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A Theoretical results

Proposition 1 Consider a set of coordinates x=[x1, x2, · · ·, xN ]T , corresponding out-
puts y=[y1, y2, · · · , yN ]T , and a d dimensional embedding Ψ :R→Rd. Assuming per-
fect convergence, the necessary and sufficient condition for a linear model to perfect
memorize of the mapping between x and y is for X=[Ψ(x1), Ψ(x2), . . ., Ψ(xN )] to
have full rank.

Proof: Let us refer to the row vectors of X as [p1, . . .,pd]
T . In order to perfectly

reconstruct y using a linear learner with weights w=[w1, w2, . . ., wd] as

y =

d∑
i=1

wipi + b , (1)

one needs X to be of rank N (since y needs to completely span {pi}di=1). If d > N
then there is no unique solution to {w, b} without some regularization. In the unlikely
scenario that the row vectors of X have zero mean, then X needs to be of rank N − 1
since the bias term b can account for that missing linear basis. ⊓⊔

Proposition 2 Let the Gaussian embedder be denoted as ψ(t, x)= exp
(
−∥t−x∥2

2σ2

)
.

With a sufficient embedding dimension, the stable rank of the embedding matrix ob-
tained using the Gaussian embedder is min

(
N, 1

2
√
πσ

)
where N is the number of em-

bedded coordinates. Under the same conditions, the embedded distance between two
coordinates x1 and x2 is D(x1, x2)= exp

(
−∥x1−x2∥2

4σ2

)
.

Proof: Let us define the Gaussian embedder as ψ(t, x)= exp
(
−∥t−x∥2

2σ2

)
, where σ is

the standard deviation. Given d samples points [t1, . . ., td] and N input coordinates
[x1, . . ., xN ], the elements of the embedding matrix are

Ψi,j = ψ(ti, xj) . (2)

⋆ Project page at https://osiriszjq.github.io/complex encoding

https://osiriszjq.github.io/complex_encoding
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To make sure the stable rank is saturated, we assume that d and N is large enough.
Then, Ψ is approximately a circulant matrix. We know that the singular value decom-
position of a circulant matrix C, whose first row is c, can be written as

C =
1

n
F−1
n diag (Fnc)Fn , (3)

where Fn is the Fourier transform matrix. This means the singular values of a circulant
matrix is the Fourier transform of first row. When N is large enough, we can approxi-
mate the first row of Ψ as a continuous signal, which is ψ(x, t=0)= exp

(
−∥x∥2

2σ2

)
, so

the singular values are

s(ξ) = F (ψ(x; t = 0)) =
√
2πσ exp

(
−2σ2∥πξ∥2

)
. (4)

Therefore, we can calculate stable rank directly from the definition,

Stable Rank(Ψ)=
N∑
i=1

s2i
s21

=

∫ +∞

−∞

s2(ξ)

s2(0)
dξ =

∫ +∞

−∞
exp

(
−4σ2∥πξ∥2

)
dξ=

1

2
√
πσ

. (5)

Considering the general case, where N might not be large enough, the stable rank will
be min

(
N, 1

2
√
πσ

)
.

The distance (or similarity) between two embedded coordinates can be obtained via
the inner product:

D(x1, x2) =

∫ +∞

−∞
ψ(t, x1)ψ(t, x2)dt

=

∫ +∞

−∞
e−

(t−x1)2

2σ2 e−
(t−x2)2

2σ2 dt

=

∫ +∞

−∞
e−

(t−x1)2+(t−x2)2

2σ2 dt

=

∫ +∞

−∞
e−

t2−2x1t+x2
1+t2−2x2t+x2

2
2σ2 dt

=

∫ +∞

−∞
e−

2t2−2(x1+x2)t+
(x1+x2)2

2
+

(x1−x2)2

2
2σ2 dt

=

∫ +∞

−∞
e−

(t− x1+x2
2

)2

σ2 e−
(x1−x2)2

4σ2 dt

= e−
(x1−x2)2

4σ2

∫ +∞

−∞
e−

(t− x1+x2
2

)2

σ2 dt

=
√
πσe−

(x1−x2)2

4σ2 .

