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1 HalfResNet-50 Used in X-Learnerr

Model ResNet-50 HalfResNet-50

Channels (256, 512, 1024, 2048) (180, 360, 724, 1448)

Parameters 23,508,032 11,761,825

Table 1. The number of parameters and channel configuration of ResNet-50 and
HalfResNet-50.

For implementing X-Learnerr, we use a HalfResNet-50 as sub-backbone with
only 1/

√
2 of the original ResNet-50 channels (see Tab. 1 for details).

2 Comparison with MuST

Table 2. Comparison with MuST. We use the same pre-training datasets as MuST
without MiDaS [14]. Our setting can take advantage of most existing vision datasets.
We replace the sub-backbone of X-Learner with ResNet-152. * represents that depth
estimation (NYU-Depth V2) is an unseen task for X-Learner, but it is included in the
training process of MuST.

Method Backbone Pre-training Settings CIFAR-100 [8] PASCAL Det [4] PASCAL Seg [4] NYU-Depth V2 [17]

MuST [6] ResNet-152 ImageNet + OBJ365 + COCO + MiDaS 86.3 85.1 80.6 87.8
MuST [6] ResNet-152 JFT300M + OBJ365 + COCO + MiDaS 88.3 87.9 82.9 89.5
X-LearnerR152 ResNet-152 ImageNet + OBJ365 + COCO 88.7 (+2.4) 88.5 (+3.4) 81.4 (+0.8) 91.2*(+3.4)

⋆ equal contribution
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For fair comparison with MuST [6], a self-training approach using ResNet-152
as the backbone, we also conduct the experiment with the same backbone and
dataset (except for MiDaS [14]). Table 2 provides the performance comparison
on four different downstream tasks. We observe that our framework outperforms
MuST by significant margins over all evaluated downstream tasks. When com-
pared with MuST pre-trained with JFT-300M, X-LearnerR152 shows the high
data efficiency. Moreover, it is worth mentioning that our X-Learner surpasses
MuST on NYU-Depth V2 without any depth estimation pre-training. However,
MuST takes MiDaS, for pre-trainning which is large depth estimation dataset
including 1.9M images. This zero-shot performance further demonstrates the
strong generalization capability of X-Learner.

3 Dataset Details

In this section, we list 10 data sources used in the pre-training and 13 downstream
datasets. All data are publicly available for non-commercial use.

3.1 Pre-Training Datasets

ImageNet [15] is a general classification dataset with 1.28M training data. Each
image is labeled with one of the 1,000 classes.
Places365 [22] is a scene recognition dataset sampled from the Places database.
We use the challenge version composed of 8 million training images comprising
365 scene classes.
iNat2021 [18] is a large-scale image dataset collected and annotated by commu-
nity scientists and contains over 2.7M images from 10k different natural species.
CompCars [20] contains data from two scenarios, including images from web-
nature and surveillance-nature. We only use the former part with 163 car makes
with 1,716 car models. We include all 136,726 images capturing entire cars, and
predict their car make labels.
Tsinghua Dogs [24] is a fine-grained classification dataset for dogs, over 65% of
whose images are collected from real life. Each dog breed in the dataset contains
at least 200 images and a maximum of 7,449 images.
COCO [10] has 118k training images labeled with 80 object detection categories.
Objects365 [16] is a large-scale object detection dataset with 609k training
data and 365 classes.
WIDER FACE dataset [21] contains 32,203 images and 393,703 face labels
with a high degree of variety in scale, pose and occlusion. For simplicity, we use
the same mAP metric as COCO to report the pre-training performance on its
validation set.
ADE20K [23] has 20k images with 150 non-background classes covering scene
categories from the SUN and Places databases.
COCO-Stuff [2] is a dataset for scene understanding tasks like semantic seg-
mentation and image captioning. It is constructed by annotating the original
COCO images with additional stuff classes. There are 164k images spanning 172
categories including 80 things, 91 stuffs, and 1 unlabeled class.
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3.2 Downstream Datasets

CIFAR-10 [8] is composed of 50k low-resolution training data labeled with 10
classes.
CIFAR-100 [8] is similar to CIFAR-10, but has 100 classes.
Food-101 [1] consists of 101 food categories with 750 training and 250 test
images per category, making a total of 101k images. The labels for the test
images have been manually cleaned.
Oxford-IIIT Pets [13] Dataset has 37 categories with roughly 200 images for
each class. The images have large variations in scale, pose and lighting.
Oxford 102 Flower [12] is an image classification dataset consisting of 102
flower categories. The flowers are chosen to be commonly occurring in the United
Kingdom. Each class consists of between 40 and 258 images.
SUN397 [19] contains 899 classes and 130,519 images. There are 397 well-
sampled categories to evaluate algorithms for scene recognition.
Stanford Cars [7] dataset consists of 196 classes of cars with a total of 16,185
images, taken from the rear. The data is divided into almost a 50-50 train/test
split with 8,144 training images and 8,041 testing images.
Describable Textures Dataset (DTD) [3] contains 5,640 texture images in
the wild. They are annotated with human-centric attributes inspired by the
perceptual properties of textures.
Caltech-101 [5] dataset is composed of images from 101 object categories and
one additional background class. Most classes have about 50 images.
FGVC-Aircraft [11] contains 10,200 images of aircraft, with 100 images for
each of the 102 different aircraft model variants, most of which are airplanes.
PASCAL Detection [4] refers to the PASCAL VOC object detection dataset
with 20 object classes. We use the VOC07+12 set with 16.5k data for training,
and evaluate on the PASCAL VOC 2007 test set.
PASCAL Segmentation [4] denotes the PASCAL VOC 2012 segmentation
dataset with 1.5k training images and 20 classes.
NYU-Depth V2 [17] is a depth estimation dataset. It contains 120K RGB
and depth pairs acquired as video sequences using a Microsoft Kinect from 464
indoor scenes. We follow the BTS [9] split, using 249 scenes (24,231 images) for
training and 215 scenes (654 images) for testing.
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