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Abstract. The supplementary document is organized as follows: Sec. 1
gives a brief proof of approximate KL-Divergence; Sec. 2 explains the
rationality and necessity of Mean@K; Sec. 3 verifies the fine-grained pre-
diction ability by visualizing the qualitative results on each predicate;
Sec. 4 compares the result of different CR Loss setting and their per-
formance; Sec. 5 visualizes the qualitative result with different training
stage numbers; Sec. 6 analyzes the variance of importance scores of pa-
rameters in the deep network; Sec. 7 provides a more comprehensive
analysis about the training time.

1 Proof of Approximate KL-Divergence

Formally, the KL-Divergence [4] can be defined as:

DKL(pθ(y|x)||pθ+∆θ(y|x) = E(y,x)∼D [log pθ (y|x)− log pθ+∆θ (y|x)] . (1)

With the second Taylor Expansion of log pθ+∆θ (y|x) at θ, we can get:

log pθ+∆θ (y|x) ≈ log pθ (y|x) +∆θ⊤
∂ log pθ (y|x)

∂θ
+

1

2
∆θ⊤

∂2 log pθ (y|x)
∂θ2

∆θ.

(2)
Then, substitute Eq. (2) into Eq. (1) and we get the approximate KL-Divergence:

DKL(pθ(y|x)||pθ+∆θ(y|x) ≈ E(x,y)∼D[logpθ (y|x)]− E(x,y)∼D [log pθ+∆θ (y|x)]

−∆θ⊤E(x,y)∼D

[
∂ log pθ (y|x)

∂θ

]
− 1

2
∆θ⊤E(x,y)∼D

[
∂2 log pθ (y|x)

∂θ2

]
∆θ.

(3)
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In Eq. (3), the first order partial derivative can be eliminated by:

E(x,y)∼D

[
∂ log pθ (y|x)

∂θ

]
=Ex∼D

[∑
y

pθ (y|x)
∂ log pθ (y|x)

∂θ

]

=Ex∼D

[∑
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pθ (y|x)
1

pθ (y|x)
∂pθ (y|x)

∂θ

]

=Ex∼D

[
1

∂θ

∑
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∂pθ (y|x)

]
=Ex∼D [0] = 0.

(4)

In addition, the second order partial derivative in Eq. (3) can be replaced by
Fisher Matrix Fθ:

E(x,y)∼D

[
−∂2 log pθ (y|x)

∂θ2

]
= E(x,y)∼D

[
− 1

pθ (y|x)
∂2pθ (y|x)

∂θ2

]
+E(x,y)∼D

[(
∂ log pθ (y|x)

∂θ

)(
∂ log pθ (y|x)

∂θ

)⊤
]
= 0 + Fθ.

(5)

By substituting Eq. (4) and Eq. (5), we get the approximate KL-Divergence:

DKL (pθ(y|x)||pθ+∆θ(y|x)) ≈
1

2
∆θ⊤E(x,y)∼D

[
−∂2 log pθ (y|x)

∂θ2

]
∆θ

=
1

2
∆θ⊤Fθ∆θ.

(6)

2 Rationality and Necessity of Metric Mean@K

People tend to annotate the relationships with high-frequent predicates with an
identical visual relationship in an image instead of more informative ones [5].
For example, “dog-on-bench” is more likely to be annotated than “dog-sitting
on-bench”. Because of this labeling phenomenon, a model with a fine-grained
prediction preference will perform poorly on the “head part” (e.g., “on” and
“has”). The reasonable and fine-grained predictions will be regarded as mistakes,
which leads to the reporting bias of Recall@K (R@K). Thus, taking R@K as the
primary evaluation metric is not plausible. For a better evaluation, [7] adopted
mean Recall@K (mR@K) as the primary metric for the first time.
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Fig. 1. Image with both position and verb as different granularity. Yellow scene graph
is predicted by VCTree [6], while pink one is predicted by VCTree-HML.

Unfortunately, there is an intriguing fact that lies in our semantic expres-
sions. Some objects with verb property typically have more fine-grained labeling,
while other objects typically have position labeling. We can find several specific
occasions like Fig. 1. The relationships between daily life objects are mostly
positional, such as “book-on-shelf” or “laptop-on-desk”. In this circumstance,
“standing on” or “growing on” is unsuitable. In contrast, animals like “bird”
and “cat” or humans, including “kid” and “man” have more verb relationships
such as “sitting on” and “laying on”. Hence, considering mR@K alone is also
not very comprehensive.

Since mR@K and R@K restrict mutually, any methods with higher mR@K
will get less R@K, and vice versa. With the consideration above, we adopt
Mean@K, which calculates the average score of mR@K and R@K under an
identical K to evaluate our HML further and provide a fair comparison.

3 Verification of Fine-Grained Prediction Ability

For better analysis and comparison, we compare the improvement of R@100 [8]
on each predicate, respectively. The experiments were carried out on three mod-
els that are used in body part of our paper: Motif [12], Transformer [9,2], and
VCTree [6].

