
A Gyrovector Space Approach for Symmetric
Positive Semi-definite Matrix Learning

Xuan Son Nguyen[0000−0002−2776−2254]

ETIS, UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
xuan-son.nguyen@ensea.fr

This supplementary material provides the proofs for the Theorems and Lem-
mas in our paper entitled “A Gyrovector Space Approach for Symmetric Positive
Semi-definite Matrix Learning”. Please see the paper for references.

The following notations will be used in our proofs. Denote by Symn the space
of n × n symmetric matrices, L+

n the space of n × n lower triangular matrices
with positive diagonal entries, Ln the space of n × n lower triangular matrices,
Grn,p the p-dimensional subspaces of Rn.

1 Riemannian Geometry of SPD Manifolds

The space of SPD matrices is part of the vector space of square matrices. How-
ever, as mentioned in [2,36], employing the Euclidean metric for computations
in this space can be problematic from both practical and theoretical points of
view, i.e., the boundary problem or the tensor swelling effect. To address these is-
sues, many Riemannian metrics on SPD manifolds have been proposed [2,24,36].
Below we briefly review the Affine-invariant, Log-Euclidean, and Log-Cholesky
metrics studied in our work.

1.1 Affine-Invariant Metric

Based on the general principle of designing Riemannian metrics [57], Pennec et
al. [36] proposed the Affine-invariant metric that is invariant under the action
of affine transformations of the underlying space, i.e.,

< A1|A2 >P=< Q ⋆A1|Q ⋆A2 >Q⋆P

where P ∈ Sym+
n , A1,A2 ∈ TP Sym+

n , Q ⋆ P = QPQT is the action of the
linear group on Sym+

n , and Q ⋆ A1 = QA1Q
T is the action of the linear

group on Symn
1. The dot product at the identity is defined as < A1|A2 >=

Trace(A1A2) + β Trace(A1) Trace(A2) with β > − 1
n .

The Riemannian exponential map at a point can be obtained [36] as

ExpP(A) = P
1
2 exp

(
P− 1

2AP− 1
2

)
P

1
2 , (14)

1 Indeed, the action of the linear group on Sym+
n is naturally extended to tangent

vectors [36].

2 X.S. Nguyen

where P ∈ Sym+
n , A ∈ TP Sym+

n . By inverting the Riemannian exponential map,
one obtains the Riemannian logarithmic map

LogP(Q) = P
1
2 log

(
P− 1

2QP− 1
2

)
P

1
2 , (15)

where P,Q ∈ Sym+
n . The parallel transport of a tangent vector A ∈ TP Sym+

n

from P to Q along geodesics joining P and Q is given [60] by

TP→Q(A) = (QP−1)
1
2A

(
(QP−1)

1
2

)T
. (16)

1.2 Log-Euclidean Metric

Arsigny et al. [2] shown that the space of SPD matrices can be given a commuta-
tive Lie group structure by endowing it with the Log-Euclidean metric described
as

< A1|A2 >P=< DP log(A1)|DP log(A2) >I,

where P ∈ Sym+
n , A1,A2 ∈ TP Sym+

n , DP log(A1) and DP log(A2) are respec-
tively the differentials of the matrix logarithm at P along tangent vectors A1

and A2, and < .|. >I is any metric at the tangent space at I.
One can derive [2] the Riemannian exponential and logarithmic maps at any

point as
ExpP(A) = exp(log(P) +DP log(A)), (17)

LogP(Q) = Dlog(P) exp(log(Q)− log(P)), (18)

where P,Q ∈ Sym+
n , A ∈ TP Sym+

n .
While the Log-Euclidean metric does not yield full affine-invariance, it shares

very similar properties with the Affine-invariant metric. It allows to turn Rie-
mannian computations into Euclidean computations in the logarithmic domain.
This enables direct generalizations of traditional machine learning algorithms to
the SPD manifold setting [2].

1.3 Log-Cholesky Metric

The Log-Cholesky metric has recently been proposed by Lin [24]. Under this
framework, the space of SPD matrices can also be given a Lie group structure
by endowing it with the following metric:

< A1|A2 >P= gL

(
L(L−1A1L

−T) 1
2
,L(L−1A2L

−T) 1
2

)
,

where P ∈ Sym+
n , A1,A2 ∈ TP Sym+

n , L = L (P), L−T = (L−1)T , S 1
2

=

⌊S⌋+ D(S)/2 for any square matrix S, and gL(., .) is defined as

gL(X,Y) =< ⌊X⌋, ⌊Y⌋ >F + < D(L)−1D(X),D(L)−1D(Y) >F ,

A Gyrovector Space Approach for SPSD Matrix Learning 3

where < ., . >F denotes the Frobenius inner product.
The Riemannian exponential map is given by

ExpP(W) = ẼxpL (P)(DPL (W))
(
ẼxpL (P)(DPL (W))

