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Abstract. CutMix is a popular augmentation technique commonly used
for training modern convolutional and transformer vision networks. It
was originally designed to encourage Convolution Neural Networks (CNNs)
to focus more on an image’s global context instead of local information,
which greatly improves the performance of CNNs. However, we found
it to have limited benefits for transformer-based architectures that nat-
urally have a global receptive field. In this paper, we propose a novel
data augmentation technique TokenMix to improve the performance of
vision transformers. TokenMix mixes two images at token level via par-
titioning the mixing region into multiple separated parts. Besides, we
show that the mixed learning target in CutMix, a linear combination of
a pair of the ground truth labels, might be inaccurate and sometimes
counter-intuitive. To obtain a more suitable target, we propose to assign
the target score according to the content-based neural activation maps
of the two images from a pre-trained teacher model, which does not
need to have high performance. With plenty of experiments on various
vision transformer architectures, we show that our proposed TokenMix
helps vision transformers focus on the foreground area to infer the classes
and enhances their robustness to occlusion, with consistent performance
gains. Notably, we improve DeiT-T/S/B with +1% ImageNet top-1 ac-
curacy. Besides, TokenMix enjoys longer training, which achieves 81.2%
top-1 accuracy on ImageNet with DeiT-S trained for 400 epochs.

Keywords: Data augmentation, representation learning

1 Introduction

Deep neural networks dominate the learning of visual representations and show
effectiveness on various downstream tasks, including image classification [9, 11],
object detection [18], semantic segmentation [37], etc. To further improve the
performance, various data augmentation strategies were introduced, including
hand-crafted [34, 32] and automatically searched ones [7, 8]. Recently, data aug-
mentation based on mixing multiple images into single ones shows impressive
performances on various vision tasks. The labels of such “mixed” images are
created based on their original labels. Mixup [34] for the first time attempted
to generate mixed training samples via linear combinations of pairs of samples.
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Fig. 1: TokenMix and CutMix. TokenMix not only mixes images at token-level
to encourage better learning of long-range dependency but also generates more
reasonable target scores according to content-based neural activation maps from
an (even imperfectly trained) teacher network.

CutMix [32] proposed to mix pairs of samples on region level, which replaces a
random local rectangular area in a source image with the contents of the cor-
responding area in a target image. In addition, a series of works attempted to
improve CutMix with more complicated strategies on choosing rectangular sizes
and locations to be used for mixing [29, 16, 15].

In general, CutMix and its variants use the region-level cut-and-paste mixing
technique to enforce Convolution Neural Networks (CNNs) to pay more atten-
tion to the image’s global context instead of just local information. While the
CutMix augmentation can also be used for training vision transformers [11, 25],
the region-level mixing strategy becomes less effective.

We revisit the design of CutMix augmentation and argue that it is a sub-
optimal strategy for transformer-based architectures. On the one hand, the
region-level mixing in CutMix cuts a rectangular area in a source image and
mixes the contents into a target image. As CNNs are primarily designed to en-
code local image contents, the region-level mixing of CutMix can effectively pre-
vent CNNs from over-focusing on local context. However, for transformer-based
architectures that naturally have global receptive fields from the first layer, the
region-level mixing is less beneficial. On the other hand, CutMix assigns a mixed
label for the augmented image according to only the cropped area ratio between
the source and target images, regardless of their cropped contents. However, the
cut region and location of CutMix are randomly chosen, and the same label
is assigned no matter whether the cut contents are foreground or background,
which inevitably introduces label noise to the learning targets and causes un-
stable training (see Fig. 1(b)). There are recent works trying to mitigate this
problem by attentively choosing the salient area for cutting [29, 27] or using al-
ternate optimization to determine the cutting region [16, 15]. However, the label
noise problem is still under-explored as the salient areas might not correctly
correspond to the foreground regions.

