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A  Overview

This document provides additional technical details and more visualization re-
sults. Concretely, in section B, we first elaborate our pipeline with detailed con-
volutions. Next, we define the metrics used in paper in section C. Then we
conduct additional experiments in section D. Finally, in section E, we provide
more visualizations of the final depth predictions on KITTI and NYUv2.

B Detailed Pipeline

As illustrated in Fig. S1, we provide the detailed convolutions of each layer in
our repetitive image guided network. Fig. S2 demonstrates the detailed compo-
nents of our repetitive guidance module (RG), including the efficient guidance
algorithm (EG) and adaptive fusion mechanism (AF).

C Detailed Metrics

In our paper, eight standard metrics are used for evaluation, including RMSE,
MAE, iRMSE, iMAE, REL, ¢, d2, and d3, which are defined as where GT' and
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P refer to ground truth depth and predicted depth, respectively. @, represents
the set of valid pixels in GT'. m is the number of the valid pixels.
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----p-addition RHN: Repetitive Hourglass Net

——>deconv RG Repetitive Guidance Module sparse depth

Image Guidance Branch Depth Generation Branch
Conv: ¢/E;,: _make_layer(BasicBlock, 64,2, 1) d/ Dy, : Deconv(128, 64, 3,2, 1,1)
(channel_in, channel_out, e/E,,: _make_layer(BasicBlock, 128,2,2)  d/D,,: Deconv(256, 128, 3,2, 1,1)
kernel_size, stride, padding) ¢/E\;: _make_layer(BasicBlock, 256,2,2)  d/D,5: Deconv(256, 256, 3, 2, 1,1)
e/ E;4: _make_layer(BasicBlock, 256,2,2)  d/D,,: Deconv(256, 256, 3,2, 1,1)
Deconv: e/ E\5: _make_layer(BasicBlock, 256,2,2)  d/D;5: Conv(256, 256, 3,1, 1)
(channel_in, channel_out,
kernel_size, stride, padding) E,,: Conv(64,32,3,1,1), Conv(32,32,3,1,1) D,,: Deconv(32, 32,3,2,1,1)
E,,: Conv(32,32,3,2,1), Conv(32,32,3,1,1) D,,: Deconv(32,32,3,2, 1,1)
Cl1:Conv(3,32,5,1,2) E,;: Conv(32,32,3,2,1), Conv(32,32,3,1,1) D,;: Deconv(32,32,3,2,1,1)
C2:Conv(l,32,5,1,2) E,s: Conv(32,32,3,2, 1), Conv(32,32,3,1,1) D,,: Deconv(32, 32, 3,2, 1,1)
C3:Conv(64,1,3,1,1) E,s: Conv(32,32,3,2, 1), Conv(32,32,3,1,1) D,s:Conv(32,32,3,1, 1)

Fig. S1. Overview of our repetitive image guided network with detailed convolution
layers. The definition of “_make_layer” is similar with that of ResNets.
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Fig. S2. Our repetitive guidance module (RG) with detailed convolutions, implemented
by an efficient guidance algorithm (EG) and an adaptive fusion mechanism (AF).
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Fig. S3. Examples of different synthetic patterns on NYUv2 dataset.

Pattern | Method [RMSE REL 81 0952 0105

CSPN [2] |0.117  0.016 99.2 99.9 100.0
NLSPN [41] | 0.092  0.012 99.6 99.9 100.0
ACMNet [7]] 0.105  0.015 99.4 99.9 100.0
RigNet 0.090 0.013 99.6 99.9 100.0
CSPN [2] | 0.121  0.017 99.1 99.8 100.0
NLSPN [4] [ 0.093  0.013 99.5 99.9 100.0
ACMNet [7]| 0.110  0.017 99.3 99.9 100.0
RigNet 0.092  0.012 99.6 99.9 100.0
CSPN [2] |0.123  0.017 99.2 99.8 100.0
NLSPN [4] | 0.095 0.013 99.5 99.9 100.0
ACMNet [7]] 0.090  0.012 99.6 99.9 100.0
RigNet 0.087  0.010 99.7 99.9 100.0
Table S1. Performances on NYUv2 dataset with different synthetic patterns.
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D More Experiments

In this section, we conduct additional experiments to further validate the gen-
eralization capability under different synthetic patterns in Fig. S3.

On NYUv2 test split, we first produce diversiform sparse depth inputs by
Uniform, Gaussian, and Grid sampling manners (Fig. S3). Then we compare
RigNet with three popular works with released codes and pretrained models,
i.e., CSPN [2], NLSPN [4], and ACMNet [7]. Note that all models are pretrained
in Uniform sampling mode and fine-tuned on all three patterns. The Uniform
sampling only produces 500 valid depth points. As illustrated in Table S1, (i)
RigNet is almost superior to all other methods in the three patterns. (ii) In
Gaussian pattern, performances of all four methods drop a little bit, since Gaus-
sian pattern’s points around edges of sparse depth map are fewer than Uniform
pattern’s. (iii) In Grid pattern, which can be seen as a simple case of Uniform
with regular sampling, ACMNet and RigNet perform better while CSPN and
NLSPN do not. These results show RigNet can well tackle depth inputs with
different levels of sparsity.
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(a) Color image (b) DLiDAR (c) PwP (d) S2D (e) RigNet (ours)

Fig. S4. More visual comparisons with others on KITTI benchmark, including DLi-
DAR [5], PwP [6], S2D [3], and our RigNet.
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(a) Color image (b) Sparse depth (c) ACMNet (d) CSPN (e) RigNet (ours) HGT

Fig. S5. More visual comparisons with existing methods on NYUv2 dataset, including
ACMNet [7], CSPN [1], and our RigNet.
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E More Visualizations

In this section, we provide more visualizations of the final depth predictions
on KITTI benchmark (Fig. S4) and NYUv2 dataset (Fig. S5). Obviously, our
RigNet can produce better results than other depth completion methods.
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