)T
, (19)

where DPL (W) is the differential of L at P along direction W, i.e.,

DPL (W) = L (P)
(
L (P)−1WL (P)−T

)
1
2

, (20)

and Ẽxp(.) is defined as

ẼxpL(X) = ⌊L⌋+ ⌊X⌋+ D(L) exp(D(X)D(L)−1). (21)

The Riemannian logarithmic map is given by

LogP(Q) = (DL (P)S)
(
L̃ogL (P)L (Q)

)
, (22)

where S (L) = LLT , DLS (X) is the differential of S at L along direction X,
i.e.,

DLS (X) = LXT +XLT , (23)

and L̃og(.) is defined as

L̃ogL(K) = ⌊K⌋ − ⌊L⌋+ D(L) log(D(L)−1D(K)). (24)

The parallel transport of a tangent vector A ∈ TP Sym+
n from P ∈ Sym+

n to
Q ∈ Sym+

n along geodesics joining P and Q is given by

TP→Q(A) = K
(
⌊X⌋+ D(K)D(L)−1D(X)

)T
+

(
⌊X⌋+ D(K)D(L−1)D(X)

)
KT ,
(25)

where L = L (P), K = L (Q), and X = L
(
L−1AL−T

)
1
2

.

The Log-Cholesky metric enjoys a nice property of the Log-Euclidean metric
that the Fréchet mean admits a closed-form expression. Furthermore, the com-
putation of the Log-Cholesky parallel transport is much faster than that of the
Affine-invariant and Log-Euclidean parallel transports. These properties make
the Log-Cholesky metric a good choice for high-dimensional problems [24].

2 Proof of Lemma 1

Proof. Using Eqs. (14), (15), and (16) leads to the conclusion of the Lemma.

3 Proof of Lemma 2

Proof. Using Eqs. (14) and (15), it is straightforward to see that

t⊗ai P = ExpaiIn(tLog
ai
In(P)) = exp(log(P))t = Pt.

4 X.S. Nguyen

4 Proof of Theorem 1

Proof. First, note that the binary operation ⊕ai verifies the Left Cancellation
Law [44,45,46], i.e.,

⊖aiP⊕ai (P⊕ai Q) = Q,

for any P,Q ∈ Sym+
n .

The gyroautomorphism can be determined from the binary operation as
in [44,45,46]. By axiom (G3) and the Left Cancellation Law,

gyrai[P,Q]R =
(
⊖ai (P⊕ai Q)

)
⊕ai

(
P⊕ai (Q⊕ai R)

)
. (26)

Using the expression of the binary operation ⊕ai given in Lemma 1, we
deduce that

gyrai[P,Q]R = (P
1
2QP

1
2)−

1
2P

1
2Q

1
2RQ

1
2P

1
2 (P

1
2QP

1
2)−

1
2 .

Let Fai(P,Q) = (P
1
2QP

1
2)−

1
2P

1
2Q

1
2 . Then

Fai(P,Q)Q
1
2P

1
2 (P

1
2QP

1
2)−

1
2 = (P

1
2QP

1
2)−

1
2P

1
2QP

1
2 (P

1
2QP

1
2)−

1
2 = In.

Therefore
gyrai[P,Q]R = Fai(P,Q)R(Fai(P,Q))−1.

It is then easy to verify axioms G1,G2,G4,V1,V2,V3,V4,V5 for Affine-invariant
gyrovector spaces.

5 Proof of Lemma 3

Proof. Let L be the left translation defined as

LP(Q) = exp(log(P) + log(Q)).

Since the Log-Euclidean metric is a bi-invariant metric, the Levi-Civita con-
nection coincides with the Cartan connection and the parallel transport of a
tangent vector V ∈ TP Sym+

n is induced by the left translation [52,56,58], i.e.,

T le
P→Q(V) = DPLQP−1(V).

Thus, when Q = In,

T le
P→In(V) = DPLP−1(V). (27)

Note that
(log ◦LP−1)(R) = log(P−1) + log(R)

Hence
Dexp(log(P−1)+log(R)) log ◦DRLP−1 = DR log .

A Gyrovector Space Approach for SPSD Matrix Learning 5

When R = P, we get

DPLP−1 = DP log . (28)

Combining Eqs. (27) and (28) leads to

T le
P→In(V) = DP log(V). (29)

Let T le
In→P(Log

le
In(Q)) = V. Then T le

P→In
(V) = LogleIn(Q) = log(Q). From

Eq. (29), we get
DP log(V) = log(Q).

Then, from Eq. (17),

ExpleP(V) = exp(log(P) +DP log(V)),

which results in
ExpleP(V) = exp(log(P) + log(Q)).

We thus have

ExpleP(T le
In→P(Log

le
In(Q))) = exp(log(P) + log(Q)).

Therefore
P⊕le Q = exp(log(P) + log(Q)).

