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Abstract. In computer vision, pre-training models based on large-scale
supervised learning have been proven effective over the past few years.
However, existing works mostly focus on learning from individual task
with single data source (e.g., ImageNet for classification or COCO for
detection). This restricted form limits their generalizability and usability
due to the lack of vast semantic information from various tasks and data
sources. Here, we demonstrate that jointly learning from heterogeneous
tasks and multiple data sources contributes to universal visual represen-
tation, leading to better transferring results of various downstream tasks.
Thus, learning how to bridge the gaps among different tasks and data
sources is the key, but it still remains an open question. In this work, we
propose a representation learning framework called X-Learner, which
learns the universal feature of multiple vision tasks supervised by various
sources, with expansion and squeeze stage: 1) Expansion Stage: X-
Learner learns the task-specific feature to alleviate task interference and
enrich the representation by reconciliation layer. 2) Squeeze Stage: X-
Learner condenses the model to a reasonable size and learns the universal
and generalizable representation for various tasks transferring. Extensive
experiments demonstrate that X-Learner achieves strong performance on
different tasks without extra annotations, modalities and computational
costs compared to existing representation learning methods. Notably, a
single X-Learner model shows remarkable gains of 3.0%, 3.3% and 1.8%
over current pre-trained models on 12 downstream datasets for classifi-
cation, object detection and semantic segmentation.

Keywords: Representation Learning, Multi-Source, Multi-Task

1 Introduction

Substantial advances have been achieved in visual representation learning, such
as those based on curated large-scale image datasets with supervised [30, 59],
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Fig. 1. a) Single-Source Single-Task; b) Single-Source Multi-Task; c) X-Learner: Multi-
Source Multi-Task; d) Our proposed X-Learner achieves the best performances in Clas-
sification (average linear probe results across 10 classification datasets), Detection (Pas-
cal VOC Detection [15]) and Segmentation (Pascal VOC Semantic Segmentation [15]).

weakly-supervised [29,41], semi-supervised [65,66], as well as self-supervised [7,
11,12,21,25] pre-training. These visual representations show promising abilities
in improving the performance on downstream tasks.

Among these pre-training techniques, supervised pre-training is widely adopted
for its clear objective and steady training process. Nevertheless, existing works
in this direction only consider individual upstream task1 (e.g., classification or
detection) and most of them solely utilize one single data source (e.g., Ima-
geNet [13] or COCO [39]). We argue this single-source single-task (SSST, Fig. 1
(a)) paradigm has several drawbacks: 1) The learned representation in SSST
is specialized for one given task and is likely to have inferior performance on
other tasks [19,26,44,55,56]. 2) It misses the potentials of a more robust repre-
sentation by integrating characteristic semantic information from different tasks.
Intuitively, we can opt to a simple hard-sharing method, i.e. single-source, multi-
task (SSMT) paradigm, as described in Fig. 1 (b), by building many heads, each
of which is specific for one task [24,55]. However, this over-simplified algorithm
usually encounters task interference [43, 73], especially for heterogeneous tasks,
leading to a significant drop in performance. Besides, it requires the same im-
age with a variety of labels [71, 72], which is not scalable easily due to the high
annotation cost. A recent self-training work [19] attempts to create a pseudo
multi-task dataset to alleviate the data-scarcity issue of multi-task learning,
which follows a similar spirit to other SSMT works.

In light of issues with previous settings, we focus on utilizing numerous data
sources of multiple tasks to learn a universal visual representation which should
transfer well to various downstream tasks like classification, object detection
and semantic segmentation. To leverage cross-source, cross-task information and
mitigate undesired task interference, we propose a new pre-training paradigmX-
Learner, as shown in Fig. 1 (c). The X-Learner contains two dedicated stages: 1)
Expansion Stage: It first trains a set of sub-backbones, each of which specifi-
cally exploits one task enriched with multiple sources. It then joins together these
sub-backbones and combine their representational knowledge via our proposed

1 To avoid ambiguity, we refer to a task as a general vision problem such as classifica-
tion, detection or segmentation, and a source as a specific dataset or context within
a certain task.
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reconciliation layer, forming an expanded backbone with enhanced modeling ca-
pacity. 2) Squeeze Stage: Given the expanded backbone, this stage reduces
the model complexity back to sub-backbone level and produces a unified and
compact multi-task-aware representation. This new paradigm has two main ad-
vantages: 1) It can effectively consolidate diverse knowledge from our new multi-
source multi-task learning and avoid task conflicts. The resulting representation
generalizes well to different types of tasks simultaneously. 2) Compared to tra-
ditional multi-task methods, it is highly extensible with new tasks and sources,
since we only require data sources annotated with single-task labels.