In this paper, we propose TokenMix, a token-level augmentation technique
that can be well applied to training various transformer-based architectures. In
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contrast to previous approaches, TokenMix directly mixes two images at the
token level to promote the interactions of the input tokens and generates a more
reasonable target with considering the images’ semantic information. First, to
train transformers for better encoding long-range dependency, we directly cut
at token level and allow the cut region to be separated into multiple isolated
parts. As a result, the cut area can be distributed all over the image, as shown
in Figure 1 (b). The token-level mixing encourages the transformer to better
encode long-range dependency to correctly classify the mixed images with the
augmented tokens inside. Instead of relying on alternate optimization or an extra
network to determine which region to mix, all the mixing tokens in TokenMix
are randomly determined as blocks, which is easier to implement with a small
number of hyper-parameters.

Besides, previous methods usually assign a mixed target to the augmented
image, which equals the linear combination of the ground truth labels of the
source and target images. The linear combination ratio of the labels is determined
as the area ratio between the cutting region of the source image and the total size
of the target image. We found that such target scores can be highly inaccurate.
As shown in Fig. 1 (a), the same target is assigned to both cases even the mixing
area has significantly different semantic meanings.

Following the spirit of distillation, we propose to assign the target score to an
augmented target image according to the content-based neural activation maps
of the two mixing images. Specifically, we first obtain the neural activation maps
of both the source and target images with a pre-trained neural network, which
does not need to be perfectly trained. The scores of two mixing regions are calcu-
lated as the summation of the spatially normalized neural activation maps, which
are combined as the final target. Our intuition is that the neural activation map
of even a partially trained classification network can better localize some part of
an object [36, 4] than using naive score averaging. After spatial normalization of
the neural activation map, the regions with rich semantic information would be
assigned high scores and low scores would be assigned for other regions, leading
to more robust targets. The neural activation maps are generated offline, so the
extra training overhead introduced is negligible (+0.8%). In contrast, the distil-
lation method used in DeiT [25] relies on the online inference of a teacher network
to generate target scores from augmented images, which cannot generate target
scores offline and therefore nearly doubles the training time. Although ReLabel
[33] and TokenLabeling [14] also explored utilizing neural activation maps to
generate training supervisions, their approaches use the patch-level activations
as supervisions and is prone to suffer more from inaccurate activation maps of
mix-based augmentations. In contrast, our proposed method sums up the activa-
tions from the cut regions as the image-level target scores and is less likely to be
affected by individual tokens’ incorrect activations. Experiments on combining
our token cutting strategy and ReLabel or TokenLabeling validate our scoring
strategy. We show that the resulted targets of our approach are more reasonable,
which improve the performance and stabilize the training of not only our pro-
posed TokenMix and also the original CutMix. Replacing the way to generate
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target scores in CutMix with our approach, we obtain a +0.7% top-1 accuracy
gain on ImageNet with DeiT-S. In addition, as the generated target scores are
more learning-friendly, we show that our approach enjoys longer training. Specif-
ically, we achieve 81.2% top-1 accuracy on ImageNet with DeiT-S when training
for 400 epochs.

In summary, our contributions are as follows:

– We propose TokenMix, a token-level augmentation technique that generalizes
well across various transformer-based architectures.

– We propose to assign the target scores of the mixed images with content-
based neural activation maps, which can benefit both TokenMix and CutMix
augmentations.

– Experimental results show that TokenMix promotes transformer’s capability
on encoding image contents and robustness to the occlusions. We improve
DeiT-S from 79.8% to 80.8% top-1 accuracy on ImageNet.