6 Proof of Lemma 4

Proof. The conclusion of the Lemma is straightforward since the Log-Euclidean
exponential and logarithmic maps coincide respectively with the Affine-invariant
exponential and logarithmic maps at the identity.

7 Proof of Theorem 2

Proof. First, note that the binary operation ⊕le verifies the Left Cancellation
Law. From Eq. (26),

gyrle[P,Q]R =
(
⊖le (P⊕le Q)

)
⊕le

(
P⊕le (Q⊕le R)

)
(1)
=

(
⊖le (P⊕le Q)

)
⊕le

(
(P⊕le Q)⊕le R

)
(2)
= R,

(30)

The derivation of Eq. (30) follows.
(1) follows from the associativity of the binary operation ⊕le.
(2) follows from the Left Cancellation Law.
It is then easy to verify axioms G1,G2,G4,V1,V2,V3,V4,V5 for Log-Euclidean

gyrovector spaces.

6 X.S. Nguyen

8 Proof of Lemma 5

Proof. Let W = TIn→P(Log
ch
In(Q)). Then

P⊕lc Q = ExpchP (W)

(1)
= ẼxpL (P)(DPL (W))

(
ẼxpL (P)(DPL (W))

)T
= ẼxpL (P)(W

′)
(
ẼxpL (P)(W

′)
)T
,

(31)

where (1) follows from Eq. (19), and W′ = DPL (W).
From Eq. (21),

ẼxpL (P)(W
′) = ⌊L (P)⌋+ ⌊W′⌋+ D(L (P)) exp

(
D(W′)D(L (P))−1

)
. (32)

From Eq. (25),

W = L (P)(⌊X⌋+ D(L (P))D(X))T + (⌊X⌋+ D(L (P))D(X))L (P)T .

Hence

L (P)−1WL (P)−T = (⌊X⌋+ D(L (P))D(X))TL (P)−T

+ L (P)−1(⌊X⌋+ D(L (P))D(X)).

Note that for any L ∈ Ln, (L+LT) 1
2
= L. Since L (P)−1(⌊X⌋+D(L (P))D(X)) ∈

Ln, we get(
L (P)−1WL (P)−T

)
1
2

= L (P)−1(⌊X⌋+ D(L (P))D(X)).

We thus have

L (P)
(
L (P)−1WL (P)−T

)
1
2

= L (P)L (P)−1(⌊X⌋+ D(L (P))D(X))

= ⌊X⌋+ D(L (P))D(X)

= ⌊L (Q)⌋+ D(L (P)) log(D(L (Q))).

Therefore

W′ = (DPL)(W)

(1)
= L (P)

(
L (P)−1WL (P)−T

)
1
2

= ⌊L (Q)⌋+ D(L (P)) log(D(L (Q))),

(33)

where (1) follows from Eq. (20).
This leads to

D(W′) = D(L (P)) log(D(L (Q))),

which means that

exp
(
D(W′)D(L (P))−1

)
= D(L (Q)). (34)

A Gyrovector Space Approach for SPSD Matrix Learning 7

From Eq. (33), we also get

⌊W′⌋ = ⌊L (Q)⌋. (35)

Combining Eqs. (31), (32), (34), and (35) leads to

P⊕lc Q =
(
⌊L (P)⌋+ ⌊L (Q)⌋+ D(L (P))D(L (Q))

)
.(

⌊L (P)⌋+ ⌊L (Q)⌋+ D(L (P))D(L (Q))
)T
.

9 Proof of Lemma 6

Proof. Let W = tLogchIn(P). Then

t⊗lc P = ExpchIn(W)

(1)
= ẼxpIn(DInL (W))

(
ẼxpIn(DInL (W))

)T
,

(36)

where (1) follows from Eq. (19).
Note that

W = tLogchIn(P)

(1)
= tDInS

(
L̃ogIn(L (P))

)
(2)
= t

((
L̃ogIn(L (P))

)T
+ L̃ogIn(L (P))

)
,

(37)

where (1) and (2) follow respectively from Eqs. (22) and (23).
Let W′ = DInL (W). Then

W′ = DInL (W)

(1)
= (W) 1

2

(2)
= tL̃ogIn(L (P))

(3)
= t

(
⌊L (P)⌋+ log(D(L (P)))

)
.

(38)

The derivation of Eq. (38) follows.
(1) follows from Eq. (20).

(2) follows from Eq. (37) and the fact that tL̃ogIn(L (P)) ∈ Ln.
(3) follows from Eq. (24).
Therefore

ẼxpIn(DInL (W)) = ẼxpIn(W
′)

(1)
= ⌊W′⌋+ exp(D(W′))

(2)
= t⌊L (P)⌋+ exp(t log(D(L (P))))

= t⌊L (P)⌋+ D(L (P))t,

(39)

8 X.S. Nguyen

where (1) and (2) follow respectively from Eqs. (21) and (38).
Combining Eqs. (36) and (39) leads to

t⊗lc P =
(
t⌊L (P)⌋+ D(L (P))t

)(
t⌊L (P)⌋+ D(L (P))t

)T
.

