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Abstract. Noisy label Facial Expression Recognition (FER) is more
challenging than traditional noisy label classification tasks due to the
inter-class similarity and the annotation ambiguity. Recent works mainly
tackle this problem by filtering out large-loss samples. In this paper, we
explore dealing with noisy labels from a new feature-learning perspective.
We find that FER models remember noisy samples by focusing on a part
of the features that can be considered related to the noisy labels instead of
learning from the whole features that lead to the latent truth. Inspired by
that, we propose a novel Erasing Attention Consistency (EAC) method
to suppress the noisy samples during the training process automatically.
Specifically, we first utilize the flip semantic consistency of facial images
to design an imbalanced framework. We then randomly erase input im-
ages and use flip attention consistency to prevent the model from focusing
on a part of the features. EAC significantly outperforms state-of-the-art
noisy label FER methods and generalizes well to other tasks with a large
number of classes like CIFAR100 and Tiny-ImageNet. The code is avail-
able at https://github.com/zyh-uaiaaaa/Erasing-Attention-Consistency.

Keywords: Noisy label learning, Facial expression recognition, Erasing
attention consistency

1 Introduction

Facial Expression Recognition (FER) has wide applications in the real world,
such as driver fragile detection, service robots, and human-computer interac-
tion [35]. The most common paradigm for FER is the end-to-end supervised
manner, whose performance largely relies on the massive high-quality annotated
data. However, collecting large-scale datasets with fully precise annotations is
usually expensive and time-consuming, sometimes even impossible. Furthermore,
facial expression images have inherent inter-class similarity (all classes are human
faces) and annotation ambiguity (some expression images are quite confusing),
making noisy label FER more challenging than traditional noisy label classifica-
tion tasks. On the other hand, it is well-known that deep neural networks have
enough capacity to memorize large-scale data with even completely random la-
bels, leading to poor performance in generalization [2, 19, 48]. Therefore, robust
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FER with noisy labels has become an essential and challenging task in computer
vision [4, 7, 9, 18,35,38,47,49,50].

Mainstream noisy label FER methods can be mainly classified into two cat-
egories, sample selection and label ensembling. SCN [38] and RUL [50] can be
viewed as sample selection methods, which learn more from clean samples and
then relabel the noisy samples. SCN [38] uses a fully-connected layer to learn an
importance weight for each sample and suppresses uncertain samples during the
training phase. RUL [50] learns uncertainty weights through comparison between
different samples. IPA2LT [35] and DMUE [35] are label ensembling methods,
which provide several labels for a single sample to better mine the latent truth.
IPA2LT [35] assigns each sample more than one labels with human annotations
or model predictions while DMUE [35] uses a multi-branch model to better mine
the latent distribution in the label space. All the aforementioned methods get
good performances under noisy label FER while they still have defects. Specif-
ically, sample selection methods are based on the small-loss assumption [2, 48],
which might confuse hard samples and noisy samples as both of them have large
loss values during the training process. Sample selection methods also need the
noise rate, which is non-trivial in large-scale real-world datasets. Label ensem-
bling methods provide different views of the same sample using several networks,
similar to crowdsourcing in real FER applications. However, the extra informa-
tion gain they bring might be noisy. Label ensembling methods might bring great
computation overhead, making them less preferable in real applications. Thus,
the noisy label FER problem demands better methods that do not need to know
the noise rate or train several models to perform well.

In this paper, instead of following the traditional path to detect noisy sam-
ples according to their loss values and then suppress them, we view noisy label
learning from a new feature-learning perspective and propose a novel framework
to deal with all the aforementioned defects. We find that the FER model remem-
bers noisy samples by focusing on a part of the features that can be considered
related to the noisy labels, shown in Figure 1. The image in the first column is
labeled as sad, while its latent truth is surprise. SCN [38] remembers this noisy
sample by focusing on the frown feature which can be considered related to the
noisy label of the sad expression. However, it neglects the open mouth feature,
which is vital for the correct classification as an open mouth combined with a
frown leads to the latent truth surprise instead of the noisy label sad. From the
attention regions of the noisy samples, we conclude that the FER model only
observes a part of the features that can be considered related to the noisy la-
bels to remember noisy samples. It is intuitive as remembering noisy samples by
focusing on a part of the features that can be considered related to the noisy
labels does not contradict the other learned features from the clean samples.
Inspired by this finding, we propose to deal with noisy label FER from a new
feature-learning perspective. If the model can not focus on a part of the features
and always learns from the whole features, then it cannot remember the noisy
samples. Learning from the whole features from all training samples also means
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Fig. 1: (a) shows the attention regions of the noisy samples learned by SCN and
EAC (Ours). NL represents the noisy label, LT represents the latent truth. The
prediction results are shown under the images. SCN only focuses on a part of
the features that can be considered related to the noisy labels to remember the
noisy samples. (b) shows SCN predicts differently on the flipped image. Our EAC
forces the model to focus on similar parts before and after the flip to prevent
the model from remembering noisy labels.

