MoCo v3 pipeline
has two branches, i.e., an online branch and a target branch. The online branch
consists of an encoder f (e.g., ResNet50), a projector g, follow by a predictor
q. The target branch only contains the encoder and projector with the same
structure as in the online branch and its parameters are updated through an
exponential moving average process as follows:

0/ — abl + (1 —a)b, 69« ab? + (1 —a)b?, (1)

where 0/ and 69 are parameters for encoder and projector in the online branch,
9{ and 0] are parameters for encoder and projector in the target branch. This
asymmetric architecture design and the use of moving average for target branch
parameters updating have been shown to help the model avoid collapse [I5].

Given an image x, two different views are generated through two different
augmentations a and a’, which are then forward to the encoders in the online and
target branches respectively to retrieve the encoded embeddings as a positive pair
(v, v2"). These embeddings are then projected to vectors z& = q(g(v%; 69); 6%)
and 20" = g(v®';67). Finally, the loss function for this pair (2%, z%") is formulated
by InfoNCE [26] as follows:

a a/
ECtr(Z(Ol,Z? ) =—lo exp(zo o /T) (2)

> exp(zg - z/T)’

’
a
z€zy

where z¢" denotes the set of target representations for all images in the batch.

Note that vectors z, z¢, and z;‘/ are [ normalized before computing the loss.

Besides, for every sample image x, this loss is symmetrized as:

1 / !
Lo = 5 (Lar(8,2) + Laan(28,20). ®
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Fig.2: Overview of Fast-MoCo framework. It consists of four steps: 1) Divide
step, where the input image in the online branch is divided into multiple patches;
2) Encode step, which the encoder f encodes the features of the patches sepa-
rately; 3) Combine step, which combines the encoded features (at the last layer
of the neural network); 4) the combined features are fed into projector g, pre-
dictor ¢, and contrastive loss for contrastive learning. Compared with MoCo,
we add the Divide step and Combine Step in the online branch, with details in
Section @ The target branch is the same as MoCo.

3.2 Fast-MoCo

In this section, we introduce Fast-MoCo, a simple method that can greatly im-
prove the training efficiency of self-supervised learning with negligible extra cost.
An overview of Fast-MoCo is shown in Fig[2l With MoCo v3 as the baseline,
Fast-MoCo only makes three modifications, 1) add a Divide step to divide an
image into multiple patches before sending the patches to the encoder E of the
online branch, 2) insert a Combine step (e.g., Combine) immediately behind
the encoder to combine patches, and 3) a slightly modified definition of positive
and negative pairs corresponding to the divide and combine operations. In the
following, we illustrate the Divide step, Combine step, and the modified loss
function in detail.

Divide Step. For the online branch, instead of directly feed the given the
augmented image x® into the encoder, we first divide it into a m x m grid of
patches {z,|p € {1,...,m?}} as shown in Fig with p denotes the set of patch
index {p}. The influence of m in will be analyzed in Section

Combine Step. Instead of directly using the encoded embedding of each
patch individually for further step, we combine multiple (less than m?) patch
embeddings v, to form combined embeddings c before sending them to further
step, i.e., the projector.

To form a combined embedding, we take a subset of n indices from the
patch index set p, noted as p,(C p), and collect their corresponding features
Vp, = {vp|p € pn}. While there could be diverse options to combine multiple
embeddings (e.g., concatenate, sum), we empirically found that simply averag-

¥ In this paper, we only explore the ResNet50 as the encoder while leaving the evalu-
ation of ViT version MoCo v3 as our future work.
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ing the selected features works reasonably well and is computationally efficient.
Thus, in the Combine step, we generate the combined embedding by:

c:% va. (4)

PEPn

To improve the sample utilization efficiency, we take all possible n-combinations
of patch embeddings for supervisions, leading to the combined embedding set
c={qlie{l,...,C",}}, where C}}, = n,(#ln), In this way, we can generate
many samples by the averaging operation in Eq. [] with negligible extra cost
and ensure the sample and the target have a sufficient information gap since the
combined patches embedding only covers part of the image information.

After the Combine step, the projector and the predictor in the online branch
transfer each combined embedding ¢ to vector z$ in a sequential manner. On
the other hand, the target branch maps the other input view to z{ in the same
manner as the basic MoCo v3 without modification. They are then L2-normalized
and used for computing contrastive loss.

