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Supplementary Material

This is a supplementary material for the paper, PointMixer: MLP-Mixer for
Point Cloud Understanding. We will further describe the details: efficiency anal-
ysis (Sec. A), point receptive fields comparison (Sec. B), limited cardinality issues
in token-mixing MLPs (Sec. C), and task-specific training details (Sec. D).

A Efficiency analysis

In this section, we analyze the latency and memory consumption of each point set
layer: PointNet++ layer (Eq. (2)), Point Transformer layer (Eq. (3)) and Point-
Mixer layer (Eq. (6) and Eq. (7)). We conduct this ablation study based on the
PointMixer network for the 3D shape classification task. For a fair comparison,
we strictly maintain to use the same downsampling layers. Furthermore,
we do not use inter-set mixing layer to keep the other components of the network
the same.

We measure mAcc, OA, the average inference time per object, and the peak
GPU memory usage of each method on ModelNet40 dataset [80]. Note that
we re-implement PointNet++8 and Point Transformer with the same number of
residual blocks as our PointMixer, and train those models on the ModelNet40
dataset [80] with the same training configuration for a fair comparison.

Table 6. A comparison of efficiency.

Layer type Param. (M) Memory (MB) Latency (ms) mAcc OA

PointNet++ [56] 3.3 1463 13.04 90.9 93.2
PointTrans [96] 5.3 1473 19.77 90.2 93.1
PointMixer (ours) 3.5 1465 20.72 91.2 93.3

As shown Table 6, the network with Point Transformer layer [96] consumes
the largest amount of GPU memory to infer a 3D object since it calculates a
memory-consuming vector similarity. On the other hand, our PointMixer layer
computes a scalar score, denoted by sj , to aggregate neighbor features, denoted
by xj . It consequently consumes 8MB less GPU memory than Point Trans-
former layer [96] although both Point Transformer and Point Mixer layers are
slower than PointNet++ layer since both of them use the expensive softmax op-
eration. Furthermore, the PointMixer with only intra-set mixing outperforms
PointNet++ [56] layer by 0.3 mAcc and 0.1 OA although PointNet++ [56] also
requires much less memory than Point Transformer [96]. This result implies that
our score-based aggregation can embed local responses more effectively than
simple pooling-based aggregation which PointNet++ [56] uses. As a result, our
PointMixer layer can encode local relations within a point set both more ef-
fectively and efficiently than previous approaches [56,96], along with the other

8 Since the original implementation of PointNet++ [56] does not use the residual con-
nection, this re-implementation brings performance gain to the model [56].
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Fig. 8. Point receptive fields. Given a query point ( ), we colorize the neighbor points
that are affected by the query: intra/inter-set (top) and hier-set (bottom).

strengths that inter-set mixing and hierarchical-mixing layers have, which are
already shown in Table 2, Table 3, and Table 5 of the manuscript.

B Point receptive field analysis

Throughout this paper, we emphasize the importance of information sharing
among unstructured point clouds. As a universal point set operator, PointMixer
layer can function as intra-, inter-, and hierarchical-set mixing while previous
studies [56,96,83] only focus on the intra-set mixing operations as shown in Ta-
ble 1 of the manuscript. For your visual understanding, let us illustrate the recep-
tive fields of our PointMixer layers in different usages as in Fig. 8. Given a query
point ( ), we visualize the receptive fields of intra-set/inter-set mixing (top row)
and upsampling layers (bottom row). In particular, we compare trilinear-based
upsampling layers (PointNet++ and Point Transformer) and hierarchical-set mix-
ing from our PointMixer layer. We colorize points as red if the red query point
influences these. The PointMixer layer has overall larger receptive fields than
previous studies [56,96], which further facilitates point response propagation.

Top row in Fig. 8. As stated in Sec. 3.3 of the manuscript, intra-set mixing is
limited to k closest neighbor points. However, combined use of intra-set and inter-
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set mixing can propagate point responses into variable length of more neighbors
from the neighboring point sets Mj , which is consistently supported by Fig. 8.
Bottom row in Fig. 8. Our PointMixer network constitutes a symmetric
encoder-decoder network while previous studies do not, as illustrated in Fig. 4
of the manuscript. In particular, since creating a new kNN graph with k = 16 is
expensive, the trilinear interpolation in upsampling layers of PointNet++ [56] and
Point Transformer [96] usually interpolates three nearest neighbor points, which
is the much smaller number of neighbors than 16 in the downsampling layer,
and limits their receptive fields as well. On the other hand, our PointMixer re-
uses the kNN graph of the downsampling layer to maximize the receptive fields
without additional computational costs. As a result, PointMixer layer can encode
point responses in larger contexts than previous approaches [56,96] as shown in
Fig. 8. Moreover, these results can be reasons for our superior performance in
dense prediction tasks compared to the previous state-of-the-art methods [96,7].

C Limited cardinality issues in token-mixing MLPs

There are two dominant reasons that we remove token-mixing MLPs from our
PointMixer layer: limited cardinality and permutation-variant property. In this
section, we further describe the technical reasons of the limited cardinality in
token-mixing MLPs.

While a given pixel in an image systematically admits eight adjacent pixels,
each point can have an arbitrary number of neighbors in a point cloud. In this
context, shared MLPs are particularly desirable since they can handle variable
input lengths [69]. However, in the vanilla MLP-Mixer layer, token-mixing MLPs
limit the process of an arbitrary number of points.