2 Related Works

Cutting-based data augmentation. The motivation behind cutting-based
methods [10, 35, 23, 6] is to make a network learn informative representations
from the entire image. By masking some areas from the input image, it can alle-
viate the issue of overfitting and improve the occlusion robustness [10]. Cutout
[10] is a pioneer of this idea, and proposes to randomly select a square patch of
an image and set the inputs within as some consistent. The shape and size of
the masked patch are manually designed. Random-erasing [35] works in a similar
way with Cutout, but introduces more randomness into the augmentation. In
every iteration, the erasing operation is performed under a probability, and the
size and aspect ratio is randomly selected with predefined limits. Hide-and-seek
[23] differs from the previous two methods in the number of masked patches. It
divides an image into grids and masked each grid randomly and independently.
Mixing-based data augmentation. Mixing-based data augmentations [34,
28, 15, 13] is another popular regularization method to help the optimization
of deep neural networks. Mixup [34] proposes to mix the RGB values of two
randomly selected images according to a mixing factor, which is drawn from a
beta distribution. The target for the mixed image is also a linear combination
of the targets of original images. Manifold Mixup [28] extends the mixed infor-
mation from input images to intermediate feature maps of a network. Co-Mixup
[15] and Puzzle Mix [16] consider the mixing process as an optimization prob-
lem, and propose to maximize the saliency in the mixed images. AugMix [13]
generates mixed images from the original image and its transformed ones.
Joint of cutting and mixing. One issue of cutting-based augmentation is the
information in the cut area is lost, so recent researches [32, 24, 22, 5] propose
to combine cutting and mixing together to achieve better performance. As in-
troduced in CutMix, a patch is replaced with that from another image instead
of being deleted. Like Mixup, the target for the mixed image is computed as
the proportion of the replaced area. Attentive CutMix [29] points out that the
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Fig. 2: The overall pipeline of TokenMix. TokenMix partitions the mask
region into multiple separated parts. The target score of the mixed image is
calculated according to the neural activation maps of the two input images.

randomly selected patches may contain only background regions, and proposes
to replace attentive regions identified by a pre-trained network. RICAP [24] in-
troduces another way of stitching four rectangle patches from different images
into one new image. The target of the new image is also determined according
to the area of different patches. ResizeMix [22] argues the traditional cut-and-
paste operation may lead to an unreasonable target when only the background
part of one image is mixed. It solves this issue by using a resize-and-paste pro-
cess. In this paper, we revisit the CutMix method for vision transformer and
find that CutMix under-explores the ability of vision transformer to model long-
range interaction and the assigned target is non-optimal. We further introduce
our TokenMix augmentation with novel ways to select mixed parts and generate
learning targets.

3 Method

In this section, we first revisit the general process of CutMix [32] and show the
limitations of applying CutMix to transformers. We then present our proposed
TokenMix, which conducts image augmentation via mixing images at token-level
and assigns target scores with neural activation maps.

3.1 Revisiting CutMix Augmentation

To enhance the localization ability of CNNs, CutMix [32] proposed to mix pairs
of samples with a random rectangular binary mask. Let x ∈ RH×W×C and
y denote a training image and its label, respectively. Given a pair of training
samples (xa, ya) and (xb, yb), CutMix generates a new training sample (x̃, ỹ) as
follows:

x̃ = M ⊙ xa + (1−M)⊙ xb,
ỹ = λya + (1− λ)yb,

(1)

where M ∈ {0, 1}H×W
denotes the rectangular mask that decides where to

drop out and fill in the contents of the two images, ⊙ denotes element-wise
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multiplication, and λ is sampled from a beta distribution Beta(α, α). The binary

mask M is a randomly sampled rectangle, which guarantees
∑

M
HW = λ. Similar

to Mixup [34], CutMix assigns a mixed target for the generated image as a linear
combination of ya and yb.

We argue that the region-level mixing in CutMix might not be suitable for
transformer-based architectures. As CNNs are primarily designed to encode lo-
cal image contents, training with CutMix effectively prevents CNNs from over-
focusing on local context. However, transformer-based architectures might be
less benefited from CutMix as all of its layers have global receptive fields. In
addition, the label of the mixed image is a linear combination of ya and yb with
mixing ratio λ being estimated only according to the size of the mask, which
might be inappropriate in many cases as shown in Figure 1 (b). Although there
were recent methods on attempting to improve CutMix by choosing the salience
regions to maximize the saliency in the mixed images [15, 16, 29, 27], the salient
areas might not correctly correspond to the target class [2], and the label noise
problem is still serious.

3.2 TokenMix

In this paper, we propose TokenMix to mix a pair of images to generate a mixed
image and learning target. We generate the mask M at token-level to encourage
better learning of long-range dependency and assign the target score of the mixed
image according to the content-based neural activation maps of the two mixing
images, which follows the general spirit of distillation to create more robust
targets.