Loss Functions. Like MoCo v3, we still utilize the contrastive loss (Eq. [2)) to
optimize the encoder, projector, and predictor. Compared with MoCo v3, Fast-
MoCo does not include any extra parameters to be learned, the only difference
is that there are multiple (C) combined patch embeddings z{ instead of one
image embedding z¢ corresponding to a target branch image embedding z{'. We
directly adapt the original loss function by averaging the contrastive losses from
C , positive pairs between the combined patch embeddings z$ and target image
embedding z;. Similarly, the negative pairs are defined between the combined
patch embedding and the embedding of other images in the target branch.

3.3 Discussion

In this section, we present some intuitive analysis about why Fast-MoCo can
improve training efficiency, which will be further demonstrated with empirical
results in Section [4 The primary component that makes Fast-MoCo converge
faster is the utilization of a set of combined patch embeddings, which significantly
increase the number of positive pairs. Take m = 2 and n = 2 as an example, Fast-
MoCo will divide the input image in the online branch into four patches and then
combine their four embeddings into six, each of which represents two patches,
directly expanding the number of positive pairs six times more than MoCo v3.
Thus, Fast-MoCo can get more supervision signals in each iteration compared
to MoCo v3 and thus achieves promising performance with fewer iterations.

At the same time, the introduced operations in Fast-MoCo, i.e., divide an im-
age into patches and average the representation of several patches, are extremely
simple and only require negligible extra computation. The major computational
cost is introduced by additional forwards over the projector and the predictor in
the online branch. However, they only involve the basic linear transformations,
which contributes little cost when compared to the backbone. Thus, the total
overhead of Fast-MoCo accounts for 7% extra training time compared to MoCo
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v3 (38.5 hours on 16 V100 GPUs for 100 epochs, by contrast, MoCo v3 costs 36
hours under the same setting)

Besides, since the combined patch embeddings only contain part of the infor-
mation in the whole image, pulling the partially combined patches closer to the
target view that contains the whole image information is more challenging than
pulling the original image pairs and implicitly increasing the asymmetric of the
network structure, which have been demonstrated beneficial for increasing the
richness of feature representations and improve the self-supervised learning per-
formance [I5I11122]. Owing to these merits, Fast-MoCo can achieve high sample
utilization efficiency with marginal extra computational cost and thus obtain
promising performance with much less training time. Experimental results in

Section [5.2] and [5.4] below will validate these analysis.

4 Experimental Results

4.1 Implementation Details

The backbone encoder f is a ResNet-50 [20] network excluding the classifica-
tion layer. Following SimSiam [8] and MoCo v3 [0], projector g and predictor
h are implemented as MLP, with the detailed configuration identical to [8]. For
self-supervised pretraining, we use SGD optimizer with batch size 512, momen-
tum 0.9, and weight decay le~*. The learning rate has a cosine decay schedule
from 0.1 to 0 with one warm-up epoch starting from 0.025. We use the same
augmentation configurations as in SimSiam [§] (see supplementary material).

4.2 Results

ImageNet Linear Evaluation. Following [GI8/15], we evaluate our method
with a linear classifier on top of frozen embeddings obtained from self-supervised
pretraining. The classifier is finetuned with LARS optimizer [31] with configura-
tions same as SimSiam [8] excepting the learning rate which we set as Ir = 0.8.
We compare with existing methods in Table |1, Our Fast-MoCo achieved 75.5%
linear evaluation result with only 400 epochs of training, which shows obvi-
ous improvement of our Fast-Moco compared with all methods using two aug-
mented views for supervision. When considering the same amount of training
epoch, our result also surpass SwAV [3] and DINO [4] even including the use
of multi-crop [3]. Note that our new design is orthogonal to multi-crop [3]
(details in Section and the novel designs in SwAV, DINO and NNCLR.

Semi-Supervised Learning. Following the semi-supervised learning set-
ting in [0], we fine-tune our model pretrained by 400 epochs with 1% and 10%
of the data split. The results are shown in Table[2] Our method performs better
than all compared methods w/o multi-crop and is on par with SwAV using
multi-crop.