(6)

which is also a Gaussian with a standard deviation
√
2σ. We can empirically define that

the distance between two embedded coordinates x1 and x2 is preserved if D(x1, x2) ≥
10−k, for an interval x1−x2≤l, where k is a threshold. In the Gaussian embedder, we
can analytically obtain a σ for an arbitrary l using the relationship σ= l

2
√
kln 10

. ⊓⊔
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Proposition 3 Let the RFF embedding be denoted as γ(x)=[cos 2πbx, sin 2πbx], where
b are sampled from a Gaussian distribution. When the embedding dimension is large
enough, the stable rank of RFF will be min

(
N,

√
2πσ

)
, where N is the numnber of

embedded coordinates. Under the same conditions, the embedded distance between two
coordinates x1 and x2 is D(x1, x2)=

∑
j cos 2πbj(x1−x2).

Proof: Given d
2 samples for b as [b1, . . ., b d

2
] from a Gaussian distribution with a stan-

dard deviation σ and N input coordinates [x1, . . ., xN ], RFF embedding is defined as
γ(x)=[cos 2πbxi, sin 2πbxi].

To make sure the stable rank is saturated, we assume that the d and N is large
enough. Although RFF embedding matrix is not circulant, it is naturally frequency
based so we already know its spectrum, which is its singular value distribution

s(ξ) =
1√
2πσ

exp

(
− ξ2

2σ2

)
. (7)

Similarly,

Stable Rank(γ) =
N∑
i=1

s2i
s21

=

∫ +∞

−∞

s2(ξ)

s2(0)
dξ =

∫ +∞

−∞
exp

(
− ξ2

2σ2

)
dξ =

√
2πσ , (8)

Considering the general case, the stable rank is min
(
N,

√
2πσ

)
.

From the basic trigonometry, it can be easily deduced the distance function that
D(x1, x2)=

∑
j cos 2πbj(x1−x2). When d is extremely large it can be considered as

f(ξ)= cos 2πξ(x1−x2) where ξ is a Gaussian random variable with standard deviation
σ. Then the above sum can be replaced with the integral,

D(x1, x2) =

∫ +∞

−∞
e−

ξ2

2σ2 cos 2πξ(x1 − x2)dξ

= 2

∫ +∞

0

e−
ξ2

2σ2 cos 2πξ(x1 − x2)dξ

= 2

∫ +∞

0

e−
ξ2

2σ2
1

2
(ei2π(x1−x2)ξ + e−i2π(x1−x2)ξ)dξ

=

∫ +∞

0

e−
ξ2

2σ2 +i2π(x1−x2)ξ + e−
ξ2

2σ2 −i2π(x1−x2)ξdξ .

(9)

Further,∫ +∞

0

e−ax2+bxdx= e−
b2

4a

∫ +∞

0

e−a(x−i b
2a

)2dx=
1

2

(
1+erfi

(
b

2
√
a

))√
π

a
e−

b2

4a . (10)

Let a= 1
2σ2 and b=± 2π(x1−x2). Then, we have

D(x1, x2) =
√
2πσe−2π2σ2(x1−x2)

2

. (11)

⊓⊔
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Proposition 4 Let the Rectangular embedder be denoted as ψ(t, x)=rect
(
x−t
σ

)
=(1−

|x−t|
0.5σ )>0. With a sufficient embedding dimension, the stable rank of the embedding

matrix obtained using the Rectangular embedder is min
(
N, 1

σ

)
whereN is the number

of embedded coordinates. Under the same conditions, the embedded distance between
two coordinates x1 and x2 is D(x1, x2)=σtri

(
|x1−x2|

σ

)
=σmax(1− |x1−x2|

σ , 0).