10 Proof of Theorem 3

Proof. Note that the binary operation ⊕lc verifies the Left Cancellation Law.
From Eq. (26),

gyrlc[P,Q]R =
(
⊖lc (P⊕lc Q)

)
⊕lc

(
P⊕lc (Q⊕lc R)

)
(1)
=

(
⊖lc (P⊕lc Q)

)
⊕lc

(
(P⊕lc Q)⊕lc R

)
(2)
= R,

(40)

The derivation of Eq. (40) follows.
(1) follows from the associativity of the binary operation ⊕lc.
(2) follows from the Left Cancellation Law.
It is then easy to verify axioms G1,G2,G4,V1,V2,V3,V4,V5 for Log-Cholesky

gyrovector spaces.

11 Proof of Lemma 7

Affine-invariant gyrovector spaces.

Proof. By assumption that LogaiP1
Q1 is the Affine-invariant parallel transport

of LogaiP0
Q0 from P0 to P1 along geodesics connecting P0 and P1, then from

Eq. (16),
LogaiP1

(Q1) = RLogaiP0
(Q0)R

T ,

where R = (P1P
−1
0)

1
2 .

Thus

Q1 = ExpaiP1
(RLogaiP0

(Q0)R
T)

= P
1
2
1 exp(P

− 1
2

1 RLogaiP0
(Q0)R

TP
− 1

2
1)P

1
2
1 .

(41)

Note that
LogaiP0

(Q0) = P
1
2
0 log(P

− 1
2

0 Q0P
− 1

2
0)P

1
2
0 .

Hence from Eq. (41),

Q1 = P
1
2
1 exp(U log(P

− 1
2

0 Q0P
− 1

2
0)UT)P

1
2
1

(1)
= P

1
2
1 U exp(log(P

− 1
2

0 Q0P
− 1

2
0))UTP

1
2
1

= P
1
2
1 UP

− 1
2

0 Q0P
− 1

2
0 UTP

1
2
1

= RQ0R
T = (P1P

−1
0)

1
2Q0((P1P

−1
0)

1
2)T ,

(42)

A Gyrovector Space Approach for SPSD Matrix Learning 9

where U = P
− 1

2
1 RP

1
2
0 , and (1) follows from the fact that UUT = In.

From Eq. (5),

gyrai[P1,⊖aiP0](⊖aiP0⊕aiQ0) = (P
1
2
1 P

−1
0 P

1
2
1)

− 1
2P

1
2
1 P

−1
0 Q0P

− 1
2

1 (P
1
2
1 P

−1
0 P

1
2
1)

1
2 .

Let B = (P
1
2
1 P

−1
0 P

1
2
1)

− 1
2P

1
2
1 P

−1
0 , C = P

− 1
2

1 (P
1
2
1 P

−1
0 P

1
2
1)

1
2 . Then

gyrai[P1,⊖aiP0](⊖aiP0 ⊕ai Q0) = BQ0C.

Hence

P
1
2
1 gyrai[P1,⊖aiP0](⊖aiP0 ⊕ai Q0)P

1
2
1 = P

1
2
1 BQ0CP

1
2
1 . (43)

We remark that

(P
1
2
1 B)2 = P

1
2
1 BP

1
2
1 B = P1P

−1
0 ,

(CP
1
2
1)

2 = CP
1
2
1 CP

1
2
1 = (P1P

−1
0)T .

Therefore

P
1
2
1 BQ0CP

1
2
1 = (P1P

−1
0)

1
2Q0((P1P

−1
0)

1
2)T . (44)

Combining Eqs. (42), (43), and (44), we obtain

Q1 = P
1
2
1 gyrai[P1,⊖aiP0](⊖aiP0 ⊕ai Q0)P

1
2
1 ,

which leads to

⊖aiP1 ⊕ai Q1 = gyrai[P1,⊖aiP0](⊖aiP0 ⊕ai Q0).

Log-Euclidean gyrovector spaces.

Proof. Notice that

Q0 = ExpleP0
(LogleP0

(Q0))

(1)
= exp

(
log(P0) +DP0

log
(
LogleP0

(Q0)
))

(2)
= exp

(
log(P0) + TP0→In(Log

le
P0

(Q0))
)

where (1) and (2) follow respectively from Eqs. (17) and (29).
It is known [53] that a SPD matrix has a unique symmetric logarithm, and

since log(P0) + TP0→In(Log
le
P0

(Q0)) is symmetric, we have

log(Q0) = log(P0) + TP0→In(Log
le
P0

(Q0)).