Transfer Learning. Table [3| shows experimental results evaluating the ef-
fectiveness of the learned model when transferred to detection and segmenta-
tion tasks. For object detection on PASCAL-VOC [12], with Faster R-CNN [2§]
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Method 100 ep. | 200 ep. | 400 ep. | 800 ep. | 1000 ep.
SimCLR [0] 64.8 67.0 68.3 69.1 -
MoCo v2 [7] - 67.5 _ 71.1 -
BYOL [15] 66.5 70.6 73.2 - 74.3
SwAV [3] - - 70.1 - -
BarlowTwins [32] - - - - 73.2
SimSiam [§] 68.1 70.0 70.8 71.3 -
MoCo v3 [9] - - - 73.8 -
NNCLR [11] 69.4 70.7 74.2 74.9 75.4
OBoW [13] - 73.8 - - -
Fast-MoCo 73.5 75.1 75.5 - -
SwAV [3] (w/ multi-crop) 72.1 73.9 - 75.3 -
DINO [] (w/ multi-crop) - - - 75.3 -
NNCLR [11] (w/ multi-crop) - - - 75.6 -

Table 1: ImageNet-1k linear evaluation results for existing methods and our
Fast-MoCo using ResNet-50. Best results are in bold. Fast-MoCo can achieve
similar performance as MoCo v3 with only 100 epochs. When trained for 200
epochs, Fast-MoCo performances better than MoCo v3 trained for 800 epochs
and is comparable with state-of-the-arts (multi-crop is not used in Fast-MoCo
for a fair comparison).

framework, we have all weights finetuned on the trainvalO7+12 dataset and
evaluated on the test07 dataset. For detection and instance segmentation on
COCO [23], we finetune our weights with Mask R-CNN [I9] on the train set and
report results on the val split. The results in Table [3]show that our Fast-MoCo
performs on par with or better than the state-of-the-arts in localization tasks.

5 Analysis

5.1 Same or Different Augmented Views

Recent works [6/I5] have indicated that contrastive methods are sensitive to
augmentations, especially spatial transformations [6]. Compared with the con-
ventional settings of having different augmented view (73.5% on ImageNet for
100-epoch training of Fast-MoCo), we observe severe drop of accuracy (48.5%)
if the positive embedding pair in Eq. are from the same augmented view, i.e.
a’ = a. When the same augmented view is used, the detrimental non-semantic
information contained in patches would be exposed to its contrastive target,
which causes the significant drop of accuracy. These results show the impor-
tance of using appropriate targets for contrastive learning.

5.2 Comparison on Patch Encoding Approaches

Apart from our proposed Fast-MoCo pipeline, there is also a number of alter-
natives [25202TT3IB27ITIT7] that falls into the same category with our Fast-
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1% 10%
Method Top-1 | Top-5 | Top-1 | Top-5
Supervised 254 | 484 | 56.4 | 80.4
InstDisc [30] - 39.2 - 7.4
PIRL [24] - | st2 | - | 838
SimCLR [6] 48.3 | 75.5 | 65.6 | 87.8
BYOL [15] 53.2 | 78.4 | 68.8 | 89.0
Barlow Twins [32] 55.0 | 79.2 | 69.7 | 89.3
NNCLR [11] 56.4 | 80.7 | 69.8 | 89.3
Fast-MoCo 56.5 | 81.1 | 70.3 | 89.4
SwAV [3] (w/ multi-crop)| 53.9 | 785 | 70.2 | 89.9

Table 2: Semi-supervised learning results on ImageNet-1K with ResNet-
50 backbone. We report Top-1 and Top-5 accuracies for models finetuned with
1% and 10% labeled data. Detailed configuration can be found in supplementary
material.

Method VOC det COCO det COCO seg
AP, | APso | APrs | AP, | APSY | APEE | APTIH APIRM A Prek
Supervised 53.5 | 81.3 ] 58.8[38.2]58241.233.3[54.7]35.2
MoCo V2 [7] 57.4 1825 | 64.0 | 39.3 589|425 | 34.4 | 558 36.5
SimSiam [g] 57 | 82.4(63.7]39.2(59.3|42.1 | 344 |56.0| 36.7
Barlow Twins [32] 56.8 | 82.6 | 63.4 | 39.2 | 59.0 | 42.5 | 34.3 | 56.0 | 36.5
Fast-MoCo 57.7|82.7|64.4|39.5| 59.2 | 42.6 | 34.6 | 55.9 | 36.9
SwAV [3] (w/ multi-crop)| 56.1 | 82.6 | 62.7 | 38.4 | 58.6 | 41.3 | 33.8 | 55.2 | 35.9

Table 3: VOC and COCO object detection (det) and instance segmen-
tation (seg) results. We report results measured by Average Precision (AP)
using ResNet50 with the C4 backbone variant [14]. For VOC dataset, we train
on trainvalO7+12 and evaluate on test07 by running three trials and report
the averaged results.

