
Supplementary Material for SLIP:
Self-supervision meets Language-Image

Pre-training

1 Full Scaling Results

We include the full results of our scaling experiments in Table 1, in which we
simultaneously increase model size and training epochs. As measured by Ima-
geNet classification accuracy under the three settings (zero-shot transfer, linear
classification, and end-to-end finetuning), both large models and longer training
generally improve performance.

The exception to this trend is the linear classification performance of SLIP
ViT-L/16, which degrades slightly with longer training. This behavior also per-
sists across the various other downstream benchmarks, where SLIP ViT-L/16
does worse on average when trained for 100 epochs than when trained for 25
epochs. We note that both the zero-shot transfer and end-to-end finetuning
performance of SLIP ViT-L/16 improve with longer training, contrary to the
behavior seen with linear classification. Thus we cannot declare this behavior to
be a case of simple overfitting, as the representations are still improved for the
other evaluation settings.

0-shot Linear Finetuned

Model 25 50 100 25 50 100 25 50 100

ViT-S/16 38.3 39.3 39.5 66.4 67.6 68.3 80.3 80.7 80.7

ViT-B/16 42.8 44.1 45.0 72.1 73.0 73.6 82.6 82.9 83.4

ViT-L/16 46.2 47.4 47.9 76.0 75.8 75.1 84.2 84.7 84.8

Table 1: Full scaling experiment results. SLIP pre-training scales well to larger
models and more longer training as measured by zero-shot transfer, linear clas-
sification, and end-to-end finetuning, with the exception of linear classification
performance using ViT-L.

2 Additional Linear Classification Benchmarks

In Table 2 we show linear classification results on all 26 downstream datasets
(including ImageNet). With ViT-B and ViT-S, SLIP pre-training for 100 epochs
does best. As with ImageNet, SLIP ViT-L also does worse on average when
trained for 100 epochs than when trained for 25 epochs. The dataset average is
0.5 points lower for the 100 epoch model.
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As expected, linear classification accuracy is much higher than zero-shot
transfer accuracy (shown in Table 4 in the main paper). However, the gap be-
tween zero-shot and linear performance varies between datasets. On datasets
which are straightforward vision tasks but poorly represented among the
YFCC100M imagery, such as Patch Camelyon, MNIST, KITTI distance, and
GTSRB, linear classification massively improves accuracy, often from a base-
line of around chance performance. On datasets which share more overlap with
YFCC100M, such as Food-101, Caltech-101, and Caltech-UCSD Birds 2011, we
see significant improvements as well.

However, with HatefulMemes and Rendered SST2, two datasets which re-
quire OCR capabilities, the linear classification performance of all models is still
around chance. These results suggest, perhaps unsurprisingly, that zero-shot
transfer results are much more dependent on what visual and semantic concepts
were seen during training than linear classification, since they do not enjoy the
benefit of further training examples. We also note that relative rankings within
each model size are also quite unstable where the best results alternate between
the 25 and 100 epoch models. This is very similar to what we see in the zero-shot
transfer evaluations, as discussed in Section 5 in the main paper.
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-S CLIP 71.1 82.5 63.2 66.5 70.7 28.2 25.3 61.6 63.4 75.6 92.4 89.6 45.2 92.1 92.4 83.6 65.7 63.6 22.0 80.4 67.7 43.2 44.3 54.6 51.0 59.3 63.7
SimCLR (25 ep) 64.3 77.9 51.5 27.0 69.0 14.3 16.1 61.0 46.6 59.5 34.5 83.4 47.0 87.4 90.4 83.0 52.6 60.3 13.3 82.4 70.4 44.0 43.5 55.7 53.4 58.1 55.6
SLIP (25 ep) 77.4 80.7 63.5 67.0 74.2 39.3 31.5 70.7 68.9 84.5 95.0 91.3 52.7 95.7 94.3 90.5 68.2 65.8 22.4 81.9 76.9 50.8 51.6 59.4 54.3 66.4 68.3
SLIP (100 ep) 78.7 84.1 66.3 66.0 73.9 40.6 30.7 71.6 71.3 85.7 94.8 90.7 50.4 96.4 95.2 89.0 68.2 66.8 23.3 82.9 77.7 52.2 50.5 56.3 53.4 68.3 68.7

V
iT

-B

CLIP 77.6 86.2 70.7 70.9 73.7 41.8 29.5 66.0 68.2 82.0 94.3 93.8 49.7 94.9 94.5 88.3 72.5 65.8 24.9 82.9 72.6 47.9 48.7 55.2 54.8 66.5 68.2
SimCLR (25 ep) 73.0 82.6 63.3 44.7 71.9 32.0 26.3 69.6 62.4 76.8 85.6 91.6 49.5 92.9 93.2 89.8 65.6 65.0 16.0 84.9 73.0 50.1 52.6 57.5 53.9 64.0 64.9
SLIP (25 ep) 83.0 87.7 71.6 70.9 76.3 47.4 34.4 73.9 73.1 88.1 96.1 94.5 53.5 97.4 95.9 92.8 75.5 68.6 25.1 84.4 80.4 55.0 54.2 56.8 55.0 72.1 71.7
SLIP (100 ep) 83.1 88.9 71.5 72.0 76.4 49.0 33.9 75.9 75.1 89.1 92.4 94.5 54.4 98.2 95.5 92.0 75.9 67.9 25.6 83.0 82.0 55.6 53.9 59.9 56.1 73.6 72.1