We thus get

log(Q0)− log(P0) = TP0→In(Log
le
P0

(Q0)). (45)

10 X.S. Nguyen

Similarly, we have

log(Q1)− log(P1) = TP1→In(Log
le
P1

(Q1)). (46)

Since Syn+n are complete, simply-connected and flat manifolds [2], the par-
allel transport is path independent. By the assumption that LogleP1

(Q1) is the

Log-Euclidean parallel transport of LogleP0
(Q0) from P0 to P1 along geodesics

connecting P0 and P1, we deduce that

TP0→In(Log
le
P0

(Q0)) = TP1→In(Log
le
P1

(Q1)). (47)

Combining Eqs. (45), (46), and (47) results in

log(Q0)− log(P0) = log(Q1)− log(P1),

which leads to

⊖leP1 ⊕le Q1 = ⊖leP0 ⊕le Q0.

Therefore

⊖leP1 ⊕le Q1 = gyrle[P1,⊖leP0](⊖leP0 ⊕le Q0).

Log-Cholesky gyrovector spaces.

Proof. We have

TP0→P1
(LogchP0

(Q0)) =L (P1)
(
⌊X⌋+ D(L (P1))D(L (P0))

−1D(X)
)T

+

+
(
⌊X⌋+ D(L (P1))D(L (P0))

−1D(X)
)
L (P1)

T ,
(48)

where X = L (P0)
(
L (P0)

−1 LogchP0
(Q0)L (P0)

−T
)

1
2

.

Note that

LogchP0
(Q0)

(1)
= DL (P0)S

(
L̃ogL (P0)(L (Q0))

)
(2)
= L (P0)

(
L̃ogL (P0)(L (Q0))

)T
+ L̃ogL (P0)(L (Q0))L (P0)

T ,

where (1) and (2) follow respectively from Eqs. (22) and (23).
Thus

L (P0)
−1 LogchP0

(Q0)L (P0)
−T =

(
L̃ogL (P0)(L (Q0))

)T
L (P0)

−T+

+ L (P0)
−1L̃ogL (P0)(L (Q0)).

Since L (P0)
−1L̃ogL (P0)(L (Q0)) ∈ Ln, we get(

L (P0)
−1 LogchP0

(Q0)L (P0)
−T

)
1
2

= L (P0)
−1L̃ogL (P0)(L (Q0)).

A Gyrovector Space Approach for SPSD Matrix Learning 11

Therefore

X = L (P0)
(
L (P0)

−1 LogchP0
(Q0)L (P0)

−T
)

1
2

= L (P0)L (P0)
−1L̃ogL (P0)(L (Q0))

= L̃ogL (P0)(L (Q0))

(1)
= ⌊L (Q0)⌋ − ⌊L (P0)⌋+ D(L (P0)) log

(
D(L (P0))

−1D(L (Q0))
)
,

(49)

where (1) follows from Eq. (24).
Let W = TP0→P1(Log

ch
P0

(Q0)). Replace X in Eq. (48) with its expression in
Eq. (49), we get

W =L (P1)
(
⌊L (Q0)⌋ − ⌊L (P0)⌋+ D(L (P1)) log

(
D(L (P0))

−1D(L (Q0))
))T

+
(
⌊L (Q0)⌋ − ⌊L (P0)⌋+ D(L (P1)) log

(
D(L (P0))

−1D(L (Q0))
))

L (P1)
T .

Let U = ⌊L (Q0)⌋ − ⌊L (P0)⌋ + D(L (P1)) log
(
D(L (P0))

−1D(L (Q0))
)
.

Then

L (P1)
−1WL (P1)

−T =UTL (P1)
−T + L (P1)

−1U.

Therefore

DP1
L (W)

(1)
= L (P1)

(
L (P1)

−1WL (P1)
−T

)
1
2

= L (P1)
(
UTL (P1)

−T + L (P1)
−1U

)
1
2

(2)
= L (P1)L (P1)

−1U

= U,

(50)

where (1) follows from Eq. (20), and (2) follows from the fact that L (P1)
−1U ∈

Ln.
By assumption

Q1 = ExpchP1
(TP0→P1

(LogchP0
(Q0)))

(1)
= ẼxpL (P1)

(
DP1

L (W)
)(

ẼxpL (P1)

(
DP1

L (W)
))T

,

where (1) follows from Eq. (19). We thus have

L (Q1) = ẼxpL (P1)

(
DP1

L (W)
)

(1)
= ⌊DP1

L (W)⌋+ ⌊L (P1)⌋+ D(L (P1)) exp
(
D(DP1

L (W))D(L (P1))
−1

)
(2)
= ⌊U⌋+ ⌊L (P1)⌋+ D(L (P1)) exp

(
D(U)D(L (P1))

−1
)