Our contributions are summarized as follows:

– We propose a new multi-source multi-task learning setting that only
requires single-task label per datum, and is highly scalable with more tasks
and sources without requiring any extra annotation effort.

– We present X-Learner, a general framework for learning a universal repre-
sentation from supervised multi-source multi-task learning, with Expansion
Stage and Squeeze Stage. Task interference can be well mitigated by Expan-
sion Stage, while a compact and generalizable model is produced by Squeeze
Stage. With X-Learner, heterogeneous tasks can be jointly learned, and the
resulting single model renders a universal visual representation suitable for
various tasks.

– We show the strong transfer ability of feature representations learned by
our X-Learner. In terms of transfer learning performance, multi-source multi-
task learning with our two-stage design outperforms traditional supervised
single/multi-task training, self-supervised learning and self-training methods.
As illustrated in Fig. 1 (d), a model pre-trained with X-Learner exhibits signif-
icant gains (3.0%, 3.3% and 1.8%) over the ImageNet supervised counterpart
on downstream image classification, object detection and semantic segmenta-
tion.

– We offer several new insights into representation learning and the frame-
work design for multi-task and multi-source learning through extensive exper-
iments.

2 Related Work

Visual Representation Learning. Significant progress has been made in the
field of visual representation learning, including unsupervised method [10,11,14,
25, 47, 49], supervised training [30, 59], weakly-supervised learning [29, 41], and
semi-supervised learning [65,66]. A large quantity of prior works use supervised
datasets, including ImageNet1k [31], ImageNet-21K [52], IG-3.5B-17k [41] and
JFT [30], for learning visual representations. In supervised pre-training, labeled
training data provide significant improvement for transfer performance in the
same task as the one for which the data are annotated. However, the ability of
transferring across different tasks is not good enough [57]. In unsupervised learn-
ing, [49] focuses on multi-modal vision language pre-training to achieve strong
performances in classification, but not do well in other visual tasks like detec-
tion [22]. In order to obtain uniformly high transfer performance on diverse task
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Fig. 2. Structure of X-Learner. a) illustrates how reconciliation layers make the
features from different tasks interact with each other. We use γ to represent the recon-
ciliation layer. We present two typical ways of connection by reconciliation layer: cross
different tasks and cross multiple layers; b) Features for different tasks are learned in
Expansion Stage and unified in Squeeze Stage. After the two stages, X-Learner obtains
a general representation for transferring to downstream tasks.

types, it is important to improve the task diversity of training data, justifying
the necessity of multi-task pre-training.

Multi-Task Learning. There has been substantial interest in multi-task learn-
ing [4,8,23,40,50,62,72,74,77] in the community. A common practice for multi-
task learning is to share the hidden layers of a backbone model across different
tasks, which is called “hard-sharing” in the literature. However, such sharing
is not always beneficial, in many times hurting performance [23, 63, 69, 70]. To
alleviate this, there are several lines of works to solve the problem in different
ways. One of them is the use of a split architecture with parallel backbones for
different tasks [18,40,45]. [45] proposes a cross-stitch module, which intelligently
combines task-specific networks, avoiding the need to brute-force search through
numerous architectures. Another line of works is improving optimization during
learning [35, 63, 69, 70]. For example, [70] mitigates gradient interference by al-
tering the gradients directly, i.e., performing “gradient surgery”. [63] addresses
interference by de-conflicting gradients via projection. [35, 36] use distillation
to avoid interference, but they are limited to a retrained setting, either single-
task multi-source or single-source multi-task. Other works attempt to develop
systematic techniques to determine which tasks should be trained together in
a multi-task neural network to avoid harmful conflicts between non-affinitive
tasks [1–3, 17, 34]. These methods perform multi-task learning to improve the
performances of tasks involved, but they are not concerned with the transfer
performance on downstream tasks. [37] applies vision transformer on multi-
ple modalities and achieves impressive performance. For the image modality, it
deals with the classification task only, and learns in a simple hard-sharing way.
The problem of multi-task learning remains. A recent work [19] turns to semi-
supervised learning and constructs cross-task pseudo labels with task-specific
teachers, creating a complete multi-task dataset for pre-training. Yet it only
considers the single-source setting, and its student training still follows a hard-
sharing regime.
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3 X-Learner

In this section, we introduce X-Learner, which leverages multiple vision tasks
and various data sources to learn a unified representation that transfers well to
a wide range of downstream tasks. It combines the superior modelling capacity
of a split architecture design with the simplicity of hard parameter sharing. The
whole two-stage framework is shown in Fig. 2. In Expansion Stage, we learn
individual sub-backbones for different tasks with multi-source data in parallel.
We further interconnect them to an expanded backbone that effectively allevi-
ates interference among tasks. We then condense the expanded backbone to a
normal-sized one in Squeeze Stage, producing the final general representation
for downstream transfer.