the model does not need to filter out large-loss samples like traditional methods
which might confuse useful hard samples with noisy samples.

In this paper, we use Attention Consistency to implement the consistency
regularization. Attention Consistency [11] assumes that the learned attention
maps should follow the same transformation as the input images to achieve
better multi-label classification performance. The attention maps denote the
features that the model based on to make the predictions.

We find that the flip semantic consistency of facial expression images can
help to detect noisy labels. Flip semantic consistency means the original image
and its flipped counterpart should be classified into the same category. However,
if we train a FER model with a noisy sample, the model might remember the
noisy sample while it still predicts the latent truth on its flipped counterpart,
shown as the images in the first row of Figure 1. Inspired by that, we propose an
imbalanced framework to prevent the model from remembering noisy samples.
Specifically, we only compute classification loss on the original images and com-
pute consistency loss between the attention maps extracted from the original
images and their flipped counterparts. We utilize the consistency loss to prevent
the model from remembering a part of the features of the original images. Such
an imbalanced framework cannot help the model totally get rid of the noisy
labels as the model can still gradually overfit the attention maps of the flipped
images to keep the consistency loss small, which degrades the regularization ef-
fect. We further propose Erasing Attention Consistency (EAC) to increase the
performance of the imbalanced framework. Before flipping, we first randomly
erase the input images during the whole training phase. During the training
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phase, the dynamic changing of the erased area ensures that the model can not
simply remember the attention maps before and after the flip to get small con-
sistency loss values. When the model starts to overfit the noisy original samples
by focusing on a part of the features related to the noisy labels, the attention
maps of the original images will deviate largely from the attention maps of their
flipped counterparts, which will lead to large consistency loss values. We set the
weight of the consistency loss larger enough to ensure the model first optimizes
the consistency loss. Thus, to get small consistency loss values, the model will
automatically quit overfitting the noisy samples.

The main contributions of our work are as follows:

1. Instead of using traditional methods which deal with noisy labels from high-
level small-loss selection, we cope with noisy labels from middle-level feature
learning, which does not require the noise rate to perform well.

2. We propose a novel method named Erasing Attention Consistency (EAC)
which automatically prevents the model from memorizing noisy samples.

3. We experimentally show that EAC significantly advances state-of-the-art
results on multiple FER benchmarks with different levels of label noise. EAC
also generalizes well to image classification tasks with a large number of
classes.

2 Related Work

Noisy Label Learning Learning with noisy labels has been well studied [1,13–
15, 17, 19, 20, 24, 25, 29, 31–33, 37, 41–43, 45, 46, 51]. Current works can be mainly
categorized into two groups: modifying the primary loss function or selecting
clean samples for training.

The first type of method mainly focuses on estimating the noise transition
matrix or proposing robust loss functions. Patrini et al. [32] estimate the transi-
tion matrix to model the relationship between noisy labels and the latent truth
to prevent the model from overfitting noisy labels. Han et al. [13] propose a
human-assisted approach that conveys human cognition of invalid class transi-
tions to make estimating transition matrix easier. Both Thulasidasan et al. [37]
and Zhang et al. [51] propose generalized cross-entropy loss functions to combat
noisy labels. Xu et al. [43] design a new loss function based on mutual informa-
tion which is information-monotone and robust to various kinds of label noise.
Although these methods have theory guarantees, they are not suitable for chal-
lenging real-world settings or handling a large number of classes. Thus, recent
works usually focus on the second type of method.