= ⌊L (Q0)⌋ − ⌊L (P0)⌋+ ⌊L (P1)⌋+ D(L (P1))D(L (P0))
−1D(L (Q0)),

12 X.S. Nguyen

where (1) and (2) follow respectively from Eqs. (21) and (50). We deduce that

⌊L (Q1)⌋ = ⌊L (Q0)⌋ − ⌊L (P0)⌋+ ⌊L (P1)⌋, (51)

and

D(L (Q1)) = D(L (P1))D(L (P0))
−1D(L (Q0)). (52)

Note that

L (⊖lcP0 ⊕lc Q0) = ⌊L (Q0)⌋ − ⌊L (P0)⌋+ D(L (P0))
−1D(L (Q0)). (53)

Combining Eqs. (51), (52), and (53) leads to

L (⊖lcP1 ⊕lc Q1) = L (⊖lcP0 ⊕lc Q0),

or equivalently,

⊖lcP1 ⊕lc Q1 = ⊖lcP0 ⊕lc Q0.

Therefore

⊖lcP1 ⊕lc Q1 = gyrlc[P1,⊖lcP0](⊖lcP0 ⊕lc Q0).

12 Proof of Theorem 4

Proof. We first prove that the basic operations on S+n,p verify the Left Gy-

roassociative Law. Let P,Q,R ∈ S+n,p, P = UPPUT
P , Q = UQQUT

Q, and

R = URRUT
R. According to Definition [9],

Q⊕spsd R = Ue(O
T
UQ→Ue

QOUQ→Ue
⊕OT

UR→Ue
ROUR→Ue

)UT
e .

Hence

P⊕spsd (Q⊕spsd R) = Ue

(
P′ ⊕ (Q′ ⊕R′)

)
UT

e , (54)

where P′ = OT
UP→Ue

POUP→Ue , Q
′ = OT

UQ→Ue
QOUQ→Ue ,

and R′ = OT
UR→Ue

ROUR→Ue .

From the definition of the gyroautomorphism in S+n,p,

(P⊕spsd Q)⊕spsd gyrspsd[P,Q]R = Ue

(
(P′ ⊕Q′)⊕ gyr[P′,Q′]R′)UT

e . (55)

Combining Eqs. (54), (55), and the Left Gyroassociative Law in gyrovector
spaces of SPD matrices, we get

P⊕spsd (Q⊕spsd R) = (P⊕spsd Q)⊕spsd gyrspsd[P,Q]R.

Similarly, one can prove that the basic operations on S+n,p verify the Left
Reduction Property, Gyrocommutative Law, and axioms (V2), (V3), and (V4).

A Gyrovector Space Approach for SPSD Matrix Learning 13

13 Derivation of Our SPD Neural Networks

We first introduce a definition of gyroderivative in Gyrovector Spaces of SPD
Matrices.

Definition 12 (Gyroderivative in Gyrovector Spaces of SPD Matri-
ces). Let (Sym+

n ,⊕,⊗) be a gyrovector space, and h : R → Sym+
n be a map. If

the limit
dh

dt
(t) = lim

δt→0

1

δt
⊗ (⊖h(t)⊕ h(t+ δt))

exists for any t ∈ R, then the map h is said to be differentiable on R, and the
gyroderivative of h(t) is dh

dt (t).

Note that the gyroderivative considered here is different from the derivative
used for computing tangent vectors to a curve on manifolds [51], which is a
map from a set of smooth real-valued functions to R. From Definition 12, we
can derive the chain rule in gyrovector spaces of SPD matrices similar to the
Gyro-chain-rule [12] in hyperbolic spaces.

Lemma 8 (Gyro-chain-rule in Gyrovector Spaces of SPD Matrices).
Let g : R → R be a differentiable map, and h : R → Sym+

n be a map with a
well-defined gyroderivative in a gyrovector space (Sym+

n ,⊕,⊗). If f := h ◦ g,
then

df

dt
(t) =

dg

dt
(t)⊗ dh

dt
(g(t)),

where dg
dt (t) is the ordinary derivative.

Proof. The Lemma can be proved by applying the techniques in [12].

df

dt
(t) = lim

δt→0

1

δt
⊗ (⊖f(t)⊕ f(t+ δt))

= lim
δt→0

1

δt
⊗ (⊖h(g(t))⊕ h(g(t) + δt(g′(t) +O(δt)))).

Let l1 = g′(t)
δt(g′(t)+O(δt)) , l2 = O(δt)

δt(g′(t)+O(δt)) . Then
1
δt = l1 + l2 and we have

df

dt
(t) = lim

δt→0
(l1 + l2)⊗ (⊖h(g(t))⊕ h(g(t) + δt(g′(t) +O(δt)))).

Let L1 = limδt→0 l1⊗(⊖h(g(t))⊕h(g(t)+δt(g′(t)+O(δt)))), L2 = limδt→0 l2⊗
(⊖h(g(t))⊕ h(g(t) + δt(g′(t) +O(δt)))). Then by axiom (V2),

df

dt
(t) = L1 ⊕ L2.