3.1 Multi-Task and Multi-Source Learning

As illustrated in Fig. 1 (a), the most common supervised learning setting involves
only one task with a single source, i.e., a datum from the source has one label
or annotation corresponding to the only task (SSST). There is no task interfer-
ence during optimization, yet the generated representation is weak in terms of
transferability to other tasks.

Traditional multi-task approaches in previous works concurrently learn mul-
tiple tasks within a single data source (SSMT), which is shown in Fig. 1 (b). The
single data source should have multiple sets of labels, each for one task. Such a
data source is hardly scalable due to the high annotation cost.

To fix the drawbacks of previous setups, we propose our multi-source multi-
task setting (MSMT), which is displayed in Fig. 1 (c). More concretely, let T
be the number of tasks, then for each task t ∈ {1, 2, ..., T}, there are Nt data
sources St = {(Xt

n, Y
t
n)}

Nt
n=1 with labels of the task. In this way, we only require

N =
∑T

t=1 Nt single-task data sources which are easily attainable, avoiding the
difficulty of multi-task annotation. Our setting is also highly extensible since
adding new tasks or data sources becomes an effortless process. During training,
the optimization objective of our multi-task and multi-source paradigm is to
simply minimize the average loss over all the N data sources consisting of T
different tasks:

min
θ

L(θ, {St}Tt=1) =
1

N

T∑
t=1

Nt∑
n=1

ℓt(θ, (X
t
n, Y

t
n)) (1)

where θ denotes model parameters, and ℓt refers to the loss function for task t.

3.2 Expansion Stage

We aim to learn general representation from heterogeneous tasks while being
least affected by the harmful interference among tasks. This motivates us to
design this Expansion Stage to learn a split architecture combining multiple
single-task networks. We first train T sub-backbones individually for the T tasks,
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Algorithm 1 Expansion Stage

Input: Data sources of T tasks {St}Tt=1, where St = {(Xt
n, Y

t
n)}Nt

n=1; Sub-backbones
{Et}Tt=1; Task losses {ℓt}Tt=1; Set of reconciliation layers γ; Total step number K;
Step threshold τ

Output: pre-trained expanded backbone E
Initialize {Et}Tt=1 and γ
for k ← 1 to K do

for t← 1 to T do
Sample a batch Bt from St with Nt sources
if k ≤ τ then

Forward with data Bt on sub-backbone Et, Compute task loss ℓt
Update Et separately with gradients from ℓt

end if
end for
if k > τ then

Forward with multi-task data {Bt}Tt=1 on expanded backbone {Et}Tt=1 ∪ γ
Compute averaged loss L with Eq. (1)
Jointly update {Et}Tt=1 ∪ γ with gradients from L

end if
end for
return {Et}Tt=1 ∪ γ

leveraging their own data sources. We then join all T sub-backbones into one
holistic architecture, integrating information learned from all tasks to form a
general representation. Specifically, we introduce an expanded backbone com-
posed of multiple sub-backbones corresponding to T tasks, along with several
reconciliation layers for connecting them, which we describe in detail below. The
expanded backbone learned in this pipeline largely 1) preserves the high precision
of single-task training, and 2) combines advantages of all tasks to achieve better
generalizability on downstream tasks. The full training process is summarized
in Algorithm 1.
Reconciliation Layer. As shown in Fig. 2 (a), each reconciliation layer is a
link between two sub-backbones of two tasks. It obtains features from one task,
transforms them with a few operations, and then fuses them into the features of
another task at the same or a deeper layer.

Suppose each sub-backbone has D output layers, and we denote the original
output of layer i ∈ {1, 2, ..., D} from the sub-backbone for task t ∈ {1, 2, ..., T}
by Et

i . Let γk→t
j→i (j ≤ i, k ̸= t) refer to the reconciliation layer taking Ek

j as

input and providing its output to the ith layer of another task t. According to
Fig. 2 (a), γk→t

j→i can be expressed as the composition of one γb and i − j times
of γa. Receiving all cross-task and cross-layer features, we take a summation to
compute the final fused output F t

i at layer i of the sub-backbone for task t:

F t
i = Et

i +

T∑
k=1
k ̸=t

i∑
j=1

γk→t
j→i

(
Ek
j

)
. (2)
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Fig. 3. Variants of X-Learner. (a) is the default form of X-Learner. (b) The expan-
sion stage of X-Learner++ is supervised by extra hints from single-task single-source
pre-trained models. (c) X-Learnerr is a Squeeze-Expansion version. (d) X-Learnerp re-
place the distillation with pruning in the squeeze stage. (e) We switch to a new recon-
ciliation layer in X-Learnert. Differences between variants and the default X-Learner
are highlighted in red.