In Figs. 2 to 4, we visualize the qualitative results of traditional training
model and model with our HML on each predicate. We do not use the name of
predicates for simplicity. Instead, we rank all predicates in the order of frequency,
and the X-axis number represents each predicate’s ranking. It is worth noticing
that the performance improvements are impressive. Some “tail part” predicates
that can not be correctly recognized in the original training framework drastically
rise. Besides, the reason for the decline in the “head part” including “on” and
“has” has been discussed in the body part of our paper.
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Fig. 2. Motif: Recall@100 [8] on Predicate Classification for all 50 predicates.
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Fig. 3. Transformer: Recall@100 [8] on Predicate Classification for all 50 predicates.
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Fig. 4. VCTree: Recall@100 [8] on Predicate Classification for all 50 predicates.
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4 Ablation on CR Loss

In order to find a suitable form of CR Loss, we conduct several experiments on
other possible CR Loss. As is shown in Tab. 1, even though Cosine Loss and L1
perform better on Recall, L2 Loss can achieve more excellent trade-off on both
metrics. The result verified our hypothesis in the main body.

CR Loss

Predicate Classification

Mean@20 Mean@50 Mean@100mR@20 mR@50 mR@100 R@20 R@50 R@100

Cosine 25.3 30.5 32.7 41.3 49.3 51.9 33.3 39.9 42.3
KL 25.8 32.3 34.7 35.0 43.8 46.5 30.4 38.1 40.6
L1 28.9 34.7 37.1 39.9 46.4 48.4 34.4 40.6 42.8

Smooth L1 29.4 36.0 38.3 38.2 45.1 47.1 33.9 40.6 42.7

L2 (The recommended one) 30.1 36.3 38.7 40.5 47.1 49.1 35.3 41.7 43.9

Table 1. Ablation Study of CR under MOTIFS-HML

5 Qualitative Result of Three Training Stage

The ablation of stage number indicates the suitable stage number should be 2
in VG dataset. We visualize some of the qualitative results of different stages
in Fig. 5. Compared with one stage of training, other stages can predict fine
results, but too many stages jeopardize the hierarchical training and partly lead
to degradation.

building

Windshield

bus
behind

ac
ro

ss

person

street

st
an

d
in

g 
o

n

leaf

tree

gr
o

w
in

g 
o

n

across

window

has

building

Windshield

bus

person

street

o
n

leaf

tree

o
n

window

on

building

Windshield

bus
behind

person

street

st
an

d
in

g 
o

n

leaf

tree

window

has

o
n

(b) Result of One 
Stage Training

(a) Input Image (c) Result of Two 
Stage Training

(d) Result of Three 
Stage Training

beach
mouse

horse

man

o
n

on

earmouse

jean hat

beach
mouse

horse

man

rid
in

g

earmouse

jean hat

walking
on

beach
mouse

horse

man

o
n

earmouse

jean hat

on

Fig. 5. Comparison of Qualitative on Different Stage Number.



6 Y. Deng et al.

6 Variance of Importance Scores of Parameters

As illustrated in the Model Reconstruction Loss section, an importance score is
an efficient way to evaluate each parameter’s importance in a model. To verify
our assumption that the parameters in the target for different predicate classes,
we visualize Figs. 6 to 8. For simplicity, we omit backbone layers and only pick
up the weights concerning relation prediction. We first calculate the fractions of
each parameter in the first and second stages:

Frac(pn) =
p1n
p2n

, (7)

where n represents nth one of all parameters and superscripts 1 and 2 represent
the stage number. Then find the mean of Frac(pn) of each layer (the number of
the X-axis in the figure represents the layer number). The result of Figs. 6 to 8,
shows that the importance scores of different parameters in each layer fluctuate
a lot, verifying the assumption that different models parameters specialize in
different tasks (i.e., different predicates).
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Fig. 6. The mean of importance scores in each relation prediction layer of MOTIFS [12].
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Fig. 7. The mean of importance scores in each relation prediction layer of Trans-
former [9,2].
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Fig. 8. The mean of importance scores in each relation prediction layer of VCTree [6].

7 Time Analysis

Intuitively, our HML tends to be extremely time-consuming due to hierarchical
learning. In order to explore the computational complexity of our HML, we
compare all competitive methods that have publicly released the source code in
the last two years. We train all the methods under the same GPU computing
environment and record the running times. We further analyze the training time
per image on MOITFS with different frameworks for a more comprehensive
study. Because of the different training conditions, it is hard to compare all
methods fairly. For instance, some methods can be trained quickly for every
image, but converging takes longer.

As shown in Tab. 2, our HML spends more than twice the training time on
one image than other methods. However, the property of the HML framework
is worth noticing. In the HML, a model is trained under the guidance of a
well-trained model and within a relatively balanced and small fraction of data.
Therefore, it takes fewer iterations for a model under the HML to converge,
making the training increase insignificant.

All the experiments were carried out on identical NVIDIA Tesla V100 GPUs
to pursue a fair comparison. Due to the limited memory of our GPU, we can
not fully carry out identical experiment settings in [10] set batch-size to be 12
instead of the original 48 setting.

Model+Framework mR@50/100 Time/img (s) Overall Time (hr)

MOTIFS [12] 15.9/17.2 0.101 8.636
MOTIFS-TDE [7] 25.5/29.1 0.105 9.542

MOTIFS-CogTree [11] 26.4/29.0 0.124 8.487
MOTIFS-DLFE [1] 26.9/28.8 0.103 7.731

MOTIFS-BPL-SA [3] 29.7/31.7 0.211 11.135

PCPL [10] 35.2/37.8 0.119 8.163

MOTIFS-HML (Ours) 36.9/39.2 0.223 10.933

Table 2. Time evaluation on Predicate Classification. We compare different
methods with our HML of training time per image and overall time.
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