The second strand of approach is based on the memorization effect that
DNNs fit the underlying clean distribution before overfitting the noisy labels [2].
They focus on reweighting or sample selection to suppress noisy samples. Jiang
et al. [19] train a mentor net using clean samples to guide the student net by
weighing the samples. Ren et al. [33] reweight samples according to their gradient
directions. Arazo et al. [1] model per-sample loss by a mixture model to calculate
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a weight for each sample. Han et al. [14] train two models to select small loss
samples for each other hoping to filter different types of error introduced by noisy
labels. Malach et al. [29] improve co-teaching by updating only on instances with
different predictions to keep the two models diverged. Wei et al. [41] train two
models together and use their agreement degree to select small-loss samples.
These methods select small-loss samples to eliminate the bad influence from the
noisy samples. However, the useful hard samples are likely to have large loss
values and might be filtered out as noisy samples. These methods also need to
know the noise rate to get better performance. Different from them, our method
automatically prevents the model from memorizing the noisy samples, which do
not require the noise rate or selecting clean samples.
Facial Expression Recognition Facial Expression Recognition (FER) aims at
helping computers to understand human behavior or even interact with a human
by recognizing human expression. In recent years, as the recognition accuracy
is very high in the laboratory collected FER datasets, more attempts try to
address the in-the-wild FER problem, which contains lots of label noise. Zeng et
al. [47] first consider annotation inconsistency and assign each sample with more
than one label to better mine the latent truth. Wang et al. [38] propose to learn
an importance weight for each sample and suppress the uncertain images by
relabeling. She et al. [35] train multi-branch models by leaving out one class for
each branch in order to find the latent truth under label noise. Zhang et al. [50]
propose to learn the uncertainty of different facial images by comparison and then
suppress the uncertain images. They can be mainly categorized into two classes,
sample selection [38, 50] or label ensembling [35, 47]. Sample selection methods
select good samples and suppress noisy samples while label ensembling methods
use crowdsourcing to improve performance. However, they either require the
noise rate to better filter out noisy samples or bring extra computation overhead
and cannot generalize well to classification tasks with a large number of classes.
Our method automatically prevents the model from overfitting the noisy samples
without the noise rate and generalizes well to classification tasks with a large
number of classes.

3 Proposed Method

In this section, we illustrate the implementation details of our proposed Erasing
Attention Consistency (EAC) method.

3.1 Preliminary

Class Activation Mapping Class Activation Mapping (CAM) [53] is an at-
tention method, which allows us to visualize the predicted class scores on the
given images, highlighting the discriminative parts detected by the CNN.

In the CNN trained for classification, an attention map is the weighted sum
of the feature maps from the last convolutional layer with the weights from a
fully connected (FC) layer. By viewing the attention maps, we can know what
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the model is based on to make the predictions. We denote the feature map ex-
tracted from the last convolutional layer as F ∈ RC×H×W , C, H, W respectively
represent the number of channels, height, width of the feature map. We denote
the weights of the FC layer as W ∈ RL×C , L represents the number of classes.
The attention map computes as

Mj(h,w) =

C∑
c=1

W(j, c)Fc(h,w), (1)

Mj(h,w) is the attention value of location (h,w) for class index j, which is
the weighted sum of feature maps over different channels. In our method, we use
CAM to compute the attention maps from the input images to show the features
that the model attends to.
Attention Consistency Attention Consistency [11] is first proposed for achiev-
ing better visual perceptual plausibility and better multi-label image classifi-
cation by considering visual attention consistency under spatial transforms. It
assumes that the learned attention maps of the model should follow the same
transformation as the input images.

3.2 Overview of Erasing Attention Consistency

In this paper, we design an imbalanced framework to help the model get rid of
the negative effect of the noisy labels. We notice that the facial images before
and after the flip have the same semantic meaning of the facial expression. We
only compute classification loss with the original images and compute consis-
tency loss between the attention maps of the original images and their flipped
counterparts to prevent the model from remembering the original images with
noisy labels. Simply using this imbalanced framework can not help the model
totally get rid of the negative effect from noisy labels as the model can gradually
remember the flipped images to always get small consistency loss, which degrades
the regularization effect. We further propose Erasing Attention Consistency to
enhance the performance of our proposed imbalanced framework. Before flipping
the original images to generate their counterparts, we first randomly erase the
images according to [52], which will generate different pairs of original images
and their flipped counterparts during the training process. Thus, the model can-
not remember the flipped images to get small consistency loss. If the model starts
to remember the original images with noisy labels, the attention maps extracted
from them will focus on a part of the features, which deviate largely from the
flipped attention maps extracted from their flipped counterparts leading to the
increase of the consistency loss. Thus, the consistency loss can prevent the model
from remembering noisy samples.