V
iT

-L CLIP 81.8 91.2 75.1 75.1 75.4 46.9 33.0 66.2 72.0 84.2 95.9 95.7 54.7 96.5 95.1 90.6 76.4 68.7 27.2 83.6 75.9 51.4 51.9 59.7 53.8 70.5 71.1
SimCLR (25 ep) 73.6 89.7 68.3 32.5 73.5 18.9 17.1 66.0 55.6 69.8 70.1 90.1 48.9 93.1 90.7 86.7 56.0 61.8 17.2 85.5 69.8 51.3 48.6 57.2 54.3 66.7 62.0
SLIP (25 ep) 86.5 92.9 77.2 76.6 78.0 52.0 37.4 75.2 78.3 90.8 97.6 95.8 56.8 98.7 96.6 93.3 79.9 68.9 29.1 84.8 83.0 59.0 57.5 57.0 54.5 76.0 74.4
SLIP (100 ep) 84.1 91.0 74.5 72.5 76.7 51.1 37.2 77.0 79.9 90.5 97.5 95.8 60.2 98.7 97.0 93.2 75.6 70.6 28.2 85.2 83.1 56.7 55.0 55.4 56.2 75.1 73.8

Table 2: Linear classification evaluation with ViT S, B, and L on a variety of
classification benchmarks. Best results in bold. SLIP outperforms CLIP and
SimCLR on most of the tasks, frequently with a significant margin.

As expected, linear classification accuracy is higher than zero-shot transfer
accuracy. However, the gap between zero-shot and linear performance varies
between datasets. On the Patch Camelyon dataset, linear classification brings the
performance of SLIP ViT-L from 50.6% when evaluated under zero-shot transfer
to 85.2%, a huge improvement. With most other datasets, the gap between linear
classification and zero-shot transfer performance is significant but less dramatic.
And on HatefulMemes and Rendered SST2, two datasets which require OCR
capabilities, the linear classification performance of all models is still close to
chance. We note that relative rankings within each model size are still somewhat
unstable, similar to the zero-shot transfer evaluations, where the best results
alternate between the 25 and 100 epoch models.
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3 Additional Implementation Details

Datasets. YFCC15M [23] [29] contains raw HTML captions and titles which we
lightly preprocess before training. We unescape the HTML then remove HTML
tags and urls with simple regex matching.

CC3M [25] is collected from an initial set of 5B candidate images, of which
99.9% are filtered out according to simple image and text heuristics for quality
and content. Many of these filters are relaxed by CC12M [6] in order to collect a
bigger and potentially noisier dataset. CC3M also hypernymizes proper nouns,
numbers, and infrequent entities to make the dataset more amenable to training
and evaluating image captioning systems, the original design for the dataset. In
contrast, CC12M only replaces person names for privacy. Our versions of these
datasets contain 3.1M and 11.0 M images respectively, due to asset removal.
Pre-training. During pre-training we use a cosine learning rate decay schedule
with 1 epoch (∼3500 iterations) of linear warmup when training on YFCC15M.
When pre-training for 100 epochs we use 2 warmup epochs. On YFCC15M
(14.6M images), we train for 25 epochs and on CC12M (11.0M images) we train
for 35 epochs. This amounts to approximately the same number of iterations as
300 epochs on ImageNet-1K [24]. Due to the smaller size of CC3M (3.1M im-
ages), we train for 40 epochs to reduce overfitting. We trained on up to sixteen 8×
V100-32GB servers, and to fit SLIP ViT-Large/16 in memory we accumulated
gradients over two steps.
End-to-end Finetuning. We use a similar training recipe for finetuning all
models on ImageNet based on the ImageNet finetuning recipe from BeiT [1] using
AdamW and a batch size of 1024 with learning rate of 4e-3 and weight decay of
0.05, along with various data augmentations and regularization methods. As we
increase model size we also increase regularization. For ViT-S we set drop path
to 0 and layer decay to 0.65, for ViT-B we set drop path to 0.1 and layer decay
to 0.65, and for ViT-L we set drop path to 0.
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4 Algorithm Pseudocode

