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Abstract. MLP-Mixer has newly appeared as a new challenger against
the realm of CNNs and Transformer. Despite its simplicity compared
to Transformer, the concept of channel-mixing MLPs and token-mixing
MLPs achieves noticeable performance in image recognition tasks. Un-
like images, point clouds are inherently sparse, unordered and irregular,
which limits the direct use of MLP-Mixer for point cloud understand-
ing. To overcome these limitations, we propose PointMixer, a universal
point set operator that facilitates information sharing among unstruc-
tured 3D point cloud. By simply replacing token-mixing MLPs with
Softmax function, PointMixer can “mix” features within/between point
sets. By doing so, PointMixer can be broadly used for intra-set, inter-set,
and hierarchical-set mixing. We demonstrate that various channel-wise
feature aggregation in numerous point sets is better than self-attention
layers or dense token-wise interaction in a view of parameter efficiency
and accuracy. Extensive experiments show the competitive or superior
performance of PointMixer in semantic segmentation, classification, and
reconstruction against Transformer-based methods.

1 Introduction

3D scanning devices, such as LiDAR or RGB-D sensors, are widely used to cap-
ture a scene as 3D point clouds. Unlike images, point clouds are inherently sparse,
unordered, and irregular. These properties make standard neural network archi-
tectures [21,62] hardly applicable. To tackle these challenges, there have been nu-
merous ad hoc solutions, such as sparse convolution networks [8,15], graph neu-
ral networks [57,61,74,75,78,84,6], and point convolution networks [48,67,76,83].
Despite their structural differences, these techniques have all been designed to
extract meaningful feature representation from point clouds [18]. Among exist-
ing solutions, Transformer [7,17,73,96,54] appears to be particularly beneficial
to extract features from point clouds. Indeed, the self-attention layer that en-
compasses the dense token-wise relations is specifically relevant in the context
of processing irregular and unordered 3D points.
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Beyond the well established realm of CNNs and Transformer, MLP-Mixer [68]
proposes a new architecture that exclusively uses MLPs. Based on the pioneering
study [68], concurrent works [5,16,23,35,41,69,88,89] address the locality issue of
MLPs [5,11,23,39,88,89] and discuss the necessity of self-attention [41,65,92].
More recently, Yu et al . [90] claim that the general architecture formulation is
more important than the specific token-wise interaction strategies, such as self-
attention and token-mixing MLPs. Despite an increasing interest, the MLP-like
architectures for point clouds have not yet been fully explored.

Segmentation

Reconstruction

“airplane!”

P
o
in

tM
ix

er

Classification

Intra-set mixing Hier-set mixing

Update Query (★)

within a set

using data (●) 

Update Query (★)

between sets

using data (★)

Symmetric (★↔●)

transition down/up

Inter-set mixing

Fig. 1. We present a MLP-like architecture
for various point cloud processing, which
considers numerous point sets with larger
receptive fields to “mix” information.

In this paper, we introduce the
PointMixer that newly extends the
philosophy of MLP-like architectures
to point cloud analysis. Specifically,
we demonstrate the dense token-wise
interaction are not essential factors
in this context. Instead of using
token-mixing MLPs, we extend the
usage of channel-mixing MLPs into
numerous point sets. As illustrated
in Fig. 1 and Table 1, PointMixer
layer shares and mixes point features
(1) within grouped points (intra-set),
(2) between point sets (inter-set), or
(3) points in different hierarchical
sets. In particular, we newly introduce
the concepts of the inter-set mixing
and the hierarchical-set mixing, which
is clearly different from previous stud-
ies [47,56,96] that only focus on the intra-set mixing. To this end, PointMixer
layer is a universal point set operator that can propagate point responses into
various point sets. We claim that various channel MLPs on numerous point
sets can outperform self-attention layers or token-mixing MLPs for point clouds.
Moreover, the PointMixer network is a general architecture that has symmetric
encoder-decoder blocks fully equipped with PointMixer layers.

We conduct extensive experiments on various 3D tasks. These large-scale ex-
periments demonstrate that our method achieves compelling performance among
Transformer-based studies [51,96]. Our contributions are summarized as below:

• PointMixer as a universal point set operator that facilitates mixing of point
features through various point sets: intra-set, inter-set, and hierarchical-set.

• Highly accurate and parameter-efficient block design that purely consists of
channel-mixing MLPs without token-mixing MLPs.

• Symmetric encoder-decoder network to propagate hierarchical point responses
through PointMixer layer, instead of trilinear interpolation.