Figure 2 shows an overview of our proposed TokenMix. We first partition
the input image x into non-overlapping patches xp ∈ RH

P ×W
P ×(P 2·C), which are

then linearly projected to visual tokens. We then generate a random mask Mt ∈
RH

P ×W
P at token-level according to the mask-out ratio λ. The mixed new training

sample (x̃p, ỹ) is created as follows:

x̃p = Mt ⊙ xp
a + (1−Mt)⊙ xp

b ,
ỹ =

∑
i∈S

Mti ⊙Aai +
∑
i∈S

(1−Mti)⊙Abi, (2)

where S indicates the set of all tokens, ⊙ denotes element-wise multiplication,
Mti denotes the i-th token of the mask Mt, Aai and Abi are the i-th token of
the spatially normalized neural activation maps of xa and xb respectively. The
neural activation maps are generated with pre-trained networks’ last layer before
the classification head [14, 33].

Instead of masking a whole rectangular area, we partition the mask area
into multiple separated parts. For each part, we randomly choose the number
of masked tokens and the aspect ratio [1, 32]. We set the minimum number of
tokens to 14 and log-uniformly sample the aspect ratio in the range of [0.3, 1

0.3 ].
We repeatedly mask a part of the image until the total number of masked to-
kens reaches the pre-defined ratio λHW

P 2 . Instead of sampling λ from a beta
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distribution, we set λ to 0.5 unless otherwise specified. Our intuition is that the
distributed masking regions are easier to recognize compared with masking a
whole rectangular area. For investigation, we also introduce a uniformly random
version, where each masking part is only a single token. While totally random
mixing is harmful to the performance of CNNs, we show that transformers are
still benefited from the simplified version.

To solve the issue of inaccurate target scores generated by CutMix, we pro-
pose to set the target score with the content-based neural activation maps of the
two mixing images, generated by a pre-trained teacher network. Our intuition is
that not all regions correspond to the foreground object. Concretely, the regions
with rich semantic information would have a bigger impact on the target score
than other regions. Inspired by the distillation technique that sets the target
score of an image by a teacher network, we extend the design to set the tar-
get score by combining a teacher network’s neural activation maps of the two
mixing images. As shown in Figure 2, the target scores of two mixing regions
are calculated as the summation of spatially normalized neural activation maps
within the mask for xa or outside the mask for xb. We then combine the two
target scores as the final target of the mixed image.

Compared to previous arts [32, 29, 16, 15], our proposed TokenMix has two
main advantages: 1) We explicitly encourage the transformer to better encode
long-range dependency to correctly classify the image with the other image mixed
inside. We show that our approach can lead to consistent accuracy gain when
used in various vision transformers, and also enhances the occlusion robustness
of the transformers. 2) The target label of the mixed image that is generated
with content-based neural activation map is more robust than those of previous
approaches, which takes advantage of the distillation technique. Besides, we show
that our approach promotes transformers to better localize the discriminate
regions, with attention weights.

4 Experiment

4.1 Datasets

We use ImageNet-1K [9] dataset to demonstrate the effectiveness of our method.
The dataset contains 1.2 million images for training and 50K for validation. The
top-1 accuracy is reported as the evaluation metric.

We also use ADE20K [37] to verify the transferability of our TokenMix pre-
trained models. ADE20K is a widely-used semantic segmentation dataset, cov-
ering 150 semantic categories. The dataset has 25K images in total, with 20K
for training, 2K for validation, and another 3K for testing.

4.2 Implementation Details

We evaluate our method on several recent vision transformer architectures, in-
cluding DeiT [25], CaiT [26], PVT [30] and Swin Transformer [30]. We also test
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Table 1: ImageNet classification performances based on various transformer-
based architectures. TokenMix consistently improves DeiT for ∼ 1% top-1 accu-
racy with nearly no extra training overhead.