MoCo which does not apply the two-image-one-pair mechanism. In this Section,
we provide a detailed comparison on these variants.

Sample-Encode-Combine. The compared settings contain cases where
patches can not be generated from dividing a 224 x 224 view. Apart from the
Fast-MoCo baseline, we set up a Sample-Encode-Combine (SEC) configuration
for fair comparison. In SEC configuration, we replace the 'Divide’ step in Fast-
MoCo by randomly and independently sampling patches. In contrast to Fast-
MoCo with 2 x 4 patches divided from two 224 x 224 views, for SEC we have
eight independently sampled patches :{z,|p € {1,...,8}} and two 224 x 224
target {z?, 2% }. As x, for SEC are not devided from the target views z;. The
embeddings of all eight =, can be combined with each other to get combined
embedding ¢, we have the amount of combination increased from 2C% = 12 to
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Method Num. of Top-1
Samples Case multi-crop|Comb.|Top-1
Encode Only 1| 639 P i
- MoCo v3 - - 70.3
Sample-Combine-Encode 4 71.2 Q) v 731
Divide-Combine-Encode | 4 | 71.8 ) ) ‘
Montage-Encode-Divid (i) ) A S
omage-tucode-Uvides 98 | 704 (i) v v 742
Combine
Sample-Encode-Combine| 28 72.9 (b) Relationship with multi-crop.
Fast-MoCo 12 73.5 ‘Comb.’ denotes the usage of combina-

torial patches. Results are linear evalu-
ation on ImageNet, all models are pre-
trained for 100 epochs.

(a) Comparison of patch encoding ap-
proaches. Results are based on ImageNet
linear evaluation, all models are pretrained
for 100 epochs.

Table 4

(2 = 28. The loss function for SEC is written as follows:

1 a o
Ly = @ Z(ﬁctr(ZCa Zy ) + Ect'r’(zca z; ))7 (5)

cec

It obtains 72.8%, which is the second-best among all variants in Table a).

Encode Only. A widely adopted way to encode patches is to encode them
separately [25/26/2T1T3], which do not include the ‘Divide’ step or ‘Combine’ step
in our Fast-MoCo as depicted in Fig.[2] For a fair comparison, the patch used for
encoding should contain approximately the same amount of information as two
112 x 112 patches combined, so we set the spatial size of the patch as 158 x 158.
In doing so, we can no longer retrieve these patches by dividing a 224 x 224
that we use for contrastive target, thus they are independently generated by
augmentation as described in Section We generate four 158 x 158 patches
{z,} and two 224 x 224 target {af,z} }, for each image x we have:

1 ’
Ly = g Z (‘Cctr(ZP?z?) + ‘CCtT(ZIN zta ))’ (6)

Zp€zZp

where Ziq,qe¢ denotes the target vectors in a mini-batch and z, denotes the
features of the four patches sampled from the image x. As shown in Table (a),
the result of Encode Only is 68.9%.

Divide(Sample)-Combine-Encode. While Fast-MoCo encodes the small
divided patches independently and combines them at embedding level; one can
also combine them at image level with patches placed in their original positions,
thus preserving the relative positional information among patches. Note that if
the stitched image is not in a rectangular shape, the redundant computational
cost would be hard to avoid for a CNN encoder. In the Divide step, we divide
a 224 x 224 image vertically and horizontally to get four 112 x 112 patches.
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In the Combine step for Divide-Combine-Encode, two 112 x 112 patches are
stitched to 112 x 224 or 224 x 112 at image level. The Divide step, Encode step,
and losses are the same as Fast-MoCo. As shown by Divide-Combine-Encode in
Table (a)7 compared to Encode Only with four squared 158 x 158 crops, these
rectangular crops with less locally-bounded features is preferred with a +2.9
gain. Divide-Combine-Encode can also be viewed as bringing the Combine step
of our Fast-MoCo pipeline before the encoding step. Compared with the Fast-
MoCo pipeline, 1) the Fast-MoCo Divide-Combine-Encode pipeline generates
fewer target-sample pairs for the same computational cost, and 2) does not
include sufficiently difficult target-sample pairs (more discussion in Section .