• Extensive experiments in various 3D point cloud tasks that highlight the
efficacy of PointMixer network against recent Transformer-based studies.



PointMixer: MLP-Mixer for Point Cloud Understanding 3

Table 1. Technical comparisons. Locality represents the local feature aggregation
among sampled points. We split the function of the set operator as “intra”-set mix,
“inter”-set mix, and “hierarchical”-set mix. Also, we present the symmetric property
of encoder-decoder architecture of related work [55,56,96].

Method Locality
Set operator Symmetric

Token-mixIntra Inter Hier pyramid arch

PointNet [55] ✗ ✗ ✗ ✗ ✗ Pooling
PointNet++ [56] ✔ ✔ ✗ ✗ ✗ Pooling
PointTrans [96] ✔ ✔ ✗ ✗ ✗ Self-attn
PointMLP [47] ✔ ✔ ✗ ✗ ✗ Affine
PointMixer (ours) ✔ ✔ ✔ ✔ ✔ Softmax

2 Related Work

In this section, we revisit previous approaches for point cloud understanding,
and then briefly introduce Transformers and MLP-like architectures.
Deep learning on point clouds. Point clouds are naturally sparse, un-
ordered, and irregular, which makes it difficult to design a deep neural network
for point cloud understanding. To handle such complex data structures, two dis-
tinct philosophies have been investigated: voxel-based and point-based methods.

Voxel-based methods [34,8,14,50,63,98] first quantize an irregular point cloud
into the regular voxel grids, which makes it efficient to search neighbor vox-
els. However, the voxelization process inevitably loses the geometric details of
the original point cloud. This issue often leads to infer inaccurate predictions
though several recent methods [45,64,93] try to alleviate the quantization arti-
facts. Therefore, point-based methods have been actively studied.

PointNet [55] is a pioneering paper that processes an unordered and irregular
points in deep neural architectures. Based on this seminal work, PointNet++ [56]
presents the ways of involving feature hierarchy as well as points’ locality. In de-
tails, this paper adopts k-Nearest Neighbor (kNN) for local neighborhood sam-
pling and the Farthest Point Sampling algorithm (FPS) for feature hierarchy
(e.g ., transition downsampling). This pyramid encoder-decoder network largely
influences on the MLP-based methods [58,95,28,42,25,31,36,26,82,85], point con-
volution studies [33,38,40,43,48,79,83], and graph-based networks [57,61,78,75,84].
However, as stated in Table 1, PointNet++ is limited to capture local point re-
sponses within the scope of intra-set. Moreover, we found that this vanilla archi-
tecture is asymmetric between transition down layers and transition up layers.
While downsampling layers adopt pooling with kNN and FPS, upsampling layers
re-compute kNN and trilinear interpolation, which brings asymmetric feature
propagation in the encoder-decoder architecture. More recently, Transformer-
based study for point cloud processing [96] still suffers from the same issue in
the pyramid architecture design.

Our work unifies a local feature aggregation layer, a downsampling layer, and
an upsampling layer into an universal set operator, named PointMixer layer. This
novel layer brings the symmetric and learnable down/upsampling architecture
for various 3D perception tasks such as object shape classification [80], semantic
segmentation [2] and point cloud reconstruction tasks [7].
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Transformers and MLP-like architectures. Transformer-based architec-
ture has recently become a game changer in both natural language process-
ing [10,59,65,73] and computer vision [3,12,19,44,49,60,70,96,91].

Vision Transformer (ViT) [12] has opened the applicability of Transformers
on visual recognition tasks. Because of the quadratic runtime of the self-attention
layers in Transformers, ViT adopts tokenized inputs that divide the image into
small region of patches [71]. The idea of patch embeddings is widely used in the
following studies that focus on various issues in ViT [30,66]: locality [60,72,13,24]
and hierarchy [77,81,44,4]. With those self-attention layers [60,94], Transformer-
based point cloud studies [96,17,51] demonstrate accurate predictions in both
3D shape classification [80] and semantic segmentation [2]. However, a general-
purpose layer for both local feature learning and down/upsampling has drawn
little attention in handling 3D points.

Recently, there exist trials to go beyond the hegemony of CNNs and Trans-
former by introducing MLP-like architectures. The pioneering paper, MLP-
Mixer [68], presents a MLP-like network constituted of token-mixing MLPs and
channel-mixing MLPs for image classification task. Especially in computer vi-
sion, this MLP-like architectures appear to be a new paradigm with their sim-
ple formulation and superior performance given large-scale training data. Sub-
sequent papers raise issues and develop potentials in MLP-like architectures:
(1) can MLPs handle position-sensitive information or locality [39,23,88,5,11]?
and (2) does self-attention is truly needed [65,41,92]? Though these issues are
still controversial, more recent paper, Metaformer [90], addresses the impor-
tance of general architecture formulation instead of the specific dense token-
wise interaction strategies such as self-attention layers [73,12] or token-mixing
MLPs [68]. Simply, by replacing complicated token-mixing operators with the
average pooling layer, MetaFormer achieves remarkable performance against the
recent MLP-based and Transformer-based studies.