Model #FLOPs (G) #Params (M) CutMix TokenMix

DeiT-T [25] 1.3 5.7 72.2 73.2 (+1.0)
PVT-T [30] 1.9 13.2 75.1 75.6 (+0.5)
CaiT-XXS-24 [26] 2.5 9.5 77.6 78.0 (+0.4)
DeiT-S [25] 4.6 22.1 79.8 80.8 (+1.0)
Swin-T [19] 4.5 29 81.2 81.6 (+0.4)
DeiT-B [25] 17.6 86.6 81.8 82.9 (+1.1)

TokenMix on ResNet [12], which is representative of convolution models, as com-
parison. We follow the training recipe of DeiT [25]. The batch size is set to 1024.
We use AdamW [17, 20] as the optimizer and set the learning rate as 0.001 with
5 warm-up epochs. The learning rate is decayed following a cosine scheduler
down to 10−6. Without other specification, we train the models for 300 epochs.
Rand Augment [8] and Mixup [34] are both used by default. Following [25], we
switch TokenMix and Mixup with the probability of 0.5. For training architec-
tures with smaller model sizes, e.g., DeiT-T [25], PVT-T [30], or CaiT-XXS [26],
we sample the λ in Equation 2 from a beta distribution Beta(1.0, 1.0). We use
binary cross-entropy (BCE) loss instead of the typical cross-entropy (CE) loss by
default following [31, 2], as the mixed images are more likely to contain multiple
labels. To generate the neural activation maps, we defautly use NFNet-F6 [3]
following [14].

For transferring to the ADE20K dataset, we follow the setting in BEiT [1],
and fine-tune for 160K steps with Adam [17] optimizer. The detailed hyperpa-
rameters are described in supplementary materials.

5 Main Results

5.1 ImageNet Results

We report the results on ImageNet-1K dataset with our TokenMix. As shown in
Table 1, TokenMix consistently improves CutMix on various transformer-based
architectures, i.e., DeiT [25], PVT [30], CaiT [26], and Swin Transformer [19].
Specifically, TokenMix outperforms CutMix [32] by +1% for DeiT, across DeiT-T
to DeiT-B. We also improve popular hierarchical transformer architectures Swin-
T and PVT-T for +0.4% and +0.5%, respectively. All the results demonstrate
the effectiveness and generalization of the proposed TokenMix.

Our proposed TokenMix consists of two parts, i.e., token-level mixing and
label refinement. We decouple the two parts and then compare them with the
previous methods by fixing one part. In Table 2, we compare TokenMix to Re-
Label [33] and TokenLabeling [14] with the same data augmentation method.
The two methods utilize pixel-level supervision, but our TokenMix summarizes
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Table 2: Comparisons with ReLabel and To-
kenLabeling with DeiT-T on ImageNet. GPU
time refers to the increase of training time.

Augmentation Supervision
Top-1
Acc.

GPU
Time

CutMix ImageNet 72.2 +0.0%
TokenMix ImageNet 72.7 +0.0%

TokenMix ReLabel 72.7 +0.8%
TokenMix TokenLabeling 72.9 +0.8%
TokenMix TokenMix 73.2 +0.8%

Table 3: Comparisons with pre-
vious mixing methods with
DeiT-T on ImageNet.

Augmentation
Top-1
Acc.

CutMix [32] 72.2
Co-Mix [15] 72.2

SaliencyMix [27] 71.8
Puzzle-Mix [16] 72.3

TokenMix 72.7

Table 4: Transferring the pre-trained models to downstream semantic segmenta-
tion task on ADE20K dataset. TL and RL denote TokenLabeling and ReLabel
respectively. ✓+RL/TL represents row 3/4 in Table 2.

Model TokenMix mIoU(%) mAcc(%)
+ms

mIoU(%)
+ms

mAcc(%)

DeiT-T

✗ 36.4 46.7 37.5 47.1
✓+RL 36.6 47.0 38.1 47.9
✓+TL 36.9 47.1 38.3 48.1

✓ 37.1 47.5 38.6 48.2

DeiT-S
✗ 42.3 52.8 43.7 53.8
✓ 44.5 55.0 45.9 56.1

DeiT-B
✗ 46.3 56.5 47.7 57.6
✓ 46.8 56.9 48.2 58.1

neural activations to create image-level target scores and is, therefore, more ro-
bust to individual pixel-level errors. Note that we use the same teacher network,
i.e., NFNet-F6, to generate the offline targets. As shown in Table 2, TokenMix
outperforms both ReLabel (+0.5%) and TokenLabeling (+0.3%) with the same
training cost. We further compare TokenMix to previous mixing-based augmen-
tation methods in Table 3. For a more fair comparison, we only use the labels
from ImageNet. As shown in Table 3, TokenMix have performance advantages
compared to other approaches. We see that the methods that introduce more
foreground regions fail to improve CutMix on Vision Transformer. In contrast,
our proposed TokenMix improves CutMix for +0.5% accuracy.

