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Abstract. Temporal modeling of objects is a key challenge in multiple-
object tracking (MOT). Existing methods track by associating detections
through motion-based and appearance-based similarity heuristics. The
post-processing nature of association prevents end-to-end exploitation of
temporal variations in video sequence.
In this paper, we propose MOTR, which extends DETR [6] and intro-
duces “track query” to model the tracked instances in the entire video.
Track query is transferred and updated frame-by-frame to perform iter-
ative prediction over time. We propose tracklet-aware label assignment
to train track queries and newborn object queries. We further propose
temporal aggregation network and collective average loss to enhance tem-
poral relation modeling. Experimental results on DanceTrack show that
MOTR significantly outperforms state-of-the-art method, ByteTrack [42]
by 6.5% on HOTA metric. On MOT17, MOTR outperforms our concur-
rent works, TrackFormer [18] and TransTrack [29], on association per-
formance. MOTR can serve as a stronger baseline for future research on
temporal modeling and Transformer-based trackers. Code is available at
https://github.com/megvii-research/MOTR.
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1 Introduction

Multiple-object tracking (MOT) predicts the trajectories of instances in con-
tinuous image sequences [39,2]. Most of existing methods separate the MOT
temporal association into appearance and motion: appearance variance is usu-
ally measured by pair-wise Re-ID similarity [37,43] while motion is modeled via
IoU [4] or Kalman Filtering [3] heuristic. These methods require similarity-based
matching for post-processing, which becomes the bottleneck of temporal infor-
mation flow across frames. In this paper, we aim to introduce a fully end-to-end
MOT framework featuring joint motion and appearance modeling.

Recently, DETR [6,45] was proposed for end-to-end object detection. It for-
mulates object detection as a set prediction problem. As shown in Fig. 1(a),
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Fig. 1: (a) DETR achieves end-to-end detection by interacting object queries
with image features and performs one-to-one assignment between the updated
queries and objects. (b) MOTR performs set of sequence prediction by updating
the track queries. Each track query represents a track. Best viewed in color.

object queries, served as a decoupled representation of objects, are fed into the
Transformer decoder and interacted with the image feature to update their rep-
resentation. Bipartite matching is further adopted to achieve one-to-one assign-
ment between the object queries and ground-truths, eliminating post-processes,
like NMS. Different from object detection, MOT can be regarded as a sequence
prediction problem. The way to perform sequence prediction in the end-to-end
DETR system is an open question.

Iterative prediction is popular in machine translation [30,31]. The output
context is represented by a hidden state, and sentence features iteratively interact
with the hidden state in the decoder to predict the translated words. Inspired by
these advances in machine translation, we intuitively regard MOT as a problem
of set of sequence prediction since MOT requires a set of object sequences. Each
sequence corresponds to an object trajectory. Technically, we extend object query
in DETR to track query for predicting object sequences. Track queries are served
as the hidden states of object tracks. The representations of track queries are
updated in the Transformer decoder and used to predict the object trajectory
iteratively, as shown in Fig. 1(b). Specifically, track queries are updated through
self-attention and cross-attention by frame features. The updated track queries
are further used to predict the bounding boxes. The track of one object can be
obtained from all predictions of one track query in different frames.

To achieve the goal above, we need to solve two problems: 1) track one
object by one track query; 2) deal with newborn and terminated objects. To
solve the first problem, we introduce tracklet-aware label assignment (TALA).
It means that predictions of one track query are supervised by bounding box
sequences with the same identity. To solve the second problem, we maintain
a track query set of variable lengths. Queries of newborn objects are merged
into this set while queries of terminated objects are removed. We name this
process the entrance and exit mechanism. In this way, MOTR does not require
explicit track associations during inference. Moreover, the iterative update of
track queries enables temporal modeling regarding both appearance and motion.

To enhance the temporal modeling, we further propose collective average loss
(CAL) and temporal aggregation network (TAN). With the CAL, MOTR takes
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video clips as input during training. The parameters of MOTR are updated
based on the overall loss calculated for the whole video clip. TAN introduces a
shortcut for track query to aggregate the historical information from its previous
states via the key-query mechanism in Transformer.