Proof: Let us define the Rectabgular embedder asψ(t, x)=rect
(
x−t
σ

)
=
(
1− |x−t|

0.5σ

)
>0,

where σ is the width of the rectangle impulse. Given d samples points [t1, . . ., td] and
N input coordinates [x1, . . ., xN ], the elements of the embedding matrix are

Ψi,j = ψ(ti, xj) . (12)

To make sure the stable rank is saturated, we assume that d and N are large enough.
Then, Ψ is approximately a circulant matrix. We know that the singular value decom-
position of a circulant matrix C, whose first row is c, can be written as

C =
1

n
F−1
n diag (Fnc)Fn , (13)

where Fn is the Fourier transform matrix. This means the singular values of a circulant
matrix are the Fourier transform of the first row. When N is large enough, we can
approximate the first row of Ψ as a continuous signal, which is ψ(x, t=0)=rect( xσ ), so
the singular values are

s(ξ) = F (ψ(x; t = 0)) = σsinc(σξ) , (14)

where sinc(ξ)= sin(πx)
πx . Therefore, we can compute the stable rank directly from the

definition,

Stable Rank(Ψ) =
N∑
i=1

s2i
s21

=

∫ +∞

−∞

s(ξ)2

s(0)2
dξ =

∫ +∞

−∞
sinc2(σξ)dξ =

1

σ
. (15)

Considering the general case, where N might not be large enough, the stable rank will
be min

(
N, 1

σ

)
.

The distance (or similarity) between two embedded coordinates can be obtained via
the inner product:

D(x1, x2) =

∫ +∞

−∞
ψ(t, x1)ψ(t, x2)dt

=

∫ +∞

−∞
rect

(
x1 − t

σ

)
rect

(
x2 − t

σ

)
dt

= σtri
(
x1 − x2

σ

)
.

(16)

⊓⊔
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Proposition 5 Let the Triangular embedder be ψ(t, x)=tri
(
x−t
0.5σ

)
=max(1− |x−t|

0.5σ , 0).
With a sufficient embedding dimension, the stable rank of the embedding matrix ob-
tained using the Triangular embedder is min(N, 4

3σ ) where N is the number of em-
bedded coordinates. Under the same conditions, the embedded distance between two
coordinates x1 and x2 is D(x1, x2) =

1
4σ

2tri2( |x1−x2|
σ ) = 1

4σ
2 max(1− |x1−x2|

σ , 0)2.

Proof: Let us define the Triangle embedder as ψ(t, x)=tri
(
x−t
0.5σ

)
=max

(
1− |x−t|

0.5σ , 0
)

,
where σ is the width of the Triangular impulse. Given d samples points [t1, . . ., td] and
N input coordinates [x1, . . ., xN ], the elements of the embedding matrix are

Ψi,j = ψ(ti, xj) . (17)

To make sure the stable rank is saturated, we assume that d and N are large enough.
Then, Ψ is approximately a circulant matrix. We know that the singular value decom-
position of a circulant matrix C, whose first row is c, can be written as

C =
1

n
F−1
n diag (Fnc)Fn , (18)

where Fn is the Fourier transform matrix. This means the singular values of a circulant
matrix are the Fourier transform of the first row. When N is large enough, we can
approximate the first row of Ψ as a continuous signal, which is ψ(x, t=0)=tri

(
x
σ

)
, so

the singular values are

s(ξ) = F (ψ(x; t = 0)) =
σ

2
sinc2

(σ
2
ξ
)
, (19)

where sinc(ξ)= sin(πx)
πx . Therefore, we can compute stable rank directly from the defi-

nition as,

Stable Rank(Ψ) =
N∑
i=1

s2i
s21

=

∫ +∞

−∞

s(ξ)

s(0)

2

dξ =

∫ +∞

−∞
sinc4

(σ
2
ξ
)
dξ =

4

3σ
. (20)

Considering the general case, where N might not be large enough, the stable rank will
be min

(
N, 1

σ

)
.

