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1 Evaluation on noisy datasets without pretraining

Without pretraining, EAC also increases the performance of SCN by 5.77%,
5.36%, 6.71% under 30% label noise in the 3 Facial Expression Recognition(FER)
datasets, which illustrates that EAC can still get rid of the bad influence from
label noise without the pre-trained backbone.

Table 1: Evaluation of EAC on noisy FER datasets.
Method Pretrain Noise(%) RAF-DB(%) FERPlus(%) AffectNet(%)

Baseline ✓ 10 81.01 83.29 57.24
SCN (CVPR20) ✓ 10 82.15 84.99 58.60
RUL (NeurIPS21) ✓ 10 86.17 86.93 60.54
EAC (Ours) ✓ 10 88.02 87.03 61.11

Baseline ✓ 20 77.98 82.34 55.89
SCN (CVPR20) ✓ 20 79.79 83.35 57.51
RUL (NeurIPS21) ✓ 20 84.32 85.05 59.01
EAC (Ours) ✓ 20 86.05 86.07 60.29

Baseline ✓ 30 75.50 79.77 52.16
SCN (CVPR20) ✓ 30 77.45 82.20 54.60
RUL (NeurIPS21) ✓ 30 82.06 83.90 56.93
EAC (Ours) ✓ 30 84.42 85.44 58.91

Baseline x 10 62.55 77.87 44.73
SCN (CVPR20) x 10 70.25 78.83 46.29
RUL (NeurIPS21) x 10 70.75 80.62 48.53
EAC (Ours) x 10 73.36 82.59 51.43

Baseline x 20 56.77 71.98 41.37
SCN (CVPR20) x 20 65.95 74.16 42.46
RUL (NeurIPS21) x 20 68.84 78.96 46.04
EAC (Ours) x 20 71.21 80.55 48.97

Baseline x 30 49.70 69.34 38.47
SCN (CVPR20) x 30 62.43 72.71 40.89
RUL (NeurIPS21) x 30 66.92 76.92 44.77
EAC (Ours) x 30 68.20 78.07 47.60
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2 More results of the attention maps

We display more visualization results of the learned attention maps in Figure 1.
SCN might remember noisy samples on the original images, while it can get
correct predictions on some of the flipped counterparts shown in the first row
of Figure 1. In the third row, we display some samples that SCN gets wrong
predictions on both the original images and their flipped counterparts while our
EAC can still get correct predictions.

3 The implementation details of experiments on
CIFAR100 and Tiny-ImageNet

To show the generalization of our proposed EAC, we carry out experiments on
CIFAR100 and Tiny-ImageNet. Some noisy label facial expression recognition
methods are not suitable for classification tasks with a large number of classes.
For example, DMUE [3] needs to train a multi-branch model to mine the la-
tent truth of the given samples. However, when it comes to classification tasks
like CIFAR-100 and Tiny-ImageNet, it is unaffordable to train a model with
101 branches to mine the latent truth, which means these methods have bad
generalization ability.

Fig. 1: The learned attention maps of SCN and EAC. EAC eliminates the nega-
tive effect of noisy labels through learning consistent attention maps. NL repre-
sents the noisy label, LT represents the latent truth. The prediction results are
shown under the images.
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We provide the details of the implementation in this section. We compare our
proposed EAC with the baseline and SCN [4]. All the methods use ResNet-18 [2]
without pre-training as the backbone network. The input images are randomly
cropped to 32×32 pixels. The baseline and SCN horizontally flip the input images
with a probability of 0.5 to make a fair comparison with EAC. All the methods
randomly erase the input images with the probability of 0.5, the erasing scale of
0.02 to 0.25 and the erasing ratio of 0.3 to 3.3. During training, the batch size is
512. We use SGD with momentum of 0.9 and weight decay of 0.0005. The initial
learning rate is 0.1. We use the Cosine Annealing learning rate scheduler with
the maximum number of iterations as 200, the number of the training epochs.

4 Ablation Study

Evaluation of the consistency loss weight lambda. To show the influence of
λ on the performance, we evaluate it from 0.1 to 10.0 on RAF-DB with different
levels of label noise. The results are plotted in Figure 2. It is shown that the clas-
sification accuracy first increases along the λ and then starts to decrease, which
is intuitive as we use the consistency loss to regularize the classification loss. If λ
is too small, the model will overfit the noisy samples. The model degrades to the
baseline method when λ equals 0. However, when λ is too large, the consistency
loss will outweigh the classification loss. The change of the classification loss will
have little effect on the model training, which leads to underfitting. The best
value of λ is 3 under 10% and 20% noise and 5 under 30% noise, which implies
that we need to regularize the classification loss more when there are more noisy
samples. To show the effectiveness of EAC under all circumstances, we simply
set λ as 5 in all our experiments.
Evaluation of the erasing probability p.We experiment with different values
of erasing probability p under different levels of label noise. It is shown that we
need to erase more images to prevent the model from overfitting the attention
maps before and after the flip when the noise ratio increases, which conforms
to the choice of lambda, which needs to be larger to deal with more label noise.