Despite their success, modern MLP-like approaches have not yet been fully
exploited to point clouds. In contrast to recent Transformer-based point cloud
studies [96,51,17,54], our PointMixer network is a general-purpose architecture
that symmetrically upsamples/downsamples points’ responses and truly exploits
the strength of MLPs to operate mixing within/beyond sets of points. By doing
so, we successfully conduct various tasks, 3D semantic segmentation, point cloud
reconstruction, and object classification tasks [2,7,80].

3 Method

In this section, we describe the details of our PointMixer design. For the sake of
clarity, we compare the general formulation of MLP-Mixer with representative
point-based approaches, such as PointNet++ and Point Transformer (Sec. 3.1).
Then, we examine whether MLP-Mixer is of relevance to a point set operator
(Sec. 3.2). Finally, we introduce our PointMixer layer (Sec. 3.3) that is adopted
in our entire network (Sec. 3.4).
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Fig. 2. Block design comparison and PointMixer layer details. Note that SOP means
symmetric operation, such as pooling and summation.

3.1 Preliminary

Let’s assume a point cloud P = {pi}Ni=1 and its corresponding point features X =
{xi}Ni=1 where pi ∈ R3 is the position of the i-th point and xi ∈ RC is its
corresponding feature. The objective is to learn a function f : X → Y to produce
the output point features Y = {yi}Ni=1. Instead of processing the entire point
cloud directly, most approaches treat data locally based on points’ proximity.
For this purpose, k-Nearest Neighbor (kNN) [52,29,97] is widely used to get an
index map of neighbor points, which is denoted as:

Mi = kNN(P,pi), (1)

where Mi is an index map of the K closest points for a query point pi ∈ R3. In
other words, given a query index i, the index map Mi is defined as a set of K
nearest neighbor indices (K = |Mi|). Accordingly, kNN can be understood as a
directional graph that links each query point pi to its K closest neighbor points
Pi = {pj ∈ P|j ∈ Mi} and the corresponding features Xi = {xj ∈ X |j ∈ Mi}.
PointNet++ [56] addresses the problem of PointNet [55] that has difficulty in
capturing local responses. To cope with this problem, it utilizes kNN and Far-
thest Point Sampling algorithm and builds asymmetric encoder-decoder network.
Instead of dealing with the entire point cloud directly, PointNet++ aggregates
set-level responses locally as follows:

yi = maxpoolj∈Mi

(
MLP

(
[xj ;pi − pj ]

))
, (2)

where yi is the output feature vector for the i-th point and [; ] denotes vector
concatenation. By adopting this grouping and sampling strategy, MLPs can
capture local responses from unordered 3D points.
Point Transformer [96] adopts vector subtraction attention as a similarity
measurement for token-wise communication. Following PointNet++, Point Trans-
former also uses kNN to compute local responses. Given a query point feature xi

and its neighbor feature set Xi, Point Transformer operates self-attention layers
to densely relate token interaction as:

yi =
∑

j∈Mi

softmax
(
ψ
(
W1xi−W2xj + δ(pi−pj)

))(
W3xj + δ(pi−pj)

)
, (3)
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where W indicates a linear transformation matrix, ψ(·) denotes an MLPs to
calculate vector similarities, δ(pi −pj) is a positional encoding vector to embed
local structures of 3D points, and pi−pj is the relative distance between a query
point pi and its neighbor point pj .

3.2 MLP-Mixer as Point Set Operator

MLP-Mixer [68] has achieved remarkable success by only using MLPs for im-
age classification. However, when dealing with sparse and unordered points, the
direct application of the MLP-Mixer network is restricted. Let us revisit MLP-
Mixer to ease the understanding of our PointMixer.

The MLP-Mixer layer3 consists of token-mixing MLPs and channel-mixing
MLPs. MLP-Mixer takes K tokens having C-dimensional features, denoted as
X ∈ RK×C , where tokens are features from image patches. It begins with token-
mixing MLPs that transposes the spatial axis and channel axis to mix spatial
information. Then, it continues with channel-mixing MLPs so that input tokens
are mixed in spatial and channel dimensions.