5.2 Transfer to Downstream Task

Pre-training on ImageNet-1K then finetuning to the downstream tasks is a com-
mon practice for many visual recognition tasks. It is important to verify whether
the better pre-train with TokenMix can boost the performance on the down-
stream task. To do so, we transfer our TokenMix pre-trained models to the
semantic segmentation task and compare them with regular pre-train. Note that
TokenMix does not introduce extra computation overhead in the transfer stage.
As shown in Table 4, we find that better pre-train from TokenMix consistently
improves the segmentation performance on the ADE20K dataset. Notably, we
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Fig. 3: Visualization of the attention maps of the class token in DeiT-S to attend
to patch tokens at different layers. Using CutMix distracts the attention to back-
ground areas in the several middle layers. In contrast, the proposed TokenMix
helps the class token focus more on foreground objects and leads to consistent
performance gain.
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Fig. 4: Example images and the predicted confidences under different occlusion
ratios. Red scores under the images are predicted by TokenMix, and green ones
by CutMix. The model trained with TokenMix holds high confidence when a
large number of patches are dropped, while the model trained with CutMix
outputs low confidence.

improve DeiT-T for +0.7% mIoU, DeiT-S for +2.2% mIoU, DeiT-B for +0.5%
mIoU. We notice that the performance gap becomes even larger (e.g. +1.1%
mIoU for DeiT-T) when using multi-scale testing. All the results demonstrate
the transferability of our TokenMix pre-trained models.

5.3 Main Properties

Besides the performance gains, we find that our proposed TokenMix improves
transformers to be robust to occlusion, and focus more on the foreground area.
All the visualization and analysis are conducted on DeiT-S.
TokenMix helps transformers focus on the foreground area.As discussed
in Section 3, CutMix assigns targets of the mixed images based on linear combi-
nations of labels of the pairs of mixing images, which might be inaccurate if the
foreground region is cut. We find that the inaccurate labels make transformers
pay incorrect attention to the input image. As shown in Figure 3, using Cut-
Mix distracts the transformer’s attention to background areas in several middle
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Fig. 6: The target scores generated by TokenMix and CutMix. For each tripled
sub-figure, the left is the input image, the middle is the neural activation map,
and the right is the masked image. Our approach generates more reasonable
target scores, especially when the foreground region is cropped.

layers (layers 5-10). In comparison, TokenMix helps transformers learn to pay
more attention to the foreground areas and leads to consistent performance gain.
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Fig. 5: ImageNet top-1 accuracy
of DeiT-S under different drop
ratios. The gap between the
model trained with CutMix and
that with TokenMix increases as
the drop ratio grows.

TokenMix enhances the occlusion ro-
bustness of vision transformers. After
training converges, we construct a sequence of
images with different occlusion ratios. Specif-
ically, we gradually drop 10% more patches
and set the pixels inside to zero, and use the
images for testing. We report the top-1 accu-
racy on ImageNet under different drop ratios.
As shown in Figure 5, the model trained with
TokenMix surpasses that with CutMix by in-
creasingly larger margins as the drop ratio
grows, demonstrating its better occlusion ro-
bustness. Specifically, we notice a ∼10% per-
formance gap at the drop ratio of 80%. We
further visualize some examples in Figure 4.
It can be found that when about 40% tokens
are dropped, the predicted ground-truth class
confidences of the baseline model decrease to very low values (0.25 in the first
row) while the model trained with our TokenMix holds higher confidences (0.95
in the first row).