Fig. 2: Ablation study of the consistency loss weight λ and the erasing probability
p
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Fig. 3: Ablation study of the erasing ratio and the erasing scale.

It is shown that we can choose p from 0.7 to 1.0 randomly as the performance
changes little.
Evaluation of the erasing ratio. The erasing ratio is a range of aspect ratio
of the erased area. Following [5], we set the range as (r1,

1
r1
) and vary r1 from

0.1 to 1.0 to evaluate its effect on the performance. The results in Figure 3 show
that the performance decreases as r1 increases because the range of aspect ratio
of erased area narrows as r1 increases, which degrades the regularization effect
of the random erasing. Thus, we choose r1 as 0.1 and set the erasing ratio as
(0.1, 10) in all our experiments.
Evaluation of the erasing scale. The erasing scale is a range of the proportion
of erased area against the input image. Following [5], we set the lower bound of
the erasing scale as a fixed value and evaluate the upper bound of the erasing
scale. In this paper, we set the lower bound of the erasing scale as 0.1 and
vary the upper bound from 0.1 to 1.0 to evaluate its effect on the performance.
The results show that the performance is only slightly affected by the erasing
scale when the noise rate is 10% or 20%. When the noise rate reaches 30%, the
performance increases along with the upper bound of the erasing rate, which is
intuitive as we need to erase a larger part of input images to prevent the model
from remembering the noise labels. We choose the upper bound as 0.7 and set
the erasing scale as (0.1, 0.7) to get good performances under all circumstances.

5 The confusion matrices of different methods on
RAF-DB

To show the improvement of EAC on different classes, we display the confusion
matrices of different methods on the testset of RAF-DB after training with 30%
of label noise in Figure 4. Compared with the baseline method, EAC improves
the classification performance of each class. EAC improves SCN on six expression
classes except for the Surprise class. The results show that EAC improves noisy
label FER methods on different classes instead of a specific class with many
samples.
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Fig. 4: The confusion matrices of different methods on the testset of RAF-DB.
EAC improves noisy label FER methods on different classes instead of a specific
class with many samples.

6 Comparison with Attention Consistency

Attention Consistency [1] equals EAC without the imbalanced framework and
the erasing module. The framework of Attention Consistency and EAC are shown
in Figure 5 and Figure 6 respectively. Under 30% label noise in RAF-DB, At-
tention Consistency only achieves 78.29% classification accuracy on the testset,
while EAC achieves 84.42%. Though Attention Consistency considers visual at-
tention consistency under spatial transforms, it cannot eliminate the bad influ-
ence of the noisy labels as it can remember noisy samples. The difference between
Attention Consistency and the baseline method under noisy label setting is that
Attention Consistency has twice input images as the baseline method. However,
the increase of the training data does not equal the robustness to the noisy labels.
The difference between Attention Consistency and EAC lies in the imbalanced
framework and the erasing module. The imbalanced framework ensures that the
noisy labels will not influence the flipped images. The erasing module makes the
model unable to remember the attention maps of the flipped images to minimize
the consistency loss. Combined with Attention Consistency, the three modules
can utilize the consistency of the attention maps before and after the flip to
prevent the model from remembering the noisy samples.

7 Feature visualization of SCN and RUL

We provide the feature visualization results of SCN and RUL under 30% label
noise in Figure 7. Though the distance between different clusters is large, SCN
overfits most of the noisy samples as the noisy samples are mixed evenly with
the clean samples in Figure 7 (a). In Figure 7 (b), we plot the same feature as
Figure 7 (a), but labeled with the latent truth. We draw the conclusion that
the learned features of SCN are negatively affected by the noisy labels as the
features that related to different latent truth are mixed together, shown in the
red dotted boxes. Similarly, Figure 8 shows that the features learned by RUL can
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Fig. 5: The framework of Attention Consistency. The red dotted boxes mark
the different parts between Attention Consistency and EAC. As the Attention
Consistency does not have the imbalanced framework and the erasing part, the
model might overfit the noisy labels on the flipped images, which degrades the
regularization effect of the consistency loss. Thus, Attention Consistency cannot
eliminate the negative effect of the noisy labels.

Fig. 6: The framework of our proposed EAC.
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Fig. 7: The learned features by SCN under 30% label noise. (a) is the learned
features displayed with the noisy training labels. (b) is the same learned features
as (a), but displayed with the latent truth. The red dotted boxes in (b) indicate
the bad results of SCN as the features related to latent truth are mixed with
each other.

Fig. 8: The learned features by RUL under 30% label noise. (a) is the learned
features displayed with the noisy training labels. (b) is the same learned features
as (a), but displayed with the latent truth. The red dotted boxes in (b) indicate
the bad results of RUL as the features related to latent truth are mixed with
each other.

not effectively suppress the noisy labels as features of noisy samples are mixed
with clean samples when displayed with latent truth.

8 visualization of the attention maps of RUL

Figure 9 shows RUL can not acquire consistent attention on the original and
flip images though we train it using both of the images before and after the flip.
RUL predicts wrongly on the image circled in red, while our method predicts
correctly on all these noisy images in Fig.4 of the paper.
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Fig. 9: The attention maps of RUL on the original images and their flipped
images.
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