X′ = X+ (W2 ρ(W1(LayerNorm(X))⊤))⊤, (4)

Y = X′ +W4 ρ(W3 LayerNorm(X′)), (5)

where W is the weight matrix of a linear function and ρ is GELU [22]. By
Eq. (4), token-mixing MLPs are sensitive to the order of the input tokens, which
is permutation-variant property. Due to its property, positional encoding is not
required in the vanilla MLP-Mixer as stated in the paper [68]. However, this
property is not desirable for processing irregular and unordered point clouds,
which is different characteristics of uniform and ordered pixels in the image. To
cope with this issue, previous point-based layers [56,96] are independent to orders
of input point, i.e., permutation-invariance4. Moreover, as a point set operator,
vanilla MLP-Mixer layer only computes intra-set relations as PointNet++ and
Point Transformer do. From this analysis, we observe room for improvement in
point cloud understanding. We propose PointMixer layer that is permutation-
invariant and can also be used for a learnable upsampling in Sec. 3.3.

3.3 PointMixer: Universal Point Set Operator

We introduce an approach to embed geometric relations between points’ features
into the MLP-Mixer’s framework. As illustrated in Fig. 2, the PointMixer layer
takes a point set Pi = {pj} and its associated point features set Xi = {xj} as
inputs in order to compute the output feature vector yi. For a point pi, we first
compute a score vector s = [s1, ..., sK ] to aggregate Xi as follows:

sj = g2

([
g1(xj); δ(pi − pj)

])
where ∀j ∈ Mi, (6)

3 We set the relation of terminologies as layer ⊂ block ⊂ network.
4 To deal with unordered points, layers are permutation-invariant (flayer : Xi → yi)

and blocks are permutation-equivariant (fblock : X → Y).
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where g(·) is the channel-mixing MLPs, δ(·) is the positional encoding MLPs,
and xj is a j-th element of the feature vector set Xi. Note that we follow the
relative positional encoding scheme [56,96] to deal with unstructured 3D points.
As a result, we obtain the score vector s ∈ RK . Finally, the features of the K
adjacent points are gathered to produce a new feature vector yi as:

yi =
∑

j∈Mi

softmax(sj)⊙ g3(xj), (7)

where softmax(·) is the Softmax function that normalizes the spatial dimension,
and ⊙ indicates an element-wise multiplication. Note that this symmetric opera-
tion (SOP) in the proposed PointMixer is different from both the average pooling
in MLP-Mixer and the max pooling in PointNet++, as described in Table 1.

As a set operator, PointMixer layer has different characteristics compared
to both MLP-Mixer layer [68]. First, PointMixer layer sees relative positional
information δ(pi − pj) to encode the local structure of a point set. Second, the
vanilla MLP-Mixer layer does not have the Softmax function. Last, PointMixer
layer does not have token-mixing MLPs for scalability to arbitrary number of
neighbor points and for permutation-invariance to deal with unordered points.
Let us explain the reasons behind these differences.
No token-mixing MLPs. There are two reasons that we do not put token-
mixing MLPs into PointMixer layer. First, token-mixing MLPs are permutation-
variant, which makes it incompatible with unordered point clouds. As stated in
Point Transformer [96], permutation-invariant property is a necessary condi-
tion, also for PointMixer layer. Second, while a given pixel in an image sys-
tematically admits 8 adjacent pixels, each 3D point does not have pre-defined
number of neighbors, which is determined by the clustering algorithms, such as
kNN [78,56,96], radius neighborhood [67], or hash table [8,7]. Since token-mixing
MLPs can only take fixed number of input points5, token-mixing MLPs are not
suitable for handling various cardinality of point sets.

Inspired by Synthesizer [65], we alleviate this problem by replacing the token-
mixing MLPs with the Softmax function. We conjecture that the Softmax func-
tion weakly binds token-wise information in a non-parametric manner (i.e., nor-
malization). By doing so, PointMixer layer can calculate arbitrary cardinality
of point sets and have a permutation-invariant property. As described in Fig. 3
and in Table 1, PointMixer layer can be used as a universal point operator for
mixing various types of point sets: intra-set, intra-set, and hierarchical-set.
Intra-set mixing. Given a point set Pi and its corresponding feature set Xi,
intra-set mixing aims to compute point-wise interaction within each set. Usually,
kNN is widely used to cluster neighbor points into groups. For example in Fig. 3-
(a), we apply kNN on each query point where K=3. As a result, a red point (⋆)
has three neighbor points ( ). Based on the index map Mi from kNN, the
PointMixer layer updates a query feature xi using its neighbor feature set Xi, as
in Eq. (6) and Eq. (7). While intra-set mixing is proven to be useful in various
methods [18], the receptive field is bounded within a set, as depicted in Fig. 3-(a).
To overcome this restriction, we propose the inter-set mixing operation.