3.3 Framework of Erasing Attention Consistency

The overall framework of our proposed EAC is shown in Figure 2. Given a
batch of facial expression images, we first erase the input images according to
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Fig. 2: The framework of the Erasing Attention Consistency (EAC). EAC ran-
domly erases input images and then gets their flipped counterparts. EAC only
computes the classification loss with the original images. The classification loss
with the noisy labels might cause the model to overfit the noisy samples shown as
Mi. EAC uses the consistency loss between the original images and their flipped
counterparts to prevent the model from remembering noisy labels. The dotted
lines mean no gradient propagation.

[52] and get I. We then flip these images to get their flipped counterparts I
′
.

I and I
′
are the input images. The feature maps are extracted from the last

convolutional layer, denoted as F ∈ RN×C×H×W and F
′
∈ RN×C×H×W . N ,

C, H, W respectively represent the number of images, the number of channels,
height, width of the feature maps. We only input F through the global average
pooling (GAP) layer to get features f ∈ RN×C×1×1. We resize features f to N×C
and put them through fully connected (FC) layer to compute classification loss
according to

lcls = − 1

N

N∑
i=1

(log
eWyi

fi∑L
j eWjfi

), (2)

Wyi
is the yi-th weight from the FC layer with yi as the given label of the

i-th image. We compute attention maps M and M
′
for I and I

′
according to

Eq. (1). Note that the weights used to compute attention maps come from the
FC layer, while the FC layer only computes classification loss with the original
feature maps F. We use consistency loss to minimize the distance between the

feature maps M and Flip(M
′
) as

lc =
1

NLHW

N∑
i=1

L∑
j=1

||Mij − Flip(M
′
)ij ||2. (3)

The total loss is computed as follows,

ltotal = lcls + λlc. (4)

λ is the weight of the erasing consistency loss. The ablation study of λ is in
Section 4.8.
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4 Experiments

In this section, we first describe 3 popular in-the-wild FER benchmarks and our
implementation details. We then verify the proposed EAC on the FER datasets
with different levels of label noise and study why EAC works. Visualization
results of the learned features, attention maps and classification loss values are
displayed to provide an intuitive understanding of EAC. We carry out an ablation
study and also show the generalization ability of EAC by conducting experiments
on CIFAR100 [22] and Tiny-ImageNet [34]. Finally, we compare EAC with other
state-of-the-art FER methods.

4.1 Datasets

RAF-DB [26] is annotated with basic or compound expressions by 40 trained
human coders. In our experiments, images with seven basic expressions (i.e.
neutral, happy, surprise, sad, angry, disgust, fear) are used including 12,271
images for training and 3,068 images for testing.

FERPlus [3] is extended from FER2013 [10] with finer label annotations. It
is collected by the Google search engine consisting of 28,709 training images and
3,589 test images. We use the most voting category as the annotation for a fair
comparison [3, 38,39].

AffectNet [30] is by far the largest FER dataset, which is collected from
the Internet by querying expression-related keywords in three search engines
containing more than one million images. There are 286,564 training images and
4,000 test images manually labeled to eight classes.

4.2 Implementation Details

By default, we use ResNet-18 [16] pre-trained on MS-Celeb-1M [12] as the back-
bone network with the same routine as [35, 38, 39, 50] for fair comparisons. The
facial images are aligned and cropped with three landmarks [40], resized to
224×224 pixels. We only use the horizontal flip and the random erasing without
any other data augmentation tricks to evaluate the effectiveness of our proposed
method. During training, the batch size is 256. The initial learning rate is 0.0002.
We use Adam [21] optimizer with weight decay of 0.0001 and ExponentialLR [27]
learning rate scheduler with the gamma of 0.9 to decrease the learning rate after
each epoch. The training ends at epoch 60.