The distance (or similarity) between two embedded coordinates can be obtained via
the inner product:

D(x1, x2) =

∫ +∞

−∞
ψ(t, x1)ψ(t, x2)dt

=

∫ +∞

−∞
tri

(
x− t

0.5σ

)
tri

(
x− t

0.5σ

)
dt

=
1

4
σ2 max

(
1− |x1 − x2|

σ
, 0

)2

.

(21)

⊓⊔
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B 2D complex encoding

B.1 Closed form solution for separable coordinates

If pixels are sampled on a regular grid formed by samples x=[x1, x2, · · ·, xN ]T and
samples y=[y1, y2, · · ·, yM ]T , then the coordinates of these pixels are separable. Let
S∈RM×N be the signal defined as Si,j=I(xi, yj), where i=1, 2, · · ·, N , j=1, 2, · · ·,M ,
and Ψ :R→RK be the 1D encoder. We want to find the weights W∈RK×K of the linear
layer by optimizing the following equation,

argmin
W

∥vec(S)− (Ψ(y)⊗ Ψ(x)) vec (W)∥22 , (22)

where Ψ(x)∈RN×K is the encoding for x, Ψ(y)∈RM×K is the encoding for y. This
is a linear least squares problem. Based on the properties of the Kronecker product, we
find the optimal solution W∗ as,

vec (W∗) = argmin
W

∥vec (S)− (Ψ(y)⊗ Ψ(x)) vec (W)∥22

=
(
(Ψ(y)⊗ Ψ(x))

T
(Ψ(y)⊗ Ψ(x))

)−1

(Ψ(y)⊗ Ψ(x))
T vec (S)

=
(((

Ψ(y)TΨ(y)
)−1

Ψ(y)
)
⊗

((
Ψ(x)TΨ(x)

)−1
Ψ(x)

))
vec (S)

= vec
(((

Ψ(x)TΨ(x)
)−1

Ψ(x)
)
S
((
Ψ(y)TΨ(y)

)−1
Ψ(y)

)T
)

= vec
((
Ψ(x)TΨ(x)

)−1
Ψ(x)SΨ(y)T

(
Ψ(y)TΨ(y)

)−1
)
,

(23)

which means,

W∗ =
(
Ψ(x)TΨ(x)

)−1
Ψ(x)SΨ(y)T

(
Ψ(y)TΨ(y)

)−1
. (24)

B.2 Blending matrix for non-separable coordinates

First, we focus on 1D encoders. Given a 1D encoder Ψ :R→RK and two points x0,
x1, we want to express Ψ(x)≈α0Ψ(x0)+α1Ψ(x1) for x0≤x≤x1. This problem can be
solved by

argmin
α

∥∥Ψ(x)− [
Ψ(x0) Ψ(x1)

]
α
∥∥2
2
, (25)

where α=
[
α0 α1

]T
. Note here that Ψ(x), Ψ(x0), and Ψ(x1) are K×1 vectors. This is

equivalent to a least squared problem, thus, the optimal solution α∗ can be solved by,

α∗ = argmin
α

∥∥Ψ(x)− [
Ψ(x0) Ψ(x1)

]
α
∥∥2
2

=
([
Ψ(x0) Ψ(x1)

]T [
Ψ(x0) Ψ(x1)

])−1 [
Ψ(x0) Ψ(x1)

]T
Ψ(x)

=

([
Ψ(x0)

T

Ψ(x1)
T

] [
Ψ(x0) Ψ(x1)

])−1 [
Ψ(x0)

T

Ψ(x1)
T

]
Ψ(x)

=

[
Ψ(x0)

TΨ(x0) Ψ(x0)
TΨ(x1)

Ψ(x1)
TΨ(x0) Ψ(x1)

TΨ(x1)

]−1 [
Ψ(x0)

TΨ(x)
Ψ(x1)

TΨ(x)

]
.