6 Ablative studies

In this section, we conduct various ablation studies to analyze our proposed
TokenMix. We use DeiT-S as the backbone and train it on ImageNet for 300
epochs unless otherwise specified. All other training settings are the same as
described in Section 4. We report the top-1 accuracy on ImageNet.
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Table 6: Comparison of different
ways to generate neural activa-
tion maps. NFNet-F6 is used by
default.

Teacher
Teacher

Top-1 Acc.
Top-1 Acc.

NFNet-F6 [3] 86.1 80.8
ResNet101 [12] 82.3 80.7
ResNet26 [12] 79.8 80.5
Saliency [21] N/A 80.1

Table 7: Ablation of the way to generate
target scores. Our approach generates tar-
get scores with content-based neural acti-
vation maps (denoted as refinement).

Model Refinement Top-1 Acc.

DeiT-S [25]
✗ 79.8
✓ 80.5 (+0.7)

Swin-T [19]
✗ 81.2
✓ 81.5 (+0.3)

ResNet50 [12]
✗ 79.3
✓ 79.8 (+0.5)

Table 8: Ablation of mask sampling
strategy. The region-based strategy
works best on ResNet50, but de-
grades on DeiT-S.

Model region random block

DeiT-T [25] 72.2 72.7 72.7
DeiT-S [25] 79.8 80.6 80.6

ResNet50 [12] 79.3 78.3 79.7

Fig. 7: Illustration of different mask
sampling strategies.

non-mask region block random

Table 5: Performances of using a sin-
gle or randomly sampled one of the
multiple mixing methods for train-
ing DeiT-B.

Mixup [34] CutMix [32] TokenMix Top-1 Acc.

✗ ✗ ✗ 75.8
✗ ✓ ✗ 78.7
✓ ✗ ✗ 80.0
✗ ✗ ✓ 81.5

✓ ✓ ✗ 81.8
✗ ✓ ✓ 82.0
✓ ✗ ✓ 82.9

Integrating TokenMix with previ-
ous mixing-based methods. Table 5
presents the results of combining Token-
Mix with other mixing-based methods to
train DeiT-B. When two mixing augmen-
tations are utilized during training, one
of them is randomly chosen to be used for
data augmentation with a probability of
0.5 at each iteration. The baseline (row 1
in Table 5) does not use any mixing-based
augmentations. Using only MixToken im-
proves the baseline and CutMix by large
margins. Specifically, TokenMix improves
the baseline by +5.7% top-1 accuracy. Us-
ing both TokenMix and Mixup improves TokenMix-only by +1.4% top-1 accu-
racy. In contrast, using both CutMix and Mixup also improves top-1 accuracy
to 81.8%, which, however, is still lower than TokenMix + Mixup.

Different ways to generate neural activation maps. Table 6 presents the
results of using different ways to generate neural activation maps. Besides our
default choice of NFNet-F6, popular ResNet and hand-crafted saliency method
are also compared. As shown in Table 6, TokenMix follows the general behavior
of distillation techniques, i.e., if the performance of the teacher model is high,
so is the student model. In addition, TokenMix is robust to different choices
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of teacher networks for generating target scores. Even when the performance
of the teacher drops by 6.3%, only 0.3% performance drop is observed on DeiT
trained with our proposed TokenMix. However, using neural networks to generate
neural activation maps is consistently better than using scores from hand-crafted
approaches [21] as the targets generated by a teacher model are generally better
to learn than hand-crafted ones. We further visualized the target scores of the
mixed images in Figure 6. For each tripled sub-figure, the left is the input images,
the middle is the neural activation maps, and the right is the masked images.
The scores generated from CutMix are shown in green, while the red scores are
generated by our approach. As shown in Figure 6, the target scores generated
by our approach are more reasonable, especially when the foreground is cut.

Our neural-activation target scores are comptible with CutMix. To
test whether our proposed target scores are compatible with CutMix, we con-
duct experiments of using CutMix to mix pairs of images but generating targets
with our approach (denoted as refinement in Table 7), and train with vari-
ous backbones, e.g., DeiT-S, Swin-T, and ResNet50. As shown in Table 7, we
achieve consistent performance gains on those backbones. Specifically, we im-
prove DeiT-S for +0.7%, Swin-T for +0.3%, and ResNet50 for +0.5% with
nearly no extra computation cost during the training process. All the results
verify the compatibility of our proposed target score assignment with CutMix.