5 Please refer to the supplementary material for further details.
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Inter-set mixing. This is a new concept of spreading point features between
different sets. Using the index mapping Mi, we can trace back to find another
set Pj that includes a query point pi as their neighbors. This process can be
viewed as the inverse version of kNN, and we define the inverse mapping of Mi

as M−1
i = {j|i ∈ Mj}. For example in Fig. 3-(b), given index mapping M⋆, we

compute inverse index mapping M−1
⋆ . Then, we can find the two adjacent sets

whose query points are black points (⋆). It implies the red point is included
in two adjacent sets, as drawn in Fig. 3-(b)6. In shorts, inverse mapping M−1

i

finds the set index j that includes a point pi. By doing so, inter-set mixing can
aggregate point responses between neighbor sets Pj into the query point pi.
Hierarchical-set mixing. The PointMixer layer is universally applicable for
the transition down/up layers as shown in Fig. 3-(c). For instance, let’s prepare
a point set Ps = {pj}N

′

j=1 that is sampled from original point set Po = {pi}Ni=1

(Ps ⊂ Po). Using a point pj ∈ Ps, we calculate its neighbors from Po and obtain
index mapping Mo→s

j . By putting Mo→s
j in Eq. (6) and Eq. (7), we readily pass

the feature from Po to Ps (i.e., point downsampling), which is computed as:

Mo→s
j = kNN(Po,pj) where ∀pj ∈ Ps. (8)

For point upsampling, we notice that conventional U-Net in both PointNet++
and Point Transformer is not symmetric in terms of downsampling and up-
sampling. This is because the spatial grouping is performed asymmetrically as
visualized in Fig. 4. In details, conventional approaches [56,96,95] build another
kNN map Ms→o

i for the upsampling as below:

Ms→o
i = kNN(Ps,pi) where ∀pi ∈ Po. (9)

6 There is a chance to collect variable number of points after an inverse mapping M−1
i .



PointMixer: MLP-Mixer for Point Cloud Understanding 9

Transition upTransition down

Build a kNN index map
using query (★) for data (●)

Asymmetric

Set another kNN index map 
using query (●) for data (★)

(PointNet++, PointTrans)

Reuse the same kNN index map 
used in transition down

Symmetric
(Ours)

Fig. 4. Comparison of transition layer: symmetric (ours), asymmetric [56,95,96].

However, this is not symmetric because nearest neighbor is not a symmetric
function: even if pi’s nearest neighbor is pj , pj ’s nearest neighbor may not pi.

Instead of creating a new index map Ms→o
i , our PointMixer layer can use(

Mo→s
j

)−1
for upsampling (Fig. 3-(b)) by re-using the original index mapping

from the downsampling Mo→s
j . See Fig. 4 for the symmetric upsampling. The

benefit of this approach is that it does not introduce additional k-Nearest Neigh-
bor search. Furthermore, we can propagate point responses in different hierarchy
based on their scores computed by our PointMixer, instead of using trilinear
interpolation [56,96]. These technical differences results in higher performance
than that of asymmetric design on dense prediction tasks (see Sec. 4.4).

As illustrated in Fig. 5-(b) of the transition down block, we use Farthest Point
Sampling algorithm to produce Ps from Po. Then, we utilize kNN to sample
Ps from Po. The resulting point locations are used to calculate the relative
distance pi−pj . In the transition up block, we keep using the index map Mo→s

j

calculated in the transition down block. To this end, we apply the PointMixer
layer in transition up/down while maintaining the symmetric relation between
the sampled point cloud Ps and the original points Po. We empirically prove that
this symmetric upsampling layer helps the network to predict dense point-level
representations accurately in Sec. 4.

3.4 Network Architecture

In this section, we describe the details of our MLP-like encoder-decoder archi-
tecture as shown in Fig. 5. Our network is composed of several MLP blocks,
such as the transition down blocks, transition up blocks, and Mixer blocks. For
a fair comparison, our network mainly follows the proposed hyper-parameters
in Point Transformer [96] for network composition. Overall, our network takes
a deep pyramid-style network that progressively downsamples points to obtain
global features. For dense prediction tasks, such as semantic segmentation or
point reconstruction, we include upsampling blocks for per-point estimation.
Finally, our header block is designed for task-specific solutions. For classifica-
tion, we take fully-connected layers, dropout layers, and global pooling layer.
For semantic segmentation and point reconstruction, the header block consists
of MLPs without pooling layers.
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4 Experiments

In this section, we evaluate the efficacy and versatility of the proposed Point-
Mixer for various point cloud understanding tasks: semantic segmentation [2],
point reconstruction [7], and object classification [80].