MOTR is a simple online tracker. It is easy to develop based on DETR
with minor modifications on label assignment. It is a truly end-to-end MOT
framework, requiring no post-processes, such as the track NMS or IoU match-
ing employed in our concurrent works, TransTrack [29], and TrackFormer [18].
Experimental results on MOT17 and DanceTrack datasets show that MOTR
achieves promising performance. On DanceTrack [28], MOTR outperforms the
state-of-the-art ByteTrack [42] by 6.5% on HOTA metric and 8.1% on AssA.

To summarize, our contributions are listed as below:

– We present a fully end-to-end MOT framework, named MOTR. MOTR can
implicitly learn the appearance and position variances in a joint manner.

– We formulate MOT as a problem of set of sequence prediction. We generate
track query from previous hidden states for iterative update and prediction.

– We propose tracklet-aware label assignment for one-to-one assignment be-
tween track queries and objects. An entrance and exit mechanism is intro-
duced to deal with newborn and terminated tracks.

– We further propose CAL and TAN to enhance the temporal modeling.

2 Related Work

Transformer-based Architectures. Transformer [31] was first introduced to
aggregate information from the entire input sequence for machine translation.
It mainly involves self-attention and cross-attention mechanisms. Since that,
it was gradually introduced to many fields, such as speech processing [13,7]
and computer vision [34,5]. Recently, DETR [6] combined convolutional neu-
ral network (CNN), Transformer and bipartite matching to perform end-to-end
object detection. To achieve the fast convergence, Deformable DETR [45] intro-
duced deformable attention module into Transformer encoder and Transformer
decoder. ViT [9] built a pure Transformer architecture for image classification.
Further, Swin Transformer [16] proposed shifted windowing scheme to perform
self-attention within local windows, bringing greater efficiency. VisTR [36] em-
ployed a direct end-to-end parallel sequence prediction framework to perform
video instance segmentation.
Multiple-Object Tracking. Dominant MOT methods mainly followed the
tracking-by-detection paradigm [3,12,22,24,39]. These approaches usually first
employ object detectors to localize objects in each frame and then perform track
association between adjacent frames to generate the tracking results. SORT [3]
conducted track association by combining Kalman Filter [38] and Hungarian
algorithm [11]. DeepSORT [39] and Tracktor [2] introduced an extra cosine dis-
tance and compute the appearance similarity for track association. Track-RCNN
[26], JDE [37] and FairMOT [43] further added a Re-ID branch on top of object
detector in a joint training framework, incorporating object detection and Re-ID
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feature learning. TransMOT [8] builds a spatial-temporal graph transformer for
association. Our concurrent works, TransTrack [29] and TrackFormer [18] also
develop Transformer-based frameworks for MOT. For direct comparison with
them, please refer to Sec. 3.7.
Iterative Sequence Prediction. Predicting sequence via sequence-to-sequence
(seq2seq) with encoder-decoder architecture is popular in machine translation
[30,31] and text recognition [25]. In seq2seq framework, the encoder network
encodes the input into intermediate representation. Then, a hidden state with
task-specific context information is introduced and iteratively interacted with
the intermediate representation to generate the target sequence through the
decoder network. The iterative decode process contains several iterations. In
each iteration, hidden state decodes one element of target sequence.

3 Method

3.1 Query in Object Detection

DETR [6] introduced a fixed-length set of object queries to detect objects. Ob-
ject queries are fed into the Transformer decoder and interacted with image
features, extracted from Transformer encoder to update their representation.
Bipartite matching is further adopted to achieve one-to-one assignment between
the updated object queries and ground-truths. Here, we simply write the object
query as “detect query” to specify the query used for object detection.

3.2 Detect Query and Track Query

When adapting DETR from object detection to MOT, two main problems arise:
1) how to track one object by one track query; 2) how to handle newborn and
terminated objects. We extend detect queries to track queries in this paper.
Track query set is updated dynamically, and the length is variable. As shown
in Fig. 2, the track query set is initialized to be empty, and the detect queries
in DETR are used to detect newborn objects (object 3 at T2). Hidden states of
detected objects produces track queries for the next frame; track queries assigned
to terminated objects are removed from the track query set (object 2 at T4).