Adding reconciliation layers directly facilitates interactions among informa-
tion from different tasks. Thus it closely unifies all sub-backbones into one ex-
panded backbone expressing an integrated and general representation. In prac-
tical implementation, to avoid task interference introduced by such cross-task
communication, we detach inputs to all reconciliation layers from the computa-
tional graph to cut off further gradient propagation.

3.3 Squeeze Stage

The previous Expansion Stage gives a concerted representation provided by the
expanded backbone uniting all T sub-backbones of T tasks. However, it also
introduces an undesirable T times increase in the number of model parameters
and computational complexity. To maintain performance while reducing the ex-
panded parameters, we present the Squeeze Stage. The final squeezed model
remains highly generalizable for downstream transfer while sharing the same
number of parameters with a single-task sub-backbone.

In Squeeze Stage, given an expanded backbone, we adopt distillation to con-
solidate the model. We employ the FitNets [53] approach, but with multiple tar-
gets (hints) from the expanded backbone as the student’s supervision. Formally,
given multiple outputs from the expanded teacher indexed by t ∈ {1, 2, ..., T},
we refer to F t as the output feature of task t, and F̂ as the feature of the student
network. We perform distillation between the student model and the bunch of
teacher outputs. Specifically, we project the single student feature F̂ through a
task-specific guidance layer Gt, and expect the outcome to match the teacher’s
version F t. Therefore, our distillation loss Lsqueeze is simply the sum over squared
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L2 losses of all teacher-student pairs:

Lsqueeze =

T∑
t=1

||F t − Gt(F̂ )||22. (3)

The guidance layer Gt is composed of a convolutional layer and a normalization
layer:

Gt(x) = Norm(Conv(x)). (4)

We adopt an 1 × 1 convolution which transforms the student’s feature to have
the same number of channels as the teacher’s output. For the normalization
function, we simply choose Batch Normalization [28] as in [53].

3.4 Variants of X-Learner

X-Learner is a highly flexible multi-task pre-training framework, and many vari-
ants can be designed from the default setting. In this section, we describe sev-
eral possibilities, which are illustrated in Fig. 3. More detailed differences among
those variants are listed in Fig. 4.
X-Learnerr. We notice that the number of parameters in each individual model
is first rising and then declining in our default X-Learner. It is natural to also
study the reversed order, i.e., Squeeze-Expansion. In the new squeeze stage, we
use T task-specific teachers trained with multiple sources to distill T more light-
weight sub-backbones. They are then combined into one network with normal
computational complexity via reconciliation layers in the following expansion
stage.
X-Learnert. We make a modification on the reconciliation layers and let them
take features from deeper layers of other sub-backbones as input and fuse to low-
level features of a task. We also replace γa in cross-layer reconciliation layers with
γc which is composed of an up-sampling layer and a convolutional layer.
X-Learnerp. We replace the distillation operation with unstructured pruning
in Squeeze Stage. It is another way to reduce computation consumption while
maintaining the performance of a network. We adopt a simple unstructured
pruning method referencing [78].
X-Learner++. Inspired by [36], in the Expansion Stage, we add extra supervi-
sions from single-task single-source pre-trained model in the form of hints besides
the original supervision from labels of multiple data sources. This can be viewed
as adding a pre-distillation process with multiple SSST teachers prior to training
the expanded backbone.

4 Experiments

4.1 Pre-Training Settings

Pre-Training Sources (Datasets). Tab. 1 summarizes the sources we use for
experiments. Most of our experiments are conducted in a base setting, where
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Table 1. Datasets used for X-Learner pre-training. We grouped them into man-
ually defined image domains according to [44].

Dataset Task Domain Train Size

ImageNet [54] General CLS. Websearch 1.3M
Places365 [75] General CLS. Websearch 8.0M
iNat2021 [61] Fine-Grained CLS. Consumer 2.7M
CompCars [67] Fine-Grained CLS. Close-ups 120k
Tsinghua Dogs [79] Fine-Grained CLS. Close-ups 65k

COCO [39] General DET. Consumer 118k
Objects365 [56] General DET. Consumer 609k
WIDER FACE [68] Face DET. Websearch 13k

ADE20K [76] Semantic SEG. Consumer 20k
COCO-Stuff [6] Semantic SEG. Consumer 164k

Table 2. Comparison with supervised and self-supervised methods on clas-
sification, detection and segmentation. * represents the model is not pre-trained
with semantic segmentation. We compare X-Learner to supervised pre-training, self-
supervised learning, and a simple hard-sharing multi-task learning baseline. Relative
gains are computed with respect to the ImageNet supervised baseline.