For the Sample-Combine-Encode in Table [d{a), we generate the 112 x 112
rectangular patches independently, and find its +2.3 gain over Encode Only.
Sample-Combine-Encode performs worse than Divide-Combine-Encode because
the divided patches in Divide-Combine-Encode have no overlap, which maxi-
mizes the diversity of the combined patches, but Sample-Combine-Encode can-
not guarantee non-overlapping patches.

Montage-Encode-Divide-Combine. JigClu [5] proposed a patch encod-
ing technique with montage image. Given a batch of K images, four patches are
generated from each image with different augmentations, resulting in a mini-
batch of 4K patches. Then K montage images of size 224 x 224 are generated by
stitching four patches randomly selected (without replacement) from the mini-
batch of 4K patches. The encoder adds an additional step before average pool-
ing to divide K montage feature maps back to 4K patch features to get their
encoded embeddings. We replaced our Divide-Encode steps with this Montage-
Encode-Divide approach, forming a Montage-Encode-Divide-Combine pipeline.
The result of this approach in Table a) shows that it is not as good as the
relatively simpler Fast-MoCo approach.

Analysis All in all, our Fast-MoCo outperform other variants with a steady
margin. The Encode Only baseline achieves 68.9%. If we combine inputs before
the encoding mechanism, the performance improved to 71.2% and 71.8% for
inputs obtained by random cropping and dividing respectively. If we combine the
embedding after encoding inputs, the performance improved to 72.9% (sample
by random cropping) and 73.5% (Fast-MoCo). The Montage strategy achieves
70.4%. We find that the Sample (random cropping) always performs worse than
Divide, and combine after encoding always better than before encoding in our
experiments. Based on these results, we found non-overlapping patches(Divide)
and Combine after encoding to be the best practice.

5.3 Relationship with Multi-Crop

Multi-crop is a technique proposed in SwAV [3]. In addition to two 224 x 224
crops, multi-crop additionally adds six 96 x 96 patches as samples so that the
encoder is trained with samples that have multiple resolutions and hard sam-
ples. However, the additional samples also needs more computation. While both
Fast-MoCo and mulit-crop use small patches as their input, Fast-MoCo is not
trained with samples of multiple resolutions. Except the (iii) in Table [d{b), all
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Fig.3: (a): ImageNet linear evaluation accuracy (Y-axis) when different ResNet
stages (X-axis) are selected for combining n = 2 divided patches or n = 4 divided
patches in the Divide step. (b): ImageNet accuracy (Y-axis) when n/m? (X-axis)
patches are combined for mxm (1x 1, 2x 2, 3x 3) divided patches. Annotations
represent the number of combined samples n.

reported results in this paper for Fast-MoCo are w/o mulit-crop. Nevertheless,
as shown by (ii) in Table [f{b), Fast-MoCo w/o mulit-crop is 0.4 better than
MoCo v3 w/ mulit-crop. Fast-MoCo w/ mulit-crop (see supplementary mate-
rial for details), i.e. (iii) in Table[d|b), further improves the result of Fast-MoCo
by 0.7, which shows that our contribution is orthogonal to mulit-crop.

5.4 Ablation on Fast-MoCo

Combine Stage and Task Difficulty In our Fast-MoCo pipeline, a 224 x
224 cropped image is divided into four patches. The embeddings of these four
patches are combined at the final layer of the ResNet encoder. In this Section,
we investigate the influence of combining n = 2 patches or n = 4 patches.
When n = 2, there is an information gap between sample and target because
the sample only has half of its patches used for contrastive loss. When n = 4, all
information within the original image is preserved. When combining two patches
(or their feature maps) before the last stage, as it is difficult to handle non-
rectangle input for CNN, we only stitch them vertically and horizontally with
respect to their original position as described in Section Since convolution
layers are computationally heavy, we do not reuse patches/patch feature maps,
so uniformly, we have two target-sample pairs per image when n = 2. In the case
of the final layer, for a fair comparison, we adopt the same sample pair selected
as in previous stages, which means two target-sample pairs per image.

