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1 Transfer to 12 cross-domain classification tasks®

In this section, we provide the comparison of our UniVCL with other state-of-the-
art methods when we transfer our model to 12 cross-domain classification tasks.
Specifically, we follow the setup in BYOL [6]. The datasets for classification task
include Food101 [2], CIFAR10 [8], CIFAR100 [8], Birdsnap [1], SUN397 [11],
Cars [7], Aircraft [9], VOC2007 [4], DTD [3], Pet2 [10], Caltech-101 [5], and
Flowers [6]. Specifically, we freeze the backbone of our pretrained models, and
train a classifier on the training set of the datasets mentioned above. We test our
models on the testing set of the corresponding dataset. We present these results
in Table 1.

Method Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech Flowers Avg

BYOL 75.3 91.3 78.4 57.2 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1 77.6
SimCLR 72.8 90.5 T4.4 42.4 60.6 49.3 49.8 81.4 75.7 84.6 89.3 92.6 72.0
Sup-IN  72.3 93.6 78.3 53.7 61.9 66.7 61 82.8 74.9 91.5 94.5 94.7 TT7.2
NNCLR 76.7 93.7 79.0 61.4 62.5 67.1 64.1 83.0 75.5 91.8 91.3 95.1 78.4
UniVCL 76.9 93.1 79.3 64.3 62.8 67.9 64.7 82.5 75.3 93.0 93.5 96.6 79.1

Table 1. Transfer learning results on fine-grained classification tasks. Specifically, we
fix the pretrained backbone, and then train the classifier with the training set of the
12 cross-domain classification datasets. We report the evaluation results by testing the
model on the testing set of the dataset.

As shown in Table 1, the transfer results of our method is better than the re-
cent state-of-the-art methods. Specifically, our method is better than other state-
of-the-art methods on some fine-grained classfication datasets, e.g., Food101 [2],
Birdsnap [1], Cars [7], Aircraft [9], Pets [10] and Flowers [6]. We consider that the
reason is that we leverage the neighboring information by the GCN layer, which
could exploit the fine-grained information that exist in the ImageNet-1K. For

5 These experiments are not the improved version of the method UniVCL, just the
generalization ability evaluation of the method.
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those datasets that have a large domain gap with the ImageNet-1K, i.e., SUN,
our method can not help improve the generalization ability. Considering most of
the images in ImageNet-1K are object-centric, the scene understanding tasks in
SUN can not benefit a lot the self-supervised pretraining from ImageNet-1K.
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