Algorithm 1 SLIP-SimCLR: PyTorch-like Pseudocode

# fi, ft: image, text encoders
# hi, ht: CLIP image, text projectors
# hs: SimCLR projector
# c: SimCLR loss scale
def forward(img, text):

xi, x1, x2 = crop(img), aug(img), aug(img)
yt = tokenize(text)

wi, w1, w2 = fi(xi, x1, x2)
wt = ft(yt)

z1, z2 = hs(w1), hs(w2) # SSL embed: N x C2
zi, zt = hi(wi), ht(wt) # CLIP embed: N x C1

loss = c * simclr(z1, z2) + clip(zi, zt)
return loss

# s: learnable log logit scale
def clip(zi, zt):

zi, zt = normalize(zi, zt)
label = range(N)
logit = exp(s) * zi @ zt.T

li = CrossEntropy(logit, label)
lt = CrossEntropy(logit.T, label)

loss = (li + lt) / 2
return loss

# tau: softmax temperature
def simclr(z1, z2):

z1, z2 = normalize(z1, z2)
label = range(N)
mask = eye(N) * 1e9

logit = z1 @ z2.T
logit1 = z1 @ z1.T - mask
logit2 = z2 @ z2.T - mask

logit1 = cat(logit, logit1)
logit2 = cat(logit.T, logit2)

l1 = CrossEntropy(logit1 / tau)
l2 = CrossEntropy(logit2 / tau)

loss = (l1 + l2) / 2
return loss

Notes: @ is the matrix multiplication operator. k.T is k’s transpose. eye constructs an
identity matrix. cat concatenates two matrices.
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5 Nearest neighbor visualizations

Figure 1: Visualization of 3 nearest neighbors for randomly sampled ImageNet
validation images (left), from YFCC15M for CLIP (middle) and SLIP (right)
ViT-B/16 trained on YFCC15M. For each model, the 1st to 3rd neighbor is
shown from left to right.
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6 Dataset Infosheet

Dataset Metric Chance performance Description

Food-101 [4] acc 1.0 101 categories of food dishes

CIFAR-10 [17] acc 10.0 10 categories of animals and vehicles

CIFAR-100 [17] acc 1.0 100 categories of animals, vehicles, plants, objects, scenes, people

CUB-200-2011 [31] acc 0.8 200 species of mostly North American birds

SUN397 [32] acc 2.2 397 categories of various indoor and outdoor scenes

Stanford Cars [16] acc 0.8 196 categories of cars (make, model, and year)

FGVC Aircraft [19] mean per class 1.0 102 categories of aircraft (manufacturer, family, and variant)

Describable Textures [8] acc 2.1 47 categories of texture patches

Oxford Pets [21] mean per class 2.7 37 breeds of cats and dogs

Caltech-101 [10] mean per class 5.2 101 categories of objects

Oxford Flowers [20] mean per class 1.5 102 species of common UK flowers

MNIST [18] acc 10.0 10 categories of handwritten digits

FER-2013 [12] acc 24.7 7 categories of human facial emotions

STL-10 [9] acc 11.4 10 categories of animals and vehicles

EuroSat [13] acc 10.0 10 categories of land from satellite imagery

RESISC45 [7] acc 2.2 45 categories of land from satellite imagery and aerial photography

GTSRB [28] acc 5.9 43 categories of German traffic signs

KITTI Distance [11] acc 31.0 4 categories of traffic scenes with nearby cars in varying positions

Country211 [22] [29] acc 0.5 211 countries represented by geo-tagged images

Patch Camelyon [30] [2] acc 50.0 2 classes of metastatic or benign lymph node slide patches

UCF101 Frames [27] acc 1.3 101 categories of human actions using the middle frame of each clip

Kinetics 700 Frames [5] mean(acc1, acc5) 0.4 700 categories of human actions using the middle frame of each clip

Clevr Counts [14] acc 12.9 8 categories of rendered scenes with varying numbers of objects

Hateful Memes [15] ROC AUC 50.0 2 categories of hateful or not hateful image macros

Rendered SST2 [22] [26] acc 50.1 2 classes of positive or negative movie reviews rendered as text

ImageNet [24] acc 0.1 1000 categories of objects

Table 3: Info sheet for classification datasets. Chance performance is computed
by assuming random predictions of the labels in proportion to their frequency
in the test set.

7 Ethical considerations.

SLIP faces all of the same ethical considerations as CLIP, both in terms of the
harmful applications it may enable, as well as the potential for amplifying and
perpetuating problematic behavior in the real world. CLIP’s ability to leverage
noisy and minimally filtered data scraped from the open internet has already
spurred researchers to begin collecting data in a more careless manner than
previously possible for supervised learning [3]. A more cautious and responsi-
ble approach to selecting training data may alleviate the most egregious model
behaviors.

8 Practical limitations.

SLIP computes embeddings of image views for both the self-supervised objective
and the CLIP objective. This increases the activation count and memory foot-
print of the model during the forward pass, which results in slower training (30.5
hours for SLIP vs 22.3 hours for CLIP to train ViT-B/16 on 64 V100 GPUs).



SLIP: Self-supervision meets Language-Image Pre-training 7

After pre-training, SLIP incurs no additional cost since its vision backbone can
be used by itself.

From the downstream zero-shot results, we note that pre-training on uncu-
rated data alone appears to be an inefficient route to recognizing specific visual
concepts, especially concepts unlikely to be widely shared on social media or the
broader internet. Even with a massive amount of curated data, CLIP’s zero-shot
performance on many datasets is still far below what can easily be achieved by
finetuning a smaller pre-trained model on a modest amount of labeled data. This
can be addressed by finetuning CLIP for specific applications or including more
pre-training data from the domain of interest.
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