In Figure a), the results show that when the Combine step took place at the
embedding level, i.e., the elimination of relative positional information between
patches at later stages, it is beneficial when there is an information gap between
sample and target (n = 2). However, it will be harmful when there is no gap
(n = 4). On the other hand, we can see the training does benefit from a harder
task, i.e., presence of information gap between sample and target when n = 2.
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While for our Fast-MoCo, it will further improve the result as more samples are
generated with the help of embedding level combination.

Number of Combined Samples Given m? = 4 divided patches and n = 2
patches to be combined, we have C]}, = 6 target-sample pairs, but is it necessary
to use them all? From these 6 target-sample pairs, when we use 2, 4, and 6 target-
sample pairs per image and ensure all patches are selected for combination for
equal times, the accuracy are 72.6, 73.3, and 73.5, respectively. These results
show that more samples from combination helps to learn better representations.

Number of Divided and Combined Patches Figure [Bb) shows the
influence of choosing different numbers of divided patches m x m and numbers of
combined patches n. The performance is controlled by two factors: 1) the divide
base number m, which determines the patch size, and 2) the percentage of the
covered area by selected patches combined, i.e., n/m?. With a proper selection
of n/m? by controlling n, we can benefit from extra samples and difficulty it
self. Meanwhile, making the task too hard with n/m? close to 0 (e.g. n = 1 for
m? = 2 x 2), or making the actual patches too small, e.g. 3 x 3 are both harmful
to the performance. We find choosing 2x2 split with n = 2 have a good trade-off
for these factors, which is used for our key results. When n is close to the optimal
choice, i.e. n = 2 for m? = 2 x 2 or n = 3 for m? = 3 x 3, the small variation of
n (e.g. n = 4 for m? = 3 x 3) does not lead to large variation of ImageNet top-1
accuracy, showing Fast-MoCo is relatively stable to the variation of n and m.

5.5 Combination Method

In this section we discuss different combination choices in the Combine step. We
consider two alternatives: weighted average and merge by max operation.

Weighted Average. Consider the case of combining 2 patches p and p’ from
the 2 x 2 divided patches, for patch embeddings v, and v, of patches p and p’
respectively, we have:

c="7p + (1- ’Y)Up'v (7)

where p’ # p and every patch is selected for equal times. By adjusting v within
the range of [0.5,1), we create a continuous transition between using patch em-
beddings separately and combinatorial patches with four combinations. The re-
sults are shown in Figure a), from which we can see the best setting is to have
v = 0.5, which assigns equal weights for both patches. Therefore, equal weight
for Fast-MoCo is the default setting in other experimental results. The transition
is idiosyncratic when the weight for either feature is close to zero.

Weighted Average with Weight from Random Sampling. Apart from
weighted combining with fixed weights, we also investigated the case when -y
is randomly sampled from beta distribution; we have v ~ Beta(a,«) with
a €40.2,1,4,8,16}. As shown in Figure b), The result gradually approaches
average combination as randomness is suppressed by higher a. We conclude
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Impact of weighted average (20 epochs)
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Impact of random disturbance (20 epochs)
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Fig.4: (a): Random weighted average - fix value. (b): Random weighted average
- Beta distribution.

that the combination of patch embedding is best done with its patch members
contributing equally to the combined embedding.

Max Operation. As for combination with max operation, for each feature
channel i, we have:
e =

max U(Z) .

vE{vp,v, }

(®)

The 100-epoch linear evaluation result when the max operation is used at the
Combine step is 64.6, which is significantly lower than the result of 73.5 for the
Fast-MoCo counterpart with weighted average.

6 Conclusion

In this work, a simple yet effective self-supervised learning method, i.e., Fast-
MoCo, is proposed to boost the training speed of the momentum-based con-
trastive learning method. By extending the MoCo v3 baseline with our proposed
divide and combine steps, Fast-MoCo can construct multiple positive pairs with
moderately more challenging optimization objectives for each input, which could
significantly increase the sample utilization efficiency with negligible computa-
tional cost. Linear evaluation results on ImageNet show that Fast-MoCo trained
with 100 epochs can achieve on-par performance with MoCo v3 trained with
800 epochs, which significantly lowers the computation requirements for self-
supervised learning research and breaks the barrier for the general academic
community. More extensive experiments and analyses further demonstrate the
transferability of Fast-MoCo to other tasks and validate our design.
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