(26)
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With the definition D(x1, x2) in Appendix A, this can be written as,

α∗ =

[
D(x0, x0) D(x0, x1)
D(x1, x0) D(x1, x1)

]−1 [
D(x0, x)
D(x1, x)

]
. (27)

Typically, this distance function only depends on the difference of the inputs, as
examples shown in Appendix A. Therefore, we can have a close form solution for
D:R→R. Let d=x1−x0, and x=x0+βd, where 0≤β≤1. Then, the solution becomes,

α∗ =

[
D(x0, x0) D(x0, x1)
D(x1, x0) D(x1, x1)

]−1 [
D(x0, x)
D(x1, x)

]
=

[
D(0) D(d)
D(d) D(0)

]−1 [
D(βd)

D ((1− β) d)

]
=

1

D2(0)−D2(d)

[
D(0) −D(d)
−D(d) D(0)

] [
D(βd)

D ((1− β) d)

]
.

(28)

Based on the 1D analysis, encoding 2D non-separable points can also be expressed
as non-linear interpolation of 2D separable coordinates. Suppose that the settings are
the same as in Appendix B.1. The virtual pixels are sampled on a regular grid formed
by samples x=[x1, x2, · · ·, xN ]T and samples y=[y1, y2, · · ·, yM ]T . The query points
are randomly sampled in the space as Q = [q1,q2, · · ·,qP ]

T , where P is the number
of points and each qi∈R2×1 is a random 2D coordinate. Let s∈RP×1 be the signal, and
Ψ :R→RK be the 1D encoder. We want to find the weights W∈RK×K of the linear
layer by optimizing the following equation,

argmin
W

∥s−B(Q) (Ψ(y)⊗ Ψ(x)) vec (W)∥22 , (29)

where B:R2→RMN is the non-linear interpolation coefficients function, i.e., B(Q) ∈
RP×MN is the blending matrix. Note that althoughB is large, it is extremely sparse and
only have 4 non-zero values on each row of MN elements. Consider a certain point qp

is in the grid whose corner points are (xi, yj), (xi+1, yj), (xi, yj+1), and (xi+1, yj+1),
which means xi≤qp0≤xi+1 and yj≤qp1≤yj+1. Then we can obtain the encoding for
qp0 and qp1 as follows,

Ψ(qp0) ≈ α0Ψ(xi) + α1Ψ(xi+1),

Ψ(qp1) ≈ β0Ψ(yj) + β1Ψ(yj+1) .
(30)

Then, the 2D encoding for qp is,

Ψ(q) =Ψ(qp0,qp1)

=Ψ(qp1)⊗ Ψ(qp0)

≈ (β0Ψ (yj)+β1Ψ (yj+1))⊗ (α0Ψ (xi)+α1Ψ (xi+1))

=α0β0Ψ (yj)⊗ Ψ (xi) + α0β1Ψ (yj+1)⊗ Ψ (xi)

+ α1β0Ψ (yj)⊗ Ψ (xi+1) + α1β1Ψ (yi+1)⊗ Ψ (xi+1)

=α0β0Ψ (xi, yj) + α0β1Ψ (xi, yj+1)

+ α1β0Ψ (xi+1, yj) + α1β1Ψ (xi+1, yi+1) ,

(31)
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which means B(qp)∈R1×MN are all zeros except α0β0 at index jN+i, α0β1 at index
(j+1)N+i, α0β0 at index jN+i+1 and α0β0 at index (j+1)N+i+1.