4.1 Semantic Segmentation

To validate the effectiveness of PointMixer for semantic segmentation, we pro-
pose an evaluation on the large-scale point cloud dataset S3DIS [2] consisting
of 271 room reconstructions. Each 3D point of this dataset is assigned to one
label among 13 semantic categories. For the sake of fairness, we meticulously
follow the widely used evaluation protocol proposed by Point Transformer [96].
For training, we set the batch size as 4 and use the SGD optimizer with mo-
mentum and weight decay set to 0.9 and 0.0001 respectively. For evaluation, we
use the class-wise mean Intersection of Union (mIoU), class-wise mean accuracy
(mAcc), and overall point-wise accuracy (OA).

As shown in Table 2 and Fig. 6, PointMixer achieves the state-of-the-art
performance in S3DIS [2] Area 5, though PointMixer network consumes less
parameters (6.5M) than that of Point Transformer (7.8M). Even in class-wise
IoU, PointMixer network outperforms Point Transformer [96], except for a few
classes. While various studies [96,51,17] underline the necessity of dense point-
wise interaction (i.e., self-attention layer), PointMixer successfully outperforms
these approaches purely using Channel MLPs. These results consistently support
that dense token communication is not an essential factor as stated in Synthe-
sizer [65] and Metaformer [90]. We claim that it is much more crucial to mix
information through various point sets. Moreover, the experimental result shows
that our symmetric upsampling layer is more effective for semantic segmentation
than heuristic sampling-based asymmetric upsampling layer which all of previ-
ous approaches [56,67,96] have used. We further discuss the effectiveness of our
hierarchical-set mixing layer with ablation studies in Sec. 4.4.
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Table 2. Semantic segmentation results on S3DIS Area 5 test dataset [2].
Method Param. mAcc mIoU ceiling floor wall column window door table chair sofa book. board clutter

PAConv [83] - 73.0 66.6 94.6 98.6 82.4 26.4 58.0 60.0 80.4 89.7 69.8 74.3 73.5 57.7
KPConv deform [67] - 72.8 67.1 92.8 97.3 82.4 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
MinkowskiNet [8] 37.9M 71.7 65.4 91.8 98.7 86.2 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
PointTrans [96] 7.8M 76.5 70.4 94.0 98.5 86.3 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3
FastPointTrans [54] 37.9M 77.9 70.3 94.2 98.0 86.0 53.8 61.2 77.3 81.3 89.4 60.1 72.8 80.4 58.9

PointMixer (ours) 6.5M 77.4 71.4 94.2 98.2 86.0 43.8 62.1 78.5 90.6 82.2 73.9 79.8 78.5 59.4

Input PointTransformer PointMixer Ground Truth

Fig. 6. Qualitative results in semantic segmentation on S3DIS Area 5 test dataset [2].

4.2 Point Cloud Reconstruction

To highlight the versatility of our approach, we propose a large-scale assess-
ment for the newly introduced task of point cloud reconstruction [7] where an
inaccurate point cloud is jointly denoised, densified, and completed. This exper-
iment is also particularly interesting to evaluate the generalization capabilities
of networks since it allows us to test methods in unmet environments. Specifi-
cally, we train on the synthetic objects of ShapeNetPart [87] and evaluate the
reconstruction accuracy on on unmet indoor scenes from ScanNet [9] (real re-
construction) and ICL-NUIM [20] (synthetic data). Note that in [7], the point
reconstruction is performed in two stages: 1) point upsampling via a sparse
hourglass network, 2) denoising and refinement via Transformer network. For
this evaluation, we propose to replace the second stage of this pipeline with
various architectures (i.e., PointMixer network and previous studies [55,56,96])
to compare their performances. Under the same data augmentation and data
pre-processing as in [7,37], we train PointMixer and previous studies [55,56,96].
For evaluation, we utilize the Chamfer distance (CD) to measure the distance
between the predictions and the ground truth point clouds. Additionally, we use
the accuracy (Acc.), completeness (Cp.), and F1 score to measure the perfor-
mance in occupancy aspects [27,1,86,32].