4.3 Evaluation of EAC on Noisy FER Datasets

We quantitatively evaluate the improvement of our proposed EAC against other
state-of-the-art noisy label FER methods. We explore the robustness of EAC
with three levels of label noise including the ratio of 10%, 20%, 30% on RAF-
DB, FERPlus, and AffectNet datasets. We follow [35, 38, 50] to generate noisy
labels. As the generation of label noise is random, we re-implement other state-of-
the-art methods on our generated noisy datasets to make fair comparisons with
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Table 1: Evaluation of EAC on noisy FER datasets. We re-implement other
state-of-the-art methods and test all the methods with the same noisy datasets
to make fair comparisons. Results are computed as the mean of the accuracy
from the last 5 epochs

Method Noise(%) RAF-DB(%) FERPlus(%) AffectNet(%)

Baseline 10 81.01 83.29 57.24
SCN (CVPR20) 10 82.15 84.99 58.60
RUL (NeurIPS21) 10 86.17 86.93 60.54
EAC (Ours) 10 88.02 87.03 61.11

Baseline 20 77.98 82.34 55.89
SCN (CVPR20) 20 79.79 83.35 57.51
RUL (NeurIPS21) 20 84.32 85.05 59.01
EAC (Ours) 20 86.05 86.07 60.29

Baseline 30 75.50 79.77 52.16
SCN (CVPR20) 30 77.45 82.20 54.60
RUL (NeurIPS21) 30 82.06 83.90 56.93
EAC (Ours) 30 84.42 85.44 58.91

them. We also consider the influence of the different backbones and backbones
with or without pretraining.

Shown in Table 1, our method outperforms other state-of-the-art FER noisy
label learning methods by a large margin. For example, EAC outperforms SCN
under 30% label noise by 6.97%, 3.24%, 4.31% on RAF-DB, FERPlus, AffectNet
respectively.

Note that, unlike SCN [38] and RUL [50], EAC does not need to modify the
labels of the training samples. Relabeling has the risk of changing right labels to
wrong labels, which is less flexible than our method as EAC can automatically
learn useful information from all training samples. EAC does not need to know
the noise rate or tell apart hard samples and noisy samples, which fundamen-
tally solves the defects of sample selection methods as sample selection methods
require the noise rate to filter out large-loss samples, which might contain useful
hard samples and useless noisy samples.

We also study EAC with different backbones. With different backbones, λ is
set to 5 under 0 and 10% noise, 10 under 20% and 30% noise. As shown in Table 2,
adding EAC to MobileNet or ResNet-50 can both improve their performance.
Baselines are also trained with erase and flip for a fair comparison. EAC achieves
better results in all settings using ResNet-50 as backbone compared with ResNet-
18 in Table 1. The experiments of EAC using an unpretrained model as backbone
are shown in the supplementary material.

4.4 Why EAC works

We evaluate the three modules of the proposed EAC to find why EAC works
well under label noise. The experiment results are shown in Table 3. Several
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Table 2: The influence of different backbones on EAC. We carry out experiments
on RAF-DB. Results are computed as the mean of the accuracy from the last 5
epochs

Method 0 noise 10% noise 20% noise 30% noise

MobileNet 83.31% 77.80% 70.60% 62.48%
MobileNet + EAC 86.47% 82.63% 81.65% 79.82%

ResNet-50 88.75% 83.44% 79.11% 71.67%
ResNet-50 + EAC 90.35% 88.62% 87.35% 85.27%

observations are concluded as follows. Without the flip attention consistency
module, the model can not use the same semantic meaning from the flipped
counterparts to regularize the classification loss, which is shown in the second
row. Without the erasing, the model will gradually remember the attention maps
from the flipped images to get small consistency loss values, which degrades the
regularization effect. Without the imbalanced framework, the noisy labels will
affect the images before and after the flip together. The model can remember
the noisy samples before and after the flip together, making the consistency
loss useless. However, when we combine the three modules, the performance
skyrockets.

We believe it is the dynamic erasing that prevents the model from remember-
ing the attention maps. Thus, the model needs to learn flip consistent features
to minimize the consistency loss. As we only compute the classification loss with
the original images (the imbalanced framework), if the model tries to remember
the noisy samples, the features learned from these samples will deviate largely
from their flipped counterparts, making the consistency loss large. As we set the
weight of the consistency loss large enough, the model will first minimize the
consistency loss. Thus, it will quit remembering the noisy samples.