Method AVG Cls PASCAL Det PASCAL Seg

ImageNet [54] Supervised 74.4 81.5 75.7*
SimCLR [10] 74.6 82.9 74.1*
Hard-sharing 73.2 83.7 70.5*

X-Learner 77.1 (+2.7) 84.4 (+2.9) 77.1* (+1.4)
X-Learner++ 77.4 (+3.0) 84.8 (+3.3) 77.5* (+1.8)

X-Learner w/ seg 77.7 (+3.3) 84.3 (+2.8) 77.6 (+1.9)

we pre-train models with 2 tasks: classification and object detection. We use 3
sources for image classification: ImageNet [54], iNat2021 [61] and Places365 [75]
(Challenge version), and 2 sources for object detection: COCO [39] and Ob-
jects365 [56]. We also consider two extended settings: 1) to investigate the ef-
fect of more sources on X-Learner, we add CompCars [67] as well as Tsinghua
Dogs [79] as two extra classification sources, and select WIDER FACE [68] as a
new object detection source; 2) we study the impact of adding a new task, which
is semantic segmentation, with ADE20K [76] and COCO-Stuff [6] as its sources.

Implementation Details. We implement X-Learner and its variants described
in Sec. 3.4 using ResNet-50 [27] as the basic backbone throughout our experi-
ments unless otherwise specified. The weights of reconciliation layers are initial-
ized with [20]. We use SGD optimizer with a momentum of 0.9 [60], 10−4 weight
decay and a base learning rate of 0.2. We decay the learning rate three times by
a multi-step schedule with factors 0.5, 0.2 and 0.1 at 50%, 70% and 90% of the
total iterations respectively.
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Experiment Sub-Backbone Expansion Squeeze Pre-Distillation Parameters

Hard-sharing ResNet-50 × × × →
X-Learner ResNet-50

√
D × ↗ ↘

X-Learnerr HalfResNet-50
√

D × ↘ ↗
X-Learnert ResNet-50

√
D × ↗ ↘

X-Learnerp ResNet-50
√

P × ↗ ↘
X-Learner++ ResNet-50

√
D

√
↗ ↘

X-Learner w/o Rec. ResNet-50 × D × ↘

SqueezeExpand

Expanded backbone

Expanded backbone

ExpandSqueeze

Fig. 4. Differences among X-learner variants.We conduct different ablation study
of X-Learner. Pre-distillation refers to applying extra supervisions from single-task
single-source pre-trained models as is introduced in X-Learner++. In the Squeeze col-
umn, we denote distillation by D and pruning by P if there is a squeeze stage present
in the pipeline. The change of the parameter can refer to the figure on the right.

4.2 Downstream Task Settings

Classification. We select 10 datasets from the well-studied evaluation suite in-
troduced by [31], including general object classification (CIFAR-10 [33], CIFAR-
100 [33]); fine-grained object classification (Food-101 [5], Stanford Cars [32],
FGVC-Aircraft [42], Oxford-IIIT Pets [48], Oxford 102 Flower [46], Caltech-
101 [16]), and scene classification (SUN397 [64]). We follow the linear probe
evaluation setting used in [49]. We use the average accuracy of 10 classification
datasets (AVG Cls) to represent the overall performance on the classification
task. We train a logistic regression classifier using the L-BFGS optimizer, with
a maximum of 1, 000 iterations. We search the value for the L2 regularization
strength λ over a set which distributes evenly over the range between 10−1 and
10−5. We use images of resolution 224× 224 for both training and evaluation.

Detection. We fine-tune our pre-trained model on PASCAL VOC07+12 (PAS-
CAL Det) [15] for the detection task. We use Faster-RCNN [51] architecture in
our experiments and run 24,000 iterations with a batch size of 16. We use SGD as
the optimizer and search the best learning rate between 0.001 and 0.05. Weight
decay is set to 10−4, and momentum is set to 0.9. Evaluation is performed on
the PASCAL VOC 2007 test set, with the shorter edges of images scaled to 800
pixels.

Semantic Segmentation. We evaluate models on PASCAL VOC 2012 (PAS-
CAL Seg) [15]. We run 33,000 iterations with a batch size of 16. The architecture
is based on Deeplab v3 [9]. We use SGD as the optimizer with a learning rate
between 0.001 and 0.07. Weight decay is set to 10−4, and momentum is set to
0.9. Images are scaled to 513× 513.

4.3 Main Results

Pre-Training Paradigm Comparison. Tab. 2 compares our pre-training scheme
X-Learner with supervised training and self-supervised learning (SimCLR [10])
on ImageNet [54], as well as a simple hard-parameter-sharing baseline (named as
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Table 3. Comparison on extended settings with extra pre-training sources.
By adding sources in different tasks (marked in bold italic), Hard-sharing suffers per-
formance drops on both upstream and downstream tasks, while our X-Learner is stable
across different settings, benefiting from the proposed Expansion Stage.