Though our network is solely trained in a synthetic/object dataset, our net-
work can generalize towards unmet scenes including real-world 3D scans [9]
and synthetic/room-scale point clouds [20] as in Table 3 and Fig. 7. More-
over, our method compares favorably to previous Transformer-based [96,7] and
MLP-based [55,56] studies. In particular, the performance gap between ours and
previous studies become larger in the ScanNet [9] and ICL-NUIM dataset [20],
which indicates better generalization performance.
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Table 3. Point cloud reconstruction results.

Method
ShapeNet-Part [87] ScanNet [9] ICL-NUIM [20]

CD(↓) Acc.(↑) Cp.(↑) F1(↑) CD(↓) Acc.(↑) Cp.(↑) F1(↑) CD(↓) Acc.(↑) Cp.(↑) F1(↑)

PointNet [55] 1.33 63.2 38.8 48.2 3.05 37.5 27.8 32.6 2.98 46.9 33.2 38.1
PointNet++ [56] 1.25 65.1 39.0 50.1 2.97 38.3 29.5 33.4 2.88 48.8 35.8 39.9
PointRecon [7] 1.19 81.0 40.4 53.4 2.86 40.4 30.2 34.1 2.78 54.1 38.1 43.6
PointTrans [96] 1.12 75.9 40.9 52.7 2.79 41.1 32.1 35.6 2.57 51.1 36.4 41.6

PointMixer (ours) 1.11 77.1 41.5 53.7 2.74 42.1 33.5 37.8 2.43 56.5 38.2 44.7

Input PointTransformer PointMixer Ground Truth

Fig. 7. Qualitative results in point reconstruction on ScanNet dataset [9].

4.3 Shape Classification

Table 4. Shape classification re-
sults on ModelNet40 dataset [80].

Method Param. mAcc OA

PointNet [55] - 86.2 89.2
PointNet++ [56] 1.4M - 90.7
PointConv [79] 18.6M - 92.5
DGCNN [78] - 90.2 92.9
KPConv rigid [67] 15.2M - 92.9
PointTrans [96] 5.3M 90.6 93.7
PointMixer (ours) 3.9M 91.4 93.6

The ModelNet40 [80] dataset has 12K CAD
models with 40 object categories. We follow
the official train/test splits to train and eval-
uate ours and the previous studies. For fair
comparison, we follow the data augmenta-
tion and pre-processing as proposed in Point-
Net++ [56], which is also adopted in the re-
cent studies [96,48,67,83]. For evaluation, we
adopt the mean accuracy within each category
(mAcc), and the overall accuracy over all classes (OA) with the same evaluation
protocol with previous approaches [56,96,83]. The results presented in Table 4
show that our approach outperforms the recently proposed techniques. Espe-
cially, PointMixer achieves the highest mAcc with outperforming other methods
by a large margin as 0.8 mAcc, using 1024 points without normals. Moreover,
our network shows this competitive performance with less parameters (3.9M)
against previous studies (Point Transformer7 5.3M, KPConv 15.2M). Based on
these comparisons with Point Transformer and related work, we conclude that
PointMixer network effectively and efficiently aggregates various point responses
through intra-set mixing, inter-set mixing, and downsampling layers, even for
shape classification task.

7 Since there is no official release of codes, we use the best implementation of Point
Transformer available in the public domain, which contains the official code provided
by the authors of Point Transformer and reproduces the reported accuracy.
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4.4 Ablation Study

We conduct an extensive ablation study about the proposed PointMixer in se-
mantic segmentation on the S3DIS dataset [2] and in point cloud reconstruction
on the ShapeNet-Part dataset [87]. First, we proceed the case study of our Point-
Mixer (Table 5, top-right one). Second, we analyze the influence of positional
encoding on PointMixer (Table 5, left one). Last, we compare PointMixer that
is free from token-mixing MLPs (Table 5, bottom-right one).
Universal point set operator. PointMixer can be applicable to act as intra-
set mixing, inter-set mixing, and hierarchical-set mixing. Technically speacking,
intra-set mixing and hierarchical-set mixing for point downsampling utilizes Mi,
but inter-set mixing and hierarchical-set mixing for point upsampling use M−1