4.5 Whether flip and erase is sufficiently valid for EAC

We use flip because we need spatial transforms to enable attention consistency
following [11]. Other spatial transforms like Rotate or Scale are not very effective

Table 3: Evaluation of the three modules of EAC on RAF-DB with 30% label
noise

flip attention consistency imbalanced framework erasing RAF-DB

x x x 75.50
x ✓ ✓ 78.10
✓ x ✓ 78.29
✓ ✓ x 76.26
✓ ✓ ✓ 84.42
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Table 4: Comparison with other augmentation methods. The experiments are
carried out on noisy RAF-DB.

Noise Rotate Scale Flip Blur AutoAug. Erasing

10% 80.93% 85.98% 88.02% 86.80% 87.84% 88.02%
20% 79.63% 85.30% 86.05% 83.77% 85.82% 86.05%
30% 78.23% 82.01% 84.42% 76.92% 82.40% 84.42%

for FER as FER test sets are mainly frontal faces with a similar scale. We
utilize erasing as FER models fit noisy labels through remembering parts of
the features. Erasing guides the model to focus on the whole feature as the
remembered feature parts might be absent during the training. Other augments
can not directly solve the part-view problem and are not very effective. We test
them on noisy RAF-DB. Rotate and Scale is compared to Flip. Blur [36] and
AutoAugment [5] (AutoAug.) is compared to Erasing. AutoAugment searches
and combines many kinds of augments together while it is still inferior to erasing.

4.6 Feature Visualization

To understand EAC intuitively, we plot the learned features of EAC trained
with 30% noisy labels on RAF-DB by t-SNE [28]. Figure 3 (a) is the learned
features displayed with the noisy training labels. It is shown that EAC does not
remember noisy labels as features with different labels are clustered together.
It is shown that the features with noisy labels are close to the classification
boundary which means these samples are with large classification loss values.
Thus, EAC separates clean and noisy samples effectively. We also plot the same

Fig. 3: The learned features by EAC training with noisy labels. (a) is the learned
features displayed with the noisy training labels, EAC does not overfit noisy
labels as different classes mixed with each other. Notice that noisy samples are
pushed to the classification boundary by EAC. (b) is the same learned features
with (a), but displayed with the latent truth. Though we train EAC with noisy
labels, it can still learn useful features related to the latent truth.
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Fig. 4: The attention maps of SCN and EAC on the original images and their
flipped counterparts.

learned features in Figure 3 (b), but displayed with the latent truth. Compared
with Figure 3 (a), we can draw the conclusion that EAC can automatically
prevent the model from remembering noisy labels and learn useful features from
both clean and noisy samples.

We plot the attention maps on images before and after the flip in Figure 4
to show the effectiveness of EAC. We train SCN with the original images and
test on their flipped counterparts. It is shown that SCN remembers the original
images to the noisy labels, while it still gets correct predictions on their flipped
counterparts after training. Inspired by that, EAC uses the attention maps of
the flipped ones to regularize the classification loss and get correct prdictions on
both the original images and their flipped counterparts. We display more results
in the supplementary material.

4.7 Visualization of the classification loss values

We plot the distribution of classification loss values after training for 60 epochs
in Figure 5 under the same setting as Section 4.6. We normalize the histogram
of loss values and plot it as the probability density. The baseline method overfits

Fig. 5: The classification loss values of different methods after training for 60
epochs with noisy samples. The baseline remembers nearly all noisy samples.
SCN avoids overfitting a part of the noisy samples, while EAC can still separate
clean and noisy samples apart after training for 60 epochs.
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nearly all the noisy samples after training for 60 epochs as the loss values of
all samples are around 0. SCN learns importance weights and uses relabeling to
deal with noisy samples. However, lots of the noisy samples are not correctly
relabeled during the training process as there are still lots of noisy samples with
loss values close to 0. Our EAC prevents the model from remembering the noisy
samples during the whole training process. After training for 60 epochs, the loss
values of clean and noisy samples can still be separated clearly.

4.8 Ablation Study

We evaluate the consistency loss weight λ from 0.1 to 10.0 with different levels
of label noise. The results are shown in the supplementary material. We can
choose λ from a wide range to acquire state-of-the-art performance. The best
value of λ is 3 under 10% and 20% noise and 5 under 30% noise on RAF-DB
using ResNet-18 as backbone. For simplicity, we set λ as 5 in the noisy label
experiments using ResNet-18 as backbone.