Note that

L2 = 0⊗ (⊖h(g(t))⊕ h(g(t) + δt(g′(t) +O(δt)))) = I

14 X.S. Nguyen

by axiom (V1). Hence

df

dt
(t) = L1 ⊕ I = L1.

Let u = δt(g′(t) +O(δt)). Then

df

dt
(t) = lim

u→0

g′(t)

u
⊗ (⊖h(g(t))⊕ h(g(t) + u)).

Note that g′(t)
u = g′(t) 1

g(t)+u−g(t) . Then by axiom (V3), we get

df

dt
(t) =

dg

dt
(t)⊗ dh

dt
(g(t)).

We now derive the update equations for our models. We consider a class of
models that are invariant to time rescaling. Following [12,43], we first study time
transformations in the continuous-time setting and then translate continuous-
time models back to the discrete-time setting. In the following, we use indices
ht for discrete time and brackets h(t) for continuous time. From the definition
of gyroderivative in gyrovector spaces of SPD matrices, using axiom (V3) and
the Left Cancellation Law, we have

h(t+ δt) ≈ h(t)⊕ δt⊗ dh

dt
(t) (56)

for small δt. Let T be a time variable and H(T) = h(αT), X(T) = x(αT). Using
the chain rule in gyrovector spaces of SPD matrices, we obtain

dH

dT
(T) = α⊗ dh

dT
(αT). (57)

Let h(t+ 1) = ψ(h(t), x(t))2. Note that Eq. (56) is equivalent to

⊖h(t)⊕ h(t+ δt) ≈ δt⊗ dh

dt
(t).

With discretization step δt = 1, we have

dh

dT
(αT) = ⊖H(T)⊕ h(αT + 1)

= ⊖H(T)⊕ ψ(H(T), X(T)).

Eq. (57) now becomes

dH

dT
(T) = α⊗

(
⊖H(T)⊕ ψ(H(T), X(T))

)
.

By renaming H to h, X to x, and T to t, we obtain

dh

dt
(t) = α⊗

(
⊖ h(t)⊕ ψ(h(t), x(t))

)
,

2 We drop model parameters to simplify notations.

A Gyrovector Space Approach for SPSD Matrix Learning 15

which results in

h(t)⊕ dh

dt
(t) = h(t)⊕ α⊗

(
⊖ h(t)⊕ ψ(h(t), x(t))

)
.

According to Eq. (56), we have h(t+ 1) = h(t)⊕ dh
dt (t). Then

h(t+ 1) = h(t)⊕ α⊗
(
⊖ h(t)⊕ ψ(h(t), x(t))

)
. (58)

Now, setting ψ(h(t), x(t)) = φ⊗a(Wh ⊗v h(t) + Wx ⊗v ϕ(x(t))) and trans-
lating Eq. (58) back to discrete-time models, we obtain the following recurrent
equations

Pt = φ⊗a(Wh ⊗v Ht−1 +Wx ⊗v ϕ(Xt)),

Ht = Ht−1 ⊕ α⊗ ((⊖Ht−1)⊕Pt),

where Xt,Pt,Ht−1,Ht ∈ Sym+
n , Wh,Wx ∈ Rn, and α ∈ R are learnable

parameters.

14 More Details on Our Implementation and Training

The procedure SpdRotate(.) proceeds as follows. We first compute two bases of
span(Xu) and span(W), denoted respectively by X and W, such that

dV(n,p)(X,W) = dGr(n,p)(span(X
u), span(W)),

where dV(n,p)(., .) and dGr(n,p)(., .) are the distances between two points in V(n, p)

and Gr(n, p), respectively. From [3], X = XuY, W = WV, where Y and V are
obtained from the SVD of (Xu)TW, i.e.,

(Xu)TW = Y(cosΣΣΣ)VT .

The output of SpdRotate(·) is then computed as

Xspd = VX
T
XtXVT .

For the first experiment in the ablation study (Full-rank vs. low-rank
learning), since we only consider learning the parameter W in the full-rank
case, we transform the problem of learning the constrained parameter (rotation
matrix) W into the one of learning an unconstrained parameter using the Cayley
parameterization [54,55]. This method is based on the transform

W = (In +A)(In −A)−1,

which constructs a rotation matrix W from a skew-symmetric matrix A. We
parametrize the rotation matrix W through the upper or lower triangular part

of the matrix A, which results in n(n−1)
2 trainable parameters. Other advanced

methods [54,55] can also be used for improving performance.

16 X.S. Nguyen

Dataset HDM05 FPHA NTU60 (X-Sub) NTU60 (X-View)

p = 14 74.19 90.94 89.78 90.15

p = 18 76.47 92.35 91.14 92.56

p = 22 77.05 95.47 93.54 94.19

Table 6. Accuracies of SPSD-AI for different values of p in the low-rank learning
setting (n = 28, W = In,p[:, : p]).

