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A Appendix

A.1 Proof of proposition 1
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A.2 Proof of proposition 2

Proposition 2. Removing the positive pair from the denominator of Equation 3
leads to a decoupled contrastive learning loss. If we remove the NPC multiplier
q
(k)
B,i from Equation 3, we reach a decoupled contrastive learning loss LDC =∑
k∈{1,2},i∈[[1,N ]] L
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Proof. By removing the positive term in the denominator of Equation 1, we can
repeat the procedure in the proof of Proposition 1 and see that the coupling term
disappears.

A.3 Linear classification on ImageNet-1K

Top-1 accuracies of linear evaluation in Table 1 shows that, we compare with
the state-of-the-art SSL approaches on ImageNet-1K. For fairness, we list each
approach’s batch size and learning epoch, shown in the original paper. During
pre-training, DCL is based on a ResNet-50 backbone, with two views with the
size 224 × 224. DCL relies on its simplicity to reach competitive performance
without relatively huge batch sizes and epochs or other pre-training schemes,
i.e., momentum encoder, clustering, and prediction head. We report 400-epoch
versions of DCL combined with NNCLR [7]. It achieves 71.1% under the batch
size of 256 and 400-epoch pre-training, which is better than NNCLR [7] in their
optimal case, 68.7% with a batch size of 256 and 1000-epoch. Note that SwAV [2],
BYOL [8], SimCLR, and PIRL [12] need a huge batch size of 4096, and SwAV
further applies multi-cropping extra views to reach optimal performance. The
results of SwAV are taken from SimSiam that multi-cropping is not included.

A.4 Implementation details

Default DCL augmentations. We follow the settings of SimCLR to set up the
data augmentations. We use RandomResizedCrop with scale in [0.08, 1.0] and
follow by RandomHorizontalF lip. Then, ColorJittering with strength in [0.8,
0.8, 0.8, 0.2] with probability of 0.8, and RandomGrayscale with probability
of 0.2. GaussianBlur includes Gaussian kernel with standard deviation in [0.1,
2.0].

Strong DCL augmentations. We follow the asymmetric image augmentation of
BYOL to replace default DCL augmentation in ablations. Table 3 demonstrates
that the ImageNet-1K top-1 performance is increased from 67.8% to 68.2% by
applying asymmetric augmentations.
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Table 1. ImageNet-1K top-1 accuracies (%) of linear classifiers trained on representa-
tions of different SSL methods with ResNet-50 backbone. The results in the lower section
are the same methods with a large-scale experiment setting. We find that given lower
computational budget, DCL model are better than other state-of-the-arts approaches.
Its effectiveness does not rely on large batch size and learning epochs (SimCLR [4],
NNCLR [7]), momentum encoding (BYOL [8], MoCo-v2 [5]), or other tricks such as
stop-gradient (SimSiam [6]) and multi-cropping (SwAV [3]).

Method Param. (M) Batch Size Epochs Top-1 Linear (%)
NPID [17] 24 256 200 56.5
MoCo [9] 24 256 200 60.6
CMC [14] 47 256 280 64.1
MoCo-v2 [5] 28 256 200 67.5
SwAV [3] 28 4096 200 69.1
SimSiam [6] 28 256 200 70.0
InfoMin [15] 28 256 200 70.1
BYOL [8] 28 4096 200 70.6
SiMo [20] 28 256 200 68.0
Hypersphere [16] 28 256 200 67.7
SimCLR [4] 28 256 200 61.8
SimCLR+DCL 28 256 200 67.8
SimCLR+DCL(w/ BYOL aug.) 28 256 200 68.2

PIRL [12] 24 256 800 63.6
BYOL [8] 28 4096 400 73.2
SwAV [3] 28 4096 400 70.7
MoCo-v2 [5] 28 256 400 71.0
SimSiam [6] 28 256 400 70.8
Barlow Twins [18] 28 256 300 70.7
SimCLR [4] 28 4096 1000 69.3
SimCLR+DCL 28 256 400 69.5
NNCLR [7] 28 256 1000 68.7
NNLCR+DCL 28 256 400 71.1
NNCLR [7] 28 512 1000 71.7
NNCLR+DCL 28 512 400 72.3

Linear evaluation. Following the OpenSelfSup benchmark [19], we first train the
linear classifier with batch size 256 for 100 epochs. We use the SGD optimizer
with momentum = 0.9, and weight decay = 0. The base lr is set to 30.0 and
decay by 0.1 at epoch [60, 80]. We further demonstrate the linear evaluation
protocol of SimSiam [6], which raises the batch size to 4096 for 90 epochs. The
optimizer is switched to LARS optimizer with base lr = 1.2 and cosine decay
schedule. The momentum and weight decay have remained unchanged. We found
the second one slightly improves the performance.