C HD complexity

Let X∈RND×D be ND points in D dimensional space, Ψ :R→RK be the 1D encoder,
and we want to know the memory and computational complexity when the encoding
multiply a linear layer W.
Simple encoding. The embedding Ψ(X)∈RND×DK and the weights W∈RDK×1, so
the memory complexity isO(DKND) and the computational complexity isO(DKND).
Complex encoding (naive implementation). The embedding Ψ(X)∈RND×KD

and
the weights W∈RKD×1, so the memory complexity is O(KDND) and the computa-
tional complexity is O(KDND).
Complex encoding (separable coordinates). The embedding Ψ(X)∈RN×K and the
weights W∈RKD

, so the memory complexity is O(KD+NK) and the computational
complexity is

∑D
i=1N

iKD+1−i=O(NK ND−KD

N−K ). A special case of N=K will be
discussed later.
Complex encoding (non-separable coordinates). The embedding Ψ(X)∈RN×K , the
weights W∈RKD

and the Blending matrix B(X)∈RND×ND

(sparse matrix with only
ND×2D non-zeros values), so the memory complexity is O(KD+NK+2DND), the
computational complexity is 2DND+

∑D
i=1N

iKD+1−i=O(2DND+NK ND−KD

N−K ).
Special case N=K. Both simple encoding and separable complex encoding have
O(DND+1) computational encoding. Memory complexity is O(DND+1) for simple
encoding while it is O(ND+2N) for separable encoding. However, the rank of the
latter one is power of D to the first one.

D Experiments

D.1 Method Notations

For 1D encoding experiments, we used Fourier-feature-based encodings with linearly,
log-linearly, or randomly sampled frequencies, and shifted encodings whose bases are
Gaussian or triangle. We give a brief introduction to these methods below.
LinF (Fourier feature-based encoding using linearly sampled frequency).

ϕ(x) =
[
· · · , cos

(
2π ·

(
K−i
K

20 + i
K
2σ

)
x
)
, sin

(
2π ·

(
K−i
K

20 + i
K
2σ

)
x
)
, · · ·

]T
, (32)

where i=0, . . .,K−1 and σ is the hyperparameter for the frequency range that sampled
linearly from base frequency (20) to max frequency (2σ).
LogF (Fourier feature-based encoding using log-linearly sampled frequency).

ϕ(x) =
[
· · · , cos

(
2π · 2σi/Kx

)
, sin

(
2π · 2σi/Kx

)
, · · ·

]T
, (33)

where i=0, . . .,K−1 and σ is the hyperparameter for frequency range. The frequency
are sampled log-linearly from base frequency (20) to max frequency (2σ).
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RFF (Fourier feature-based encoding using randomly sampled frequency) [2].

ϕ(x) =
[
cos (2πbx)

T
, sin (2πbx)

T
]T

, (34)

where b∈RK×1 is random frequencies sampled from N (0, σ2), where σ is the hyper-
parameter for frequency range.
Tri (shifted triangle encoding).

ϕ(x) =
[
· · · ,max

(
1−

∣∣∣x−i/K
d

∣∣∣ , 0) , · · ·]T , (35)

where i=0, . . .,K−1 and d is the hyperparameter for the width of triangle wave.
Gau (shifted Gaussian encoding).

ϕ(x) =
[
· · · , e−

x−i/K

2d2 , · · ·
]T

, (36)

where i=0, . . .,K−1 and d is the hyperparameter for the width of Gaussian wave.

D.2 Non-separable 3D video reconstruction

We used the same Youtube video dataset [1] as described in the main paper. The only
difference is that the training points were randomly sampled (12.5% from the total num-
ber of points) of a 64×64×64 grid, and the rest of the points were used for testing. The
results are shown in Table 1. Similar to our observations in the main paper, complex
encodings combined with a single linear layer have comparable performance to simple
encodings combined with deep (4 layer MLPs) networks while being 10x faster. Com-
plex frequency-based encodings (LinF, LogF, RFF) have inferior results than complex
shifted-based encodings (Tri, Gau) due to deficient rank.

