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1 Augmentations Ablation Study

1.1 Investigating the Inductive Biases of Generative Models

We designed a principled (although not necessarily optimal) approach for se-
lecting augmentations. The main idea is to select augmentations that have
similar invariances as autoencoders - as autoencoders are often used in dis-
entanglement. We conduct an experiment on the CelebA [4], Cars3D [2] and
Edges2Shoes (shoes only) [7] datasets. The experiment consists of several stages:
i) train an autoencoder AE on an image dataset without any augmentations s.t.
minAE

∑
x∈X ∥x − AE(x)∥2, where X is the training set. ii) transform image

from the test set of the same dataset with a range of image augmentations T
iii) evaluate the invariance of the outputs of the autoencoder. We use the follow-
ing two invariance metrics funnorm, fnorm for evaluating how much the distance
between the original and transformed images change when evaluated on autoen-
coder outputs. Meaning, for each image augmentation t ∈ T we measure the
followings:

funnorm = dist(AE(x), AE(t(x))) (1)

fnorm =
dist(AE(x), AE(t(x)))

dist(x, t(x))
(2)

We use a VGG [6] based perceptual loss as the distance function. If an autoen-
coder is invariant to a particular transformation, both metrics should be small.
The normalized metric is sensitive to smaller transformations, and the unnor-
malized metric is sensitive to larger transformations. We average the results over
different datasets in Tab. 1 while the full results are shown in Tab. 2.

We observe that autoencoders are highly invariant to gaussian blurring, high
saturation and high contrast. As these are the inductive biases of generative
methods, it suggests that providing these biases to discriminative methods can
potentially transfer some of the attractive qualities of generative methods.

1.2 Additional Experiments

In addition to the experiments presented in Sec. 1.1, we perform another anal-
ysis to look for other augmentations that might be useful for our method. We
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Table 1: An evaluation of the invariance of autoencoders to different image trans-
formations

Average

fnorm funnorm

Horizontal Flip 0.868 0.2489
Vertical Flip 0.791 0.3125
Low Contrast 1.841 0.0903
Low Brightness 0.759 0.1666
Color Rotation 0.876 0.1020
Random Erase [8] 0.796 0.1967
Affine Transformation 0.650 0.382
GrayScale 0.787 0.0570
Crop 0.842 0.2053
High Brightness 0.806 0.0759
High Contrast 0.433 0.0572
High Saturation 0.579 0.0261
Gaussian Blurring 0.315 0.0378

propose the following experiment: training DCoDR-norec with only a single aug-
mentation. We measure the invariance and informativeness resulted by this aug-
mentation, mostly considering the invariance, in order to not interfere with the
disentanglement process. We show our results over the SmallNorb [3] dataset in
Fig. 1. Our results show that the crop augmentation performed well on invariance
(as we defined it in Sec. 3.2 of the paper), and extremely well for the informa-
tiveness. For those reasons we decided to insert it to our augmentations set as
well, reaching a total of 4: i) Gaussian Blurring ii) High Contrast iii) High Sat-
uration iv) Cropping. Note, that in specific cases (e.g. Edges2Shoes) adding or
removing augmentations might result in even better metrics, and we encourage
future research to find a better selection method of a set of augmentations, which
might be specific for each dataset. Saying that, our choice of transformations is
reasonable, and not particularly optimized to a specific dataset.

1.3 Augmentations Detailed Experimental Results

We show the results over all augmentations in each dataset. We measure the
autoencoder’s invariance to several augmentations (not to be confused with our
invariance metric from other sections) by funnorm (1) and fnorm (2). Results
are shown in Tab. 2. We present the details of each augmentation in PyTorch
TorchVision library [5] -style notations (but note this is psuedo-code):

– Horizontal Flipping: RandomHorizontalFlip(p=1.)
– Vertical Flipping: RandomVerticalFlip(p=1.)
– Low Contrast: ColorJitter(contrast=(0.3, 0.8))
– Low Brightness: ColorJitter(brightness=(0.3, 0.8))
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– Color Rotation: ColorJitter(hue=(0.2, 0.5) or hue=(-0.5, -0.2))
– Random Erase: RandomErasing(p=1.)
– Affine Transformation: RandomAffine(degrees=(-40, 40), fill=255)
– GrayScale: RandomGrayscale(p=1.)
– Crop: RandomResizedCrop(scale=(0.5, 1.))
– High Brightness: ColorJitter(brightness=(1.4, 1.8))
– High Contrast: ColorJitter(contrast=(1.8, 3.0))
– High Saturation: ColorJitter(saturation=(1.8, 3.0))
– Gaussian Blurring: GaussianBlur(kernel size=5, sigma=1.)

Table 2: A detailed evaluation of the invariance of autoencoders to different
image transformations. funnorm (1) and fnorm (2) are described in Sec. 1.1

Cars3D Edges2Shoes CelebA

fnorm funnorm fnorm funnorm fnorm funnorm

Horizontal Flip 0.861 0.1212 0.868 0.3387 0.876 0.2869
Vertical Flip 0.853 0.1991 0.770 0.3458 0.751 0.3925
Low Contrast 1.231 0.0710 3.537 0.1442 0.756 0.0557
Low Brightness 0.749 0.1978 1.098 0.2265 0.429 0.0755
Color Rotation 1.118 0.0725 1.015 0.0829 0.496 0.1507
Random Erase [8] 0.728 0.1994 0.884 0.1994 0.776 0.1968
Affine Transformation 0.479 0.2658 0.734 0.4116 0.736 0.4675
GrayScale 0.957 0.0479 0.939 0.0502 0.464 0.0729
Crop 0.808 0.1683 0.830 0.2096 0.889 0.2380
High Brightness 0.355 0.0372 1.188 0.0956 0.875 0.0950
High Contrast 0.312 0.0356 0.454 0.0499 0.534 0.0862
High Saturation 0.337 0.0095 0.768 0.0243 0.632 0.0445
Gaussian Blurring 0.080 0.0111 0.180 0.0196 0.055 0.0071

1.4 Other Datasets

We leave Shapes3D out of this ablation study in order to validate that our
selected augmentations are able to transfer to unseen datasets. We hypothesize
our conservative selection process has a higher chance to better transfer to other
datasets. That being said, and as noted in Sec. 1.2, this augmentation selection
can be significantly improved, which we leave for future work.