Pre-train Transfer
Expriments Methods ImageNet iNat2021 Places Cars Dogs COCO Objects365 FACE AVG Cls PASCAL Det

Base
Hard-sharing 75.0 75.3 53.0 – – 35.5 17.4 – 73.2 83.7
X-Learner 77.3 79.7 54.4 – – 39.9 22.2 – 77.1 84.4

+ Cls Sources
Hard-sharing 73.7 73.6 52.3 98.5 85.3 35.4 17.6 – 77.5 83.1
X-Learner 77.3 77.9 54.4 98.4 86.9 40.5 22.6 – 80.6 84.3

+ Cls & Det Sources
Hard-sharing 73.6 73.6 52.0 98.4 85.4 34.9 16.5 31.5 77.1 83.2
X-Learner 76.9 78.6 54.6 98.6 85.9 40.1 22.1 33.6 80.5 84.3

Table 4. Comparison with self-training. PASCAL Seg is an unseen task for
X-Learner++, which is marked with *. NYU-Depth V2 is an unseen task for X-
LearnerR152, which is marked with *.

Method Backbone Pre-training Settings CIFAR-100 [33] PASCAL Det [15] PASCAL Seg [15] NYU-Depth V2 [58]

MuST [19] ResNet-152 ImageNet + DET. + SEG. + DEP. 86.3 85.1 80.6 87.8
MuST [19] ResNet-152 JFT300M + DET. + SEG. + DEP. 88.3 87.9 82.9 89.5
X-Learner++ ResNet-50 ImageNet + DET. 87.0 (+0.7) 87.3 (+2.2) 78.8* (-1.8) 89.0 (+1.2)
X-LearnerR152 ResNet-152 ImageNet + DET. + SEG. 89.7 (+3.4) 88.6 (+3.5) 82.6 (+2.0) 91.3*(+3.5)

“Hard-sharing”) on our multi-task and multi-source setting. We report perfor-
mances on all three types of downstream tasks. Under the base setting, X-Learner
uniformly outperforms all compared methods in terms of all evaluated metrics,
especially AVG Cls. We also observe that the Hard-sharing model has better
performance than the ImageNet-supervised model on PASCAL Det, but suffers
a performance drop of 1.2% in AVG Cls. This suggests that the hard-sharing
model benefits from multi-task pre-training with object detection sources in-
cluded, but is harmed by task interference. In contrast, our X-Learner clearly
overcomes the shortcoming and alleviates undesirable interference, leading to
performance boosts on all considered tasks. Moreover, compared with training
solely on ImageNet which is already specialized for classification, our approach
still enjoys a 2.5% increase on AVG Cls. This result demonstrates that our set-
ting of learning with multiple tasks simultaneously is beneficial for all involved
pre-training tasks, such as classification here.

In addition, our X-Learner++ mentioned in Sec. 3.4 further enhances perfor-
mance by means of its extra distillation process during sub-backbone training in
the Expansion Stage, and achieves the best performance on all three downstream
tasks.

We also compare our X-Learner++ with the multi-task self-training method
MuST [19] in Tab. 4, For fair comparison, we fine-tune on the CIFAR-100 dataset
instead of applying our default linear probe setting, evaluate PASCAL Det with
pre-trained FPN [38], and set output stride to 8 in segmentation.

Our model surpasses MuST on classification and detection tasks despite using
ResNet-50 instead of the more advanced ResNet-152 applied by MuST. To better
show the effectiveness of our setting, we also conduct an experiment with the
ResNet-152 backbone. Tab. 4 shows the performance of X-LearnerR152 as well
as MuST on four different tasks. We observe that our framework outperforms
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Table 5. The effect of applying reconciliation layers in the Expand Stage. The
reconciliation layer can significantly improve the performance in multi-task learning.

AVG Cls PASCAL Det

X-Learner w/o Rec 74.8 83.9
X-Learner 77.1 84.4

the self-training method by significant margins on all evaluated downstream
tasks. Moreover, it is worth mentioning that on NYU-Depth V2, our X-Learner,
without any depth estimation pre-training, surpasses MuST which is learned
with MiDaS, a mixture dataset with 10 depth-wise datasets. This zero-shot result
further demonstrates the strong generalization capability of X-Learner.

We also compare our X-LearnerR152 with a stronger version of MuST model
pre-trained with JFT-300M, which is much larger than our datasets. As our X-
Learner achieves 89.7 and 88.6 in downstream classification and detection tasks.
This comparison proves that the dataset size is not an important factor, and our
design has its superiority.

Cross-Task Generalization and Scalability. In Tab. 2, among methods that
are not pre-trained on semantic segmentation, our X-Learner++ has the highest
result on PASCAL Seg. This validates that our models produce more generaliz-
able representations in terms of unseen tasks.