Table 9: Ablation of mask sam-
pling strategy. The block-based
strategy obtains higher accu-
racy with label refinement.

Model Mask Refinement Top-1 Acc.

DeiT-T
random

✗ 72.7
✓ 72.9 (+0.2)

block
✗ 72.7
✓ 73.2 (+0.5)

DeiT-S
random

✗ 80.6
✓ 80.6

block
✗ 80.6
✓ 80.8 (+0.2)

Mask sampling strategy. Table 8 presents
the impact of different sampling strategies
on transformers and Convolution Neural Net-
works, as illustrated in Figure 7. The region-
based sampling, widely used in [32, 21, 29],
cuts a single large rectangular area from the
mixing images. Our proposed TokenMix di-
rectly cuts at token-level. We compare two
settings of our approach, masking multiple
blocks (block-based) following our description
in Section 3.2 or masking individual tokens
separately (random). To better inspect the
impact of sampling strategies alone, in all the
experiments in Table 8, we directly use target
scores generated by CutMix, instead of ours.
As shown in Table 8, the region-based strategy achieves decent performance on
ResNet50, but degrades on transformers, which validates our argument on the
sub-optimality of using region-based cut for training transformers. Compared to
the random strategy, the block-based strategy achieves similar performances on
transformers, but performs much better on ResNet50. When using our proposed
target score assignment approach, we further compare the random and the block-
based sampling strategies. As shown in Table 9, the block-based strategy used in
our final solution consistently has higher accuracy. The results further verify the
effectiveness of our proposed TokenMix.



14 Jihao et al.

Table 10: Ablation of training
epochs. TokenMix enjoys longer
training. The extra 100 epochs of
training improve +0.4% accuracy.

Mixing Method Epoch Top-1 Acc.

CutMix [32]
300 79.8
400 79.9 (+0.1)

TokenMix
300 80.8
400 81.2 (+0.4)

Table 11: Ablation of the loss func-
tion. Binary cross-entropy (BCE)
improves TokenMix, compared with
multi-class cross-entropy (CE).

Mixing Method Loss Type Top-1 Acc.

CutMix [32]
CE 79.8
BCE 79.8

TokenMix
CE 80.3
BCE 80.8 (+0.5)

Training epochs. Table 10 presents the results of longer training. As targets
generated by a teacher network’s neural activation maps can provide more ap-
propriate scores and more challenging samples for training the transformers,
which mitigates the risk of over-fitting scheme, our proposed TokenMix can en-
joy longer training. As shown in Table 10, our TokenMix improves DeiT-S for
+0.4% with additional 100 training epochs, while using CutMix for long training
is less beneficial.
Loss function. As the mixed images may contain multiple objects of different
classes, we adopt the binary cross-entropy (BCE) loss instead of the typical cross-
entropy (CE) loss [31, 2]. Using BCE loss improves DeiT-S for +0.5% accuracy
(Table 11) when training with our proposed TokenMix, as the cut-and-paste
operation might generate a mixed image with multiple objects of different classes.
It might be because the generated targets by CutMix are sub-optimal, we do
not notice performance improvement of replacing CE with BCE when training
DeiT-S with CutMix augmentation.

7 Conclusions

In this paper, we propose TokenMix, a token-level augmentation strategy that
generalizes well across various transformer-based architectures. TokenMix is mo-
tivated by two key observations: 1) region-level mixing is less beneficial for
transformer-based architectures, and 2) assigning target of mixed images with
linear combination might be inaccurate and even counter-intuitive. Our proposed
TokenMix directly cuts at token level and obtains the target of the mixed images
with content-based neural activation maps. Empirical results show that Token-
Mix has the properties of enhancing occlusion robustness and helping vision
transformers focus on the foreground area of input images. Besides, TokenMix
consistently improves various transformer-based architectures, including DeiT,
PVT, and Swin Transformer.
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