2 Implementation Details

In this section, we elaborate the implementation details of our algorithm to
ensure reproducibility. Note that code is also included.
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Invariance

Informativeness

Fig. 1: Invariance and Informativeness of different augmentations.
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Datasets We use 5 datasets for our evaluation: Cars3D [2], SmallNorb [3],
Shapes3D [1], CelebA [4] and Edges2Shoes [7]. All datasets are used in 64x64
resolution. Shapes3D is subsampled as described in Sec. 5 in the paper. Since
our method uses contrastive learning over each domain separately, it requires
several examples from each class to achieve uniformity. For this reason, and for
the CelebA dataset alone, we limit the minimum number of samples in each class
to be 20, ignoring all classes which have 19 or less samples in the training set
alone. Note that i) we do that for our method alone, while the other methods
use the entire training dataset ii) the test set is unchanged, except for classes
with a single example which are removed, as they cannot be evaluated using a
classifier. This filtering causes our method to train on 62% of the training classes
which are 81% of the training samples in CelebA.

Architecture.We use a ResNet50 encoder. For SmallNORB [3] and Shapes3D
[1] we add 3 fully-connected layers at the end of the encoder. In line with other
methods such as LORD, for our generator we use a VGG based perceptual loss
pre-trained on ImageNet.

Optimization hyperparameters. We use a learning rate of 0.0001 for the
encoder and 0.0003 for the generator, except for CelebA where we use 0.001 for
both. We train our method for 200 epochs, using a batch size of 128, composed
from 32 images drawn from 4 different classes.

Temperature.We use 0.2 for Cars3D, SmallNorb and CelebA. For Shapes3D
and Edges2Shoes we use 0.1.

Reconstruction Loss Weight. We use a scalar constant to weight the
importance of the reconstruction loss relative to the contrastive loss. We use 0.3
for all datasets.

3 Complete Experimental Results

3.1 Representation Evaluation

We present the complete results of all experiments on the SmallNorb [3] and
Shapes3D [1] datasets in Tab. 3 and Tab. 4 accordingly. For Cars3D [2], CelebA
[4] we only predict a single attribute (full pose - azimuth and elevation, land-
marks regression) therefore the full results have already been presented in Sec.
5.2 in the paper.
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Table 3: Representation evaluation for each factor of SmallNorb.

Domain Azimuth Elevation Lighting

SimCLR 0.956 0.838 0.664 0.771
LORD 0.393 0.731 0.384 0.895
DrNet 0.953 0.973 0.766 0.957
ML-VAE 0.968 0.982 0.868 0.982

DCoDR-norec 0.071 0.619 0.594 0.977
DCoDR 0.143 0.684 0.695 0.977

Optimal 0.021 1 1 1

Table 4: Representation evaluation for each factor of Shapes3D.

Colors

Domain Floor Wall Object Scale Orientation

SimCLR 1 0.983 0.985 0.988 1 1
LORD 0.703 0.998 0.999 0.990 0.991 0.999
DrNet 0.892 1 1 1 0.999 1
ML-VAE 0.999 1 1 1 1 1

DCoDR-norec 0.246 1 0.999 0.998 0.991 0.997
DCoDR 0.245 0.999 0.999 0.999 1 0.999

Optimal 0.25 1 1 1 1 1

3.2 Retrieval

Complete Retrieval Results. We display the complete results of the retrieval
task, showing retrieval accuracies for both each factor separately and perfect
match retrievals. For Cars3d we have only a single attribute (pose) meaning
results are displayed in Tab. 4 in the paper. Additional results are presented in
Tab. 5, 6 and 7.

Error Margin in the Retrieval Task. As the changes in the azimuth
property of the SmallNorb dataset are relatively small, we decided to allow an
error margin of 3 for this attribute. For all other attributes in all the other
datasets we require a perfect match.
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Table 5: SmallNorb retrieval accuracies.

Azimuth Elevation Lighting All

SimCLR 0.31 0.14 0.24 0.02
LORD 0.43 0.18 0.58 0.06
DrNet 0.47 0.25 0.62 0.09
ML-VAE 0.48 0.30 0.24 0.06

DCoDR-norec 0.56 0.39 0.94 0.22
DCoDR 0.56 0.46 0.95 0.26

Table 6: Shapes3D retrieval accuracies.

Colors

Floor Wall Object Scale Orientation All

SimCLR 0.186 0.132 0.107 0.142 0.171 <0.01
LORD 0.99 0.99 0.93 0.87 0.94 0.77
DrNet 1 1 1 0.86 1 0.86
ML-VAE 1 1 1 0.64 0.98 0.63

DCoDR-norec 1 1 1 0.99 1 0.99
DCoDR 1 1 1 1 1 1

Table 7: Edges2Shoes retrieval accuracies.

Shoe Type Gender All

SimCLR 0.67 0.56 0.40
LORD 0.85 0.74 0.66
DrNet 0.90 0.72 0.66
ML-VAE 0.91 0.70 0.65

DCoDR-norec 0.69 0.55 0.41
DCoDR 0.97 0.92 0.90
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