In addition to generalizability, our framework is also highly scalable and can
incorporate extra tasks or sources effortlessly. As a demonstration, we add a
semantic segmentation task according to the extended setting with ADE20K
and COCO-Stuff. Results of “X-Learner w/ seg” in Tab. 2 show improvement
on PASCAL Seg by 0.5 mIoU compared to the basic X-Learner. Classification
performance is also benefitted from the new task introduced, demonstrating the
effectiveness of our multi-task learning approach.

Necessity of Reconciliation Layers. As shown in Tab. 5, we train an X-
Learner without reconciliation layer to study the importance of the component.
Compared to the default setting, removing reconciliation layers leads to sig-
nificant performance drops at downstream transfer learning, especially on fine-
grained datasets. We find that the feature from detection sub-backbone contains
more detail, and it can be enhanced to a universal feature by the reconciliation
layer. This phenomenon also verifies that reconciliation layers play a crucial role
in coordinating multiple tasks towards the common goal of general representa-
tion learning.

4.4 In-Depth Studies

Multi-Task and Multi-Source Pre-Training

Observation 1: Proper multi-task learning promotes collaboration instead of bring-
ing interference. As is discussed in Sec. 4.3, X-Learner not only resolves the
task interference issue encountered by the hard-sharing model, but also sur-
passes single-task pre-trained models such as the ImageNet baseline in terms of
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Table 6. Comparison of various X-Learner variants. Pre-training tasks and
downstream tasks are evaluated on X-Learner variants. Our framework always performs
better than Hard-sharing.

Pre-train Transfer
Method ImageNet iNat2021 Places COCO Objects365 AVG Cls PASCAL Det

Hard-sharing 75.0 75.3 53.0 35.5 17.4 73.2 83.7
X-Learner 77.3 79.7 54.4 39.9 22.2 77.1 84.4
X-Learnerr 73.9 76.6 52.5 41.1 21.7 73.9 84.1
X-Learnert 76.3 79.9 53.3 42.5 22.0 74.5 83.5
X-Learnerp 76.1 78.6 53.5 42.4 23.4 77.2 83.1
X-Learner++ 77.2 80.4 54.6 40.1 22.4 77.4 84.8

downstream results. This shows that with an appropriately designed learning
scheme, multi-task training is able to collaboratively enhance performances on
all pre-training tasks. This conclusion is again corroborated by the results of
X-Learner++ in Tab. 2. With a more elaborated design, performances on all
tasks are again consistently boosted.

Observation 2: Additional sources further improve multi-task and multi-source
representation learning if task conflicts are well-mitigated. We experiment on
the extended setting with extra classification and detection sources. The added
sources, such as CompCars [67] and WIDER FACE [68], have data in domains
very different from existing sources. Ideally, including sources of complemen-
tary nature should help the overall multi-task and multi-source learning, since
information available for pre-training is enriched and is more likely to cover
downstream domains. However, this may also increase conflicts among tasks if
not dealt with properly. In Tab. 3, we can see that the over-simplified hard-
sharing baseline has considerably inferior results at both upstream and down-
steam if more sources are added. In pre-training stage, there is slight decrease
after adding classification sources. This is due to the increase in task conflict
when introducing new data domains. Nonetheless, we can find that additional
sources becomes beneficial to transfer learning tasks both in hard-sharing and
X-Learner. Compared to hard-sharing, X-Learner has mitigated such detrimen-
tal conflict to a certain extent with the aid of our two-stage design. This suggests
that when task interference is properly alleviated, new data sources can be fully
utilized by the model to learn more diverse knowledge and enhance the final
representation.

Design of X-Learner Framework

Observation 3: Expansion-Squeeze is better than Squeeze-Expansion. In Sec. 3.4,
we have described the X-Learnerr variant in which the order of the two stages
within X-Learner is reversed. Performing squeezing first would result in smaller
single-task sub-backbones with 1/T of the original size. Since T = 2 in our
base setting, we should get two halved ResNet-50 models, corresponding to
HalfResNet-50 in Fig. 4, which are to be joined in the further expansion pro-
cess. HalfResNet-50 is a sub-backbone with only 1/

√
2 of the original ResNet-50
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channels. As shown in Tab. 6, X-Learnerr has lower performance on most pre-
training tasks and all downstream tasks than the default X-Learner. This finding
is reasonable since by intuition, shrinking sub-backbones first is likely to cause
unrecoverable information loss. It also validates our choice of Expansion-Squeeze
for the default setup. Note that X-Learnerr is still better than the hard-sharing
model, which again highlights the importance of a two-stage paradigm to miti-
gate task interference.

Observation 4: Reconciliation layers should receive information from lower lev-
els. We also evaluate the alternative design of X-Learnert, where reconciliation
layers take features from deeper layers instead of shallower ones. Experiments in
Tab. 6 show that the modified and original setups are both competitive at up-
stream pre-training. However, X-Learnert is not as good as X-Learner in terms
of downstream tasks. In conclusion, low-level features are more suitable to serve
as complementary information among heterogeneous tasks.