i .
This ablation study aims to validate the inverse mapping as well as a function-
ality of PointMixer layer. As in Table 5, especially, when we combine the usage
of hierarchical-set mixing and inter-set mixing, the synergy brings large perfor-
mance improvement in both two tasks, 2.2 mIoU in semantic segmentation and
0.02 Chamfer distance in point reconstruction. It implies that the various ways
of sharing points’ responses are beneficial for point cloud understanding.
Unnecessary token-mixing MLPs. We validate our claims about the role
of the Softmax function, i.e., weakly binding tokens. For this purpose, we re-
place the Softmax functions with token-mixing MLPs, as proposed in the vanilla
MLP-Mixers. Table 5 demonstrates that even without explicit use of token-
mixing MLPs, our PointMixer successfully achieves similar accuracy in semantic
segmentation and point reconstruction. Moreover, it takes 3 days for training
the PointMixer with token-mixing MLPs while our original PointMixer requires
a day (twice faster) with less parameter consumption (18% less). These results
are consistently support to Metaformer [90] and Synthesizer [65] in that dense
token-wise interaction is not an essential choice.
Positional encoding. MLP-Mixer does not use positional encoding since
token-mixing MLPs are sensitive to the order of tokens. However, relative posi-
tion information is an important factor to handle unstructured 3D points. Also,
our PointMixer layer is free from token-mixing MLPs to obtain permutation-
invariant property to function as a universal point set operator. Without any
modification on the layer except positional encoding layers δ(pi−pj), we exper-
iment the effectiveness of positional encoding in all of these usages. As in Table 5,
there is large performance drop when we intentionally omit positional encodings
in our PointMixer layer. Different from MLP-Mixer, we claim the relative posi-
tional encoding is a necessary condition to deal with 3D points.
Symmetric architecture. When we think of the convolutional neural net-
works for image recognition, it is natural to design symmetric encoder network
and decoder network. For instance in the previous paper [53], this paper verify
the importance of symmetric transposed convolution layer design for semantic
segmentation task. In contrast, point-based studies [96,95] dominantly rely on
the asymmetric PointNet++ architecture, which is similar to FCN [46].

The top-right sub-table in Table 5 supports our claim. When we do not
use hierarchical-set mixing, the architecture become asymmetric, and transition
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Table 5. Ablation study about positional encoding (left), types of mixing (top-right)
and token-mixing MLPs (bottom-right). In the bottom-right table, we denote channel-
mixing MLPs and token-mixing MLPs as C-MLP and T-MLP, respectively. Note that
number of parameters (Param.) and training time (Time) is measured under semantic
segmentation task on S3DIS dataset [2].

Preserve (✓) Semantic seg Point recon
Pos. enc. in

mIoU mAcc CD(↓) F1(↑)
Intra Inter Hier

64.7 71.8 1.13 53.0
✓ 65.9 72.5 1.13 53.0

✓ 64.0 70.5 1.13 53.0
✓ ✓ 66.1 72.9 1.12 53.6

✓ 69.6 76.3 1.12 53.6
✓ ✓ 70.2 76.8 1.13 52.5
✓ ✓ 69.9 76.5 1.13 53.5
✓ ✓ ✓ 71.4 77.4 1.11 53.7

Preserve (✓) Semantic seg Point recon
Intra Inter Hier mIoU mAcc CD(↓) F1(↑)

✓ 69.2 75.8 1.13 53.5
✓ ✓ 69.1 75.7 1.12 53.5
✓ ✓ 69.3 76.6 1.11 53.5
✓ ✓ ✓ 71.4 77.4 1.11 53.7

C-MLP T-MLP Softmax Param. Time mIoU CD(↓)

✓ 6.5M 40h 58.3 1.23
✓ ✓ 6.5M 44h 71.4 1.11

✓ ✓ 7.4M 88h 71.1 1.12
✓ ✓ ✓ 7.4M 95h 71.1 1.11

down and up layers are identical to that in PointNet++ [56] and Point Trans-
former [96]. It turns out that the asymmetric architecture (the second row)
degrades the performance of the network (the last row) in terms of both mIoU
and Chamfer distance by 2.3 absolute percentage and 0.01, respectively. More-
over, when we apply inter-set mixing, the performance gap further increases in
both semantic segmentation and point reconstruction tasks.

5 Conclusion

We propose a MLP-like architecture for point cloud understanding, which fo-
cuses on sharing point responses in numerous and diverse point sets through
a universal point set operator, PointMixer. Regardless of the cardinality of a
point set, PointMixer layer can “mix” point responses in intra-set, inter-set,
and hierarchical-set. Moreover, we present a point-based general architecture
that involves symmetric encoder-decoder blocks for propagating information
through hierarchical point sets. Extensive experiments validate the efficacy of
our PointMixer network with superior or compelling performance compared to
Transformer-based studies. Through out this paper, we claim that dense token-
wise calculation, such as self-attention layers or token-mixing MLPs, is not an
essential choice for point cloud processing. Instead, we emphasize the importance
of information sharing toward various point sets.
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