A.5 Relation to alignment and uniformity

In this section, we provide a thorough discussion of the connection and difference
between DCL and Hypersphere [16], which does not have negative-positive cou-
pling either. However, there is a critical difference between DCL and Hypersphere,
and the difference is that the order of the expectation and exponential is swapped.
Let us assume the latent embedding vectors z are normalized for analytical conve-
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nience. When zi, zj are normalized, exp(⟨z(k)i , z
(l)
i ⟩/τ) and exp(−||z(k)i −z
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i ||2/τ)

are the same, except for a trivial scale difference. Thus we can write LDCL and
Lalign−uni in a similar fashion:

LDCL = LDCL,pos + LDCL,neg

Lalign−uni = Lalign + Luniform
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With the right weight factor, Lalign can be made exactly the same as LDCL,pos.
So let’s focus on LDCL,neg and Luniform:
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Similar to the earlier analysis in the manuscript, the latter Luniform introduces
a negative-negative coupling between the negative samples of different positive
samples. If two negative samples of zi are close to each other, the gradient for zi
would also be attenuated. This behaves similarly to the negative-positive coupling.
That being said, while Hypersphere does not have a negative-positive coupling,
it has a similarly problematic negative-negative coupling.

A case can simply demonstrate the negative-negative coupling in [16]. Let’s
assume the model has the batch size of 3, and temperature τ is 1. Both LDCL,neg

and Luniform can be formulated as follows:
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Table 2. STL10 comparisons Hypersphere and DCL under the same experiment setting.

STL10 fc7+Linear fc7+5-NN Output + Linear Output + 5-NN

Hypersphere 83.2 76.2 80.1 79.2
DCL 84.4 (+1.2) 77.3 (+1.1) 81.5 (+1.4) 80.5 (+1.3)

Table 3. ImageNet-100 comparisons of Hypersphere and DCL under the same setting
(MoCo).

ImageNet-100 Epoch Memory Queue Size Linear Top-1 Accuracy (%)

Hypersphere 240 16384 75.6
DCL 240 16384 76.8 (+1.2)

If the value of exp(⟨z(k)1 , z
(l)
3 ⟩) is much larger (e.g., hard negatives) than other

terms, there would be a huge difference between LDCL,neg and Luniform. Since
Luniform first sums up all the negative pair samples in the batch together, it
may cause the loss to be dominated by a specific negative pair sample. Thus, in
the DCL loss, the negative samples from different positives are not coupled in
contrast to the uniformity loss in [16].

Next, we provide a comprehensive empirical comparison. The empirical ex-
periments match the analytical prediction: DCL outperforms Hypersphere with
a more considerable margin under a smaller batch size.

The comparisons of DCL to Hypersphere are evaluated on STL10, ImageNet-
100, ImageNet-1K under various settings. For STL10 data, we implement DCL
based on the official code of Hypersphere. The encoder and the hyperparameters
are the same as Hypersphere, which has not been optimized for DCL in any way.
We have found that Hypersphere did a pretty thorough hyperparameter search.
We believe the default hyperparameters are relatively optimized for Hypersphere.

In Table 2, DCL reaches 84.4% (fc7+Linear) compared to 83.2% (fc7+Linear)
reported in Hypersphere on STL10. In Table 3 and Table 4, DCL achieves
better performance than Hypersphere under the same setting (MoCo & MoCo-
v2) on ImageNet-100 data. DCL further shows strong results compared against
Hypersphere on ImageNet-1K in Table 5. We also provide the STL10 comparisons
of DCL and Hypersphere under different batch sizes in Table 6. The experiment
shows the advantage of DCL becomes larger with smaller batch size. Please note
that we did not tune the parameters for DCL at all. This should be a more than
fair comparison.

In every single one of the experiments, DCL outperforms Hypersphere. Al-
though the difference between the DCL and Hypersphere is slight, it makes DCL
more easier to alleviate the domination from a specific negative pair in a batch.
We hope these results show the unique value of DCL compared to Hypersphere.
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Table 4. ImageNet-100 comparisons of Hypersphere and DCL under the same setting
(MoCo-v2) except for memory queue size.

ImageNet-100 Epoch Memory Queue Size Linear Top-1 Accuracy (%)

Hypersphere 200 16384 77.7
DCL 200 8192 80.5 (+2.7)

Table 5. ImageNet-1K comparisons of and DCL under the best setting. In this experi-
ment both of the methods used their optimized hyperparameters.

ImageNet-1K Epoch Batch Size Linear Top-1 Accuracy (%)

MoCo-v2 Baseline 200 256 (Memory queue = 65536) 67.5
Hypersphere 200 256 (Memory queue = 65536) 67.7 (+0.2)
DCL 200 256 68.2 (+0.7)

Table 6. STL10 comparisons of Hypersphere and DCL under different batch sizes.

Batch Size 32 64 128 256 768

Hypersphere 78.9 81.0 81.9 82.6 83.2
DCL 81.0 (+2.1) 82.9 (+1.9) 83.7 (+1.8) 84.2 (+1.6) 84.4 (+1.2)

Table 7. Results of DCL on wav2vec 2.0 be evaluated on two downstream tasks.