Observation 5: Pruning may replace distillation in Squeeze Stage. In Tab. 6, X-
Learnerp achieves results similar to those of X-Learner. This shows that pruning
is also a valid choice for squeezing the expanded backbone, and thus is able to
substitute distillation in Squeeze Stage.

5 Discussion and Conclusion

In this paper, we propose a flexible multi-task and multi-source pre-training
paradigm called X-Learner, the general framework for representation learning
by supervised multi-task learning. Heterogeneous tasks and diverse sources can
be jointly learned with the help of the Expansion Stage and Squeeze Stage.
We validate that X-Learner mitigates the well-known task interference problem
and learns unified general representation that generalizes well to multiple seen
and unseen tasks. We also show that X-Learner is superior to traditional super-
vised and self-supervised learning methods, as well as self-training approaches.
In addition, We also demonstrate that our framework is highly flexible and addi-
tional tasks or sources can be integrated in a “plug-and-play” manner. Moreover,
we offer several insightful observations through our experiments. One possible
limitation is that the representation capability of our current pre-training is
confined by the scale of publicly available datasets. It is possible to study with
larger sources and more tasks in our framework. We hope this work will encour-
age further researches towards creating general representations by performing
multi-task and multi-source learning at scale.

Acknowledgements This work is supported by NTU NAP, MOE AcRF
Tier 2 (T2EP20221-0033), and under the RIE2020 Industry Alignment Fund –
Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash
and in-kind contribution from the industry partner(s) and the Shanghai Com-
mittee of Science and Technology (Grant No. 21DZ1100100).



X-Learner 15

References

1. Achille, A., Paolini, G., Mbeng, G., Soatto, S.: The information complexity of
learning tasks, their structure and their distance. Information and Inference: A
Journal of the IMA 10(1), 51–72 (2021) 4

2. Baxter, J.: A model of inductive bias learning. Journal of artificial intelligence
research 12, 149–198 (2000) 4

3. Ben-David, S., Schuller, R.: Exploiting task relatedness for multiple task learning.
In: Learning theory and kernel machines, pp. 567–580. Springer (2003) 4

4. Bilen, H., Vedaldi, A.: Universal representations: The missing link between faces,
text, planktons, and cat breeds. arXiv preprint arXiv:1701.07275 (2017) 4

5. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative com-
ponents with random forests. In: ECCV (2014) 10

6. Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: Thing and stuff classes in context.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 1209–1218 (2018) 9

7. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsuper-
vised learning of visual features by contrasting cluster assignments. arXiv preprint
arXiv:2006.09882 (2020) 2

8. Caruana, R.: Multitask learning. Machine learning 28(1), 41–75 (1997) 4
9. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution

for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017) 10
10. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-

trastive learning of visual representations. In: International conference on machine
learning. pp. 1597–1607. PMLR (2020) 3, 9, 10

11. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum con-
trastive learning. arXiv preprint arXiv:2003.04297 (2020) 2, 3

12. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
15750–15758 (2021) 2

13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009) 2

14. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsu-
pervised feature learning with convolutional neural networks. Advances in neural
information processing systems 27, 766–774 (2014) 3

15. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. International Journal of Computer
Vision 88(2), 303–338 (Jun 2010) 2, 10, 11

16. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories. In: CVPR workshop. pp. 178–178. IEEE (2004) 10

17. Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., Finn, C.: Efficiently identifying task
groupings for multi-task learning. arXiv preprint arXiv:2109.04617 (2021) 4

18. Gao, Y., Ma, J., Zhao, M., Liu, W., Yuille, A.L.: Nddr-cnn: Layerwise feature fusing
in multi-task cnns by neural discriminative dimensionality reduction. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 3205–3214 (2019) 4

19. Ghiasi, G., Zoph, B., Cubuk, E.D., Le, Q.V., Lin, T.Y.: Multi-task self-training for
learning general representations. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 8856–8865 (2021) 2, 4, 11



16 He et al.

20. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the thirteenth international conference on ar-
tificial intelligence and statistics. pp. 249–256. JMLR Workshop and Conference
Proceedings (2010) 9
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77. Zhou, X., Koltun, V., Krähenbühl, P.: Simple multi-dataset detection. arXiv
preprint arXiv:2102.13086 (2021) 4

78. Zhuang, L., Sun, M., Zhou, T., Gao, H., Darrell, T.: Rethinking the value of net-
work pruning (2018) 8

79. Zou, D.N., Zhang, S.H., Mu, T.J., Zhang, M.: A new dataset of dog breed images
and a benchmark for finegrained classification. Computational Visual Media 6(4),
477–487 (2020) 9