Let us briefly explain the reason. Channel-mixing MLPs require the pre-
defined dimensionality in channels for the affine transformation of the input data.
In contrast, token-mixing MLPs (Eq. (4) of the manuscript) switch the channel
axis and spatial axis, which results in the pre-defined the number of input tokens
(e.g ., points). Accordingly, we can only take the pre-defined number of points
with fixed channel length as an input of token-mixing MLPs. Thus, token-mixing
MLPs cannot operate inter-set mixing whose cardinality varies depending on the
point cloud distribution.

D Training details

Semantic segmentation We set batch size as 2. Each batch consists of 40K
points. We initially set the learning rate as 0.1 and decrease the initial learning
rate 10 times smaller at 40, 50 epochs. In total, we train our network for 60
epochs. We use two NVIDIA 1080-Ti GPUs for training. The total training time
takes 44 hours.
Point cloud reconstruction We set batch size as 4. The rest of the training
conditions are identical to that of semantic segmentation. To train our network,
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we modify the header layer of the network that we used for semantic segmenta-
tion task. Specifically, we change the channel dimensionality of the output as 3
that represents [x, y, z].
Object classification We set batch size as 32. We train our network for 300
epochs and schedule the learning rate using cosine-annealing decay. We use the
same SGD optimizer that we used in the semantic segmentation task. In our
header network, we utilize MLPs with dropout layers and set the ratio as 0.5.

E Ablation study (rebuttal)

In this section, we provide the more ablation studies requested by the reviewers.
PointMixer vs. previous studies for 3D points. We agree that there are
similarities between PointMixer and existing methods (e.g ., PointNet++ [56],
PointConv [79], and Point Transformer [96]) when it comes to the intra-set mix-
ing only. However, in this paper, we aim (1) to improve the network expres-
siveness via complementary set operations (intra/inter/hier-set mixing), (2) to
develop a universal set operator, and (3) to design a symmetric network using
PointMixer.

We integrate inter/hier-set mixing blocks into other existing backbones, and
compare those variants with our PointMixer as shown in Table 7. Note that
PointNet++ and Point Transformer use max and vector-attention9 for intra-set
mixing, respectively. The results show that inter/hier-set mixing itself consis-
tently improves the performance of PointNet++ and Point Transformer10 re-
gardless of the block designs. Interestingly, our mixing scheme (softmax) seems
to be more effective than the simple operator (max) as well as the complex
layer (vector-attention).
PointMixer as a 3D version of MLP-Mixer. In [68], “MLP-Mixer con-
tains two types of layers: one with MLPs applied independently to image patches
(i.e., “mixing” the per-location features), and one with MLPs applied across
patches (i.e., “mixing” spatial information).”. Similarly, Synthesizer [65] also
claims that “we show that Random Synthesizers are a form of MLP-Mixers.
Random Synthesizers apply a weight matrix on the length dimension as a form
of projection across the dimension.”. Based on theses concepts, PointMixer can
be seen as a form of both MLP-Mixer and Synthesizer through softmax that
acts as a projection across the token dimensions, i.e., token-mixing.

Moreover, MLP-Mixer variants[5,23,39,89] also focus on the improved token-
mixer. For example, CycleMLP [5] samples pixels in a cyclic style for linear
complexity in token-mixing parts. AS-MLP [39] also removes token-mixing
MLPs, and proposes Axial Shift operations for a better local token communi-
cation. From these token-mixing analyses, the direction of PointMixer is aligned

9 Since vector-attention with an inverse mapping requires many scatter operations, it
also heavily consumes GPU memory.

10 Since there are no available pre-trained weights of Point Transformer on both S3DIS
and ModelNet40, we trained the Point Transformer ourselves with the official codes
provided by the Point Transformer authors.
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Table 7. Semantic segmentation results of existing methods with the proposed inter-
/hier-set mixing schemes on the S3DIS dataset. Note that ‘max’ represents PointNet++
block using maxpool, ‘attn’ means the vector-attention based Point Transformer block,
and ‘softmax’ implies our PointMixer block. All methods are trained for 30 epoch.

Method Intra Inter/Hier Param. (M) mIoU (%)

PointNet++ max ✗ 2.0 57.3
max max 2.3 (↑ 0.3) 62.7 (↑ 5.4)
max attn 8.3 (↑ 6.3) 57.8 (↑ 0.5)
max softmax 2.7 (↑ 0.7) 66.9 (↑ 9.6)

PointTransformer10 attn ✗ 7.8 70.0
attn max 8.1 (↑ 0.3) 70.2 (↑ 0.2)
attn attn 14.1 (↑ 6.3) 70.1 (↑ 0.1)
attn softmax 8.5 (↑ 0.7) 70.3 (↑ 0.3)

PointMixer (ours) softmax softmax 6.5 71.4

with that of MLP-Mixer variants. Therefore, we respectively argue that Point-
Mixer is a 3D version of MLP-Mixer11.
Softmax function is not new. Nonetheless, our paper revisits the existing
module to emphasize the extended use of kNN graph structure. While previous
studies focus on the directional kNN graph (intra-set mixing), PointMixer newly
notices the ‘bi’-directional characteristics of kNN (inter/hier-set mixing). Fur-
thermore, to fully utilize this newly-revisited property, the softmax function can
be one choice instead of using complex modules. In conclusion, our design choice
(replacement token-mixing MLPs with softmax function) is supported by our
analysis of permutation-invariant point set operators (Sec. 3.2) across many re-
cent publications [39,90,96] and our extensive experiments (Table 5 and Table 7).
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