Downstream task (Accuracy) Speaker Identification† (%) Intent Classification‡ (%)

wav2vec 2.0 Base Baseline 74.9 92.3
wav2vec 2.0 Base w/ (DCL) 75.2 92.5

† In the downstream training process, the pre-trained representation first mean-pool
and forward a fully a connected layer with cross-entropy loss on the VoxCeleb1 [13].

‡ In the downstream training process, the pre-trained representation first mean-pool
and forward a fully a connected layer with cross-entropy loss on Fluent Speech
Commands [11].

Table 8. Comparisons between the cross entropy and DCL in supervised classifier
under different numbers of batch sizes (32, 128, and 256).

Architecture@epoch ResNet-20@200 epoch

Batch Size 32 128 256 32 128 256

Dataset CIFAR10 (top-1) CIFAR100 (top-1)

Cross entropy 91.5 92.3 91.0 61.9 62.7 61.8
DCL 89.2 91.4 91.2 60.2 61.8 61.4
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A.6 DCL on speech models

The SOTA SSL speech models, e.g., wav2vec 2.0 [1] still uses contrastive loss
in the objective function. In Table 7, we show the effectiveness of DCL with
wav2vec 2.0 [1]. We replace the InfoNCE loss with the DCL loss and train a
wav2vec 2.0 base model (i.e., 7-Conv + 24-Transformer) from scratch.1 After the
pre-training of model, we evaluate the representation on two downstream tasks,
speaker identification and intent classification. Table 7 shows the representation
improvement of DCL.

A.7 Supervised classifier: DCL vs Cross-Entropy

The idea of DCL, removing positive from the denominator, can also be applied
for learning objective function in the supervised classifier. By following [10], we
implement the proposed DCL idea on cross entropy loss by removing the positive
logits from the denominator of the softmax function. In Table 8, it is observed that
our supervised DCL achieves slightly lower performance while comparing to the
cross-entropy on CIFAR data. One possible reason for undermined performance
of DCL in supervised learning might be the different feature interaction between
supervised and unsupervised classifiers, which are referred to as parametric and
non-parametric classifiers in [17].

Under the parametric formulation in [17], the logits equal to wT z, where w
is a weight vector for each class and z is the output embedding of the neural
network. While in contrastive learning (i.e., non-parametric classifier), the logits
equal to z(1)z(2), where z(1) and z(2) are two augmented views of the same sample.
In the embedding space of the early training stage, w is relatively far away from
z compared to the relation between z(1) and z(2). Consider the effect of NPC
multiplier qb into parametric and non-parametric classifier, qb → 1 in parametric
classifier might diminish the effectiveness of DCL idea as the coupling effect is
already tiny.

A.8 Ablations of DCLW

Based on weighting function for the positive pairs in the Section 3 of the
manuscript, we provide an another weighting function of DCLW:

LDCLW =
∑

k∈{1,2},i∈[[1,N ]]

L
(i,k)
DCLW,i (2)

L
(k)
DCLW,i = −w(z

(1)
i , z

(2)
i )(⟨z(1)i , z

(2)
i ⟩/τ) + logUi,k (3)

where w(z
(1)
i , z

(2)
i ) = δ · exp(−σ · ⟨z(1)i , z

(2)
i ⟩). Basically, the goal is similar to

DCLW that we provide larger weight to hard positives (e.g., a positive pair of
samples are far away from each other).

The results indicate that δ = 3 and σ = 0.5 can achieve 85.4% kNN top-1
accuracy on CIFAR-10, and outperform the InfoNCE baseline (SimCLR) by 4%.
1 The experiment is downscaled to 8 V100 GPUs rather than 64.
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Table 9. The ablation study of various temperatures τ on CIFAR10.

Temperature τ 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Std

SimCLR 83.6 87.5 89.5 89.2 88.7 89.1 88.5 87.6 86.8 85.9 85.3 1.44
SimCLR w/ DCL 88.3 89.4 90.8 89.9 89.6 90.3 89.6 89.0 88.5 88.0 87.7 0.98
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Fig. 1. (a) The coefficient of variation (Cv = σ/µ) of gradient and (b) the mean gradient
norm with its std of baseline (InfoNCE) and proposed method (DCL) under different
batch sizes.

A.9 Additional Discussion

Analysis of Temperature τ . In Table 9, we further provide extensive analysis
on temperature τ in the objective function to support that the DCL method is
not sensitive to hyperparameters compared against the InfoNCE-based baselines.
In the following, show the temperature τ search on both DCL and SimCLR
on CIFAR10 data. Specifically, we pre-train the network with temperature τ in
{0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and report results with kNN eval,
batch size 512, and 500 epochs. As shown in Table 9, compared to SimCLR, DCL
is less sensitive to hyperparameters, e.g., temperature τ .
Analysis of Gradient. For further analysis of the phenomenon of DCL, we
visualize the mean norm with its std of the last convolutional layers from the last
two residual blocks of ResNet-18 trained on CIFAR-100 under different batch
sizes. The results in Figure 1 show that DCL constantly achieves larger gradients
than baseline (InfoNCE) loss, especially under small batch sizes.
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