We use a temporal pyramid representation for each sequence. At temporal
pyramid M , a sequence is partitioned into M subsequences of equal size. Each
subsequence is fed to a model with its own parameter set. The outputs from all
the models are concatenated to create a final representation of the sequence. In
our experiments, the number of temporal pyramids M is set to 3.

For all the datasets, we use interpolation to create sequences of the same
length (100 frames in our experiments). We use a batch size of 32 for HDM05
and FPHA datasets, and a batch size of 256 for NTU60 dataset. For our networks
and the methods whose codes are used in our experiments, we run each model
three times and report the best accuracy from these three runs [12].

15 More Results

Tab. 6 reports the accuracies of SPSD-AI for different values of p in the low-rank
learning setting when the parameter W is fixed (W = In,p[:, : p]). The accuracies
of SPSD-AI increase as the rank p increases. These results show the important
impact of the rank p on the performance of SPSD-AI.

Tab. 7 reports the accuracies and computation times of SPSD-AI in the full-
rank learning setting with and without the parameter W. When the parameter
W is not used, our models are described by the following update equations:

Pt = φ⊗a(Wh ⊗v Ht−1 +Wx ⊗v Xt),

Ht = Ht−1 ⊕ α⊗ ((⊖Ht−1)⊕Pt).

In all cases, the introduction of the parameter W yields better results. How-
ever, this also results in higher computational costs.

Tab. 8 shows the accuracies and computation times of SPSD-AI in the low-
rank learning setting when the parameterW is learned or fixed (W = In,p[:, : p]).
When the parameter W is learned, we use the TensorFlow RiemOpt library [59]
for optimization on Stiefel manifolds. The value of p is set to 14. The results
indicate that learning the parameter W leads to better accuracies than setting it
to In,p[:, : p]. This suggests an alternative method that first learns the parameter
W and then fixes it during the training of the other parameters.

Finally, Tab. 9 reports the training times of our networks on HDM05 dataset.
While the Log-Cholesky metric performs worst in terms of accuracy in our frame-

A Gyrovector Space Approach for SPSD Matrix Learning 17

Dataset
HDM05 FPHA NTU60 (X-Sub) NTU60 (X-View)

W NW W NW W NW W NW

Accuracy (%) 81.32 78.14 96.58 96.00 95.86 94.72 97.44 95.11

Training time (min) 1.09 0.94 0.64 0.54 9.19 7.81 8.56 7.30

Table 7. Accuracies and training times (minutes) per epoch of SPSD-AI in the full-
rank learning setting with (W) and without (NW) the parameter W.

Dataset
HDM05 FPHA NTU60 (X-Sub) NTU60 (X-View)

WL WF WL WF WL WF WL WF

Accuracy (%) 75.53 74.19 92.06 90.94 91.05 89.78 92.28 90.15

Training time (min) 0.70 0.66 0.42 0.39 5.96 5.61 5.59 5.26

Table 8. Accuracies and training times (minutes) per epoch of SPSD-AI in the low-
rank learning setting (p = 14) when the parameter W is learned (WL) or fixed (WF)
beforehand.

work, it is more advantageous than the Affine-invariant and Log-Euclidean met-
rics in terms of computation time.

References

51. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press (2007) 13

52. Gallier, J., Quaintance, J.: Differential Geometry and Lie Groups: A Computa-
tional Perspective. Springer International Publishing (2020) 4

53. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press
(1991) 9

54. Li, J., Li, F., Todorovic, S.: Efficient Riemannian Optimization on the Stiefel Man-
ifold via the Cayley Transform. In: ICLR (2020) 15

55. Liu, W., Lin, R., Liu, Z., Rehg, J.M., Paull, L., Xiong, L., Song, L., Weller, A.:
Orthogonal Over-Parameterized Training. In: CVPR. pp. 7251–7260 (2021) 15

56. Lorenzi, M., Pennec, X.: Geodesics, Parallel Transport and One-Parameter Sub-
groups for Diffeomorphic Image Registration. IJCV 105, 111–127 (2013) 4

57. Pennec, X., Ayache, N.: Uniform distribution, distance and expectation problems
for geometric features processing. Journal of Mathematical Imaging and Vision
9(1), 49–67 (1998) 1

58. Postnikov, M.M.: Geometry VI. Springer (2001) 4
59. Smirnov, O.: TensorFlow RiemOpt: A Library for Optimization on Riemannian

Manifolds (2021) 16
60. Sra, S., Hosseini, R.: Conic Geometric Optimization on the Manifold of Positive

Definite Matrices. SIAM Journal on Optimization 25(1), 713–739 (2015) 2

18 X.S. Nguyen

SPSD-AI SPSD-LE SPSD-LC

1.09 0.98 0.74

Table 9. Training times (minutes) per epoch of our networks on HDM05 dataset
(full-rank learning setting with the parameter W).

	A Gyrovector Space Approach for Symmetric Positive Semi-definite Matrix Learning