4.9 The generalization ability of EAC

Noisy label FER methods might not be suitable for noisy label classification
tasks with a large number of classes as the class number of the facial expression
is very small. For example, DMUE [35] needs to train a multi-branch model
whose branch number equals the class number plus 1 to mine the latent truth,
which is unaffordable when the class number is very large. However, EAC can
generalize well to tasks with a large number of classes.

To show the generalization ability of EAC. We carry out experiments on
CIFAR100 [22] and Tiny-ImageNet [34]. Due to the space limitation, the im-
plementation details are illustrated in the supplementary material. As shown
in Tabel 5, our EAC consistently improves the baseline by a large margin in
both top-1 and top-5 accuracy. EAC outperforms the baseline by 6.37% , 9.40%,
10.89% on CIFAR100 and 12.11%, 17.67%, 22.19% on Tiny-ImageNet in top-1
accuracy with noise ratio 10%, 20%, 30%. Although SCN [38] also outperforms
the baseline, it is clear that our EAC achieves much better results.

Table 5: CIFAR100 and Tiny-ImageNet label noise training

Methods
CIFAR100 Noise Rate Tiny-ImageNet Noise Rate

Top-1/Top-5 (%) Top-1/Top-5 (%)
10% 20% 30% 10% 20% 30%

Baseline 64.56/85.37 57.33/78.93 49.70/72.55 58.11/80.24 49.56/72.43 41.32/64.58
SCN [38] 65.18/86.60 60.38/82.11 56.19/78.30 62.22/85.89 55.23/80.21 47.39/72.56
EAC 70.93/90.15 66.73/87.01 60.59/82.84 70.22/90.23 67.23/89.01 63.51/87.18
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Table 6: Comparison with other state-of-the-art results on different FER
datasets. † denotes training with both AffectNet and RAF-DB datasets. ∗ de-
notes test with 7 classes on AffectNet.

RAF-DB FERPlus AffectNet

Methods Acc. (%) Methods Acc. (%) Methods Acc. (%)

IPA2LT† [47] 86.77 IPA2LT† [47] - IPA2LT† [47] 57.31
RAN [39] 86.90 RAN [39] 88.55 RAN [39] 59.50
SCN [38] 87.03 SCN [38] 88.01 SCN [38] 60.23
DACL [8] 87.78 DACL [8] - DACL∗ [8] 65.20
KTN [23] 88.07 KTN [23] 90.49 KTN∗ [23] 63.97
DMUE [35] 88.76 DMUE [35] 88.64 DMUE [35] 62.84
RUL [50] 88.98 RUL [50] 88.75 RUL [50] 61.43
EAC (Ours) 89.99 EAC (Ours) 89.64 EAC∗(Ours) 65.32

4.10 Comparison with other state-of-the-art FER methods

EAC can also help the FER model achieve state-of-the-art performance on clean
datasets as EAC encourages the model to learn flip consistent features from the
input images which conforms to the human visual perceptual. The results are
shown in Table 6. Besides the works mentioned in Section 2, RAN [39] utilizes
attention weights to aggregate a varied number of face regions to recognize facial
expression robustly. DACL [8] adaptively selects a subset of significant feature
elements for enhanced discrimination. [23] utilizes a knowledgeable teacher net-
work (KTN) and a self-taught student network (STSN) to transfer knowledge.
Our EAC achieves the best performance than other state-of-the-art methods
on RAF-DB and AffectNet(7 classes) while slightly lower than KTN [23] under
FERPlus. We do not compare with [44] as it utilizes Vision Transformer [6] as
backbone while we use ResNet-18 [16].

5 Conclusion

In this paper, we explore to deal with noisy label FER from a new feature-
learning perspective and propose a novel and effective method named Erasing
Attention Consistency (EAC). We design an imbalanced framework to utilize
the erasing and flip consistency loss to prevent the model from remembering
noisy labels. EAC does not require the noise rate or label ensembling. Extensive
experiments verify that EAC outperforms other state-of-the-art noisy label FER
methods on clean and noisy datasets. Furthermore, EAC generalizes well to noisy
label classification tasks with a large number of classes.
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