Table 1: Performance of video reconstruction with randomly sampled inputs (non-
separable coordinates). are simple positional encodings. are complex positional
encodings with stochastic gradient descent using smart indexing. Complex encodings
with a single linear network are 10x faster than simple encodings with deep networks.

PSNR No. of params (memory) Time (s)

LinF 21.38± 3.32 1, 445, 891 (5.78M) 76.87
LogF 21.54± 3.32 1, 445, 891 (5.78M) 76.76
RFF [2] 21.35± 3.32 1, 445, 891 (5.78M) 76.22
Tri 20.90± 3.09 1, 445, 891 (5.78M) 77.82
Gau 21.16± 3.11 1, 445, 891 (5.78M) 77.98

LinF 10.08± 3.63 786, 432 (3.15M) 55.34
LogF 18.79± 2.55 786, 432 (3.15M) 53.48
RFF [2] 20.26± 2.82 786, 432 (3.15M) 1.82
Tri 21.54± 3.01 786, 432 (3.15M) 1.83
Gau 21.29± 3.04 786, 432 (3.15M) 1.86
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D.3 Visual results for 2D images

Here we show 2D image visual results for separable coordinates in Figs. 2 and 3, and
non-separable coordinates in Figs. 4 and 5. For simple encoding, five aforementioned
encoders were tested with 256 width MLP of 0 and 4 hidden ReLU layers (0 means
only a linear layer). For complex encoding, the same five encoders were tested with 0
and 1 hidden ReLU MLPs.

0 250index

0

1

si
n
g
u
la
r
v
a
lu
es

LinF

LogF

RFF

Gau

Tri

Fig. 1: The normalized singular values of
different 1D embeddings Ψ(x) ∈ RN×K .
Here N=K=256 and x is sampled equally
spaced from 0 to 1. Fourier feature-based
encodings (LinF, LogF, RFF) tend to have
much fewerr non-zero singular values,
which results in low rank. While shifted en-
codings (Tri, Gau) usually have sufficient
non-zero singular values, which leads to a
high rank. When x is randomly sampled,
the rank deficiency in Fourier feature-based
encodings becomes worse.

As shown in column 1 of these fig-
ures, when we used simple encodings
and the network only had a single linear
layer (0 hidden layers), the reconstructed
images are of low quality, showing low-
resolution color grids (LinF, LogF), cross
strip colors (Tri, Gau), or random color
blobs (RFF). The results clearly support
our claim that a linear network can only
reconstruct a 2D image signal with at
most rank 2. When we introduced non-
linear layers and increased the hidden
layer depth (depth 4, column 2), the re-
construction quality improves, leading to
a better PSNR.

On the contrary, even with a sin-
gle linear layer (depth 0, column 3),
our complex encoding methods can
achieve comparable results with methods
that used a simple encoding combined
with deeper non-linear networks. Note
that Fourier feature-based (frequency-
based) complex encodings (LinF, LogF,
RFF) performed worse than shifted-
based complex encodings (Tri, Gau) when there was only one single linear layer due to
the deficiency of the embedding rank (shown in Fig. 1). Adding an extra non-linear layer
(depth 1, column 4) did not substantially improve the performance of shifted-based
complex encodings while adding more details for frequency-based complex encodings.
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Ground Truth
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Fig. 2: Reconstruction results of an archway using separable coordinates (regular-grid
sampled training points) with different combinations of simple or complex encodings
and network depths.
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Ground Truth
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Fig. 3: Reconstruction results of a heap of walnuts using separable coordinates (regular-
grid sampled training points) with different combinations of simple or complex encod-
ings and network depths.
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Ground Truth
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Fig. 4: Reconstruction results of a lion using non-separable coordinates (randomly sam-
pled training points) with different combinations of simple or complex encodings and
network depths.
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Ground Truth
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Fig. 5: Reconstruction results of a seaside residential area using non-separable coor-
dinates (randomly sampled training points) with different combinations of simple or
complex encodings and network depths.
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