3.3 Tracklet-Aware Label Assignment

In DETR, one detect (object) query may be assigned to any object in the im-
age since the label assignment is determined by performing bipartite matching
between all detect queries and ground-truths. While in MOTR, detect queries
are only used to detect newborn objects while track queries predict all tracked
objects. Here, we introduce the tracklet-aware label assignment (TALA) to solve
this problem.

Generally, TALA consists of two strategies. For detect queries, we modify the
assignment strategy in DETR as newborn-only, where bipartite matching is
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Fig. 2: Update process of detect (object) queries and track queries under some
typical MOT cases. Track query set is updated dynamically, and the length
is variable. Track query set is initialized to be empty, and the detect queries
are used to detect newborn objects. Hidden states of all detected objects are
concatenated to produce track queries for the next frame. Track queries assigned
to terminated objects are removed from the track query set.

conducted between the detect queries and the ground-truths of newborn objects.
For track queries, we design an target-consistent assignment strategy. Track
queries follow the same assignment of previous frames and are therefore excluded
from the aforementioned bipartite matching.

Formally, we denote the predictions of track queries as Ŷtr and predictions of
detect queries as Ŷdet. Ynew is the ground-truths of newborn objects. The label
assignment results for track queries and detect queries can be written as ωtr and
ωdet. For frame i, label assignment for detect queries is obtained from bipartite
matching among detect queries and newborn objects, i.e.,

ωi
det = argmin

ωi
det∈Ωi

L(Ŷ i
det|ωi

det
, Y i

new), (1)

where L is the pair-wise matching cost defined in DETR and Ωi is the space
of all bipartite matches among detect queries and newborn objects. For track
query assignment, we merge the assignments for newborn objects and tracked
objects from the last frame, i.e., for i > 1:

ωi
tr = ωi−1

tr ∪ ωi−1
det . (2)

For the first frame (i = 1), track query assignment ω1
tr is an empty set ∅ since

there are no tracked objects for the first frame. For successive frames (i > 1),
the track query assignment ωi

tr is the concatenation of previous track query
assignment ωi−1

tr and newborn object assignment ωi−1
det .

In practice, the TALA strategy is simple and effective thanks to the powerful
attention mechanism in Transformer. For each frame, detect queries and track
queries are concatenated and fed into the Transformer decoder to update their
representation. Detect queries will only detect newborn objects since query inter-
action by self-attention in the Transformer decoder will suppress detect queries
that detect tracked objects. This mechanism is similar to duplicate removal in
DETR that duplicate boxes are suppressed with low scores.
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Fig. 3: The overall architecture of MOTR. “Enc” represents a convolutional neu-
ral network backbone and the Transformer encoder that extracts image features
for each frame. The concatenation of detect queries qd and track queries qtr is
fed into the Deformable DETR decoder (Dec) to produce the hidden states. The

hidden states are used to generate the prediction Ŷ of newborn and tracked
objects. The query interaction module (QIM) takes the hidden states as input
and produces track queries for the next frame.

3.4 MOTR Architecture

The overall architecture of MOTR is shown in Fig. 3. Video sequences are fed into
the convolutional neural network (CNN) (e.g. ResNet-50 [10]) and Deformable
DETR [45] encoder to extract frame features.

For the first frame, there are no track query and we only feed the fixed-
length learnable detect queries (qd in Fig. 3) into the Deformable DETR [45]
decoder. For successive frames, we feed the concatenation of track queries from
the previous frame and the learnable detect queries into the decoder. These
queries interact with image feature in the decoder to generate the hidden state for
bounding box prediction. The hidden state is also fed into the query interaction
module (QIM) to generate the track queries for the next frame.

During training phase, the label assignment for each frame is described in
Sec. 3.3. All predictions of the video clip are collected into a prediction bank {Ŷ1,

Ŷ2, . . . , ŶN}, and we use the proposed collective average loss (CAL) described in
Sec. 3.6 for supervision. During inference time, the video stream can be processed
online and generate the prediction for each frame.

3.5 Query Interaction Module

In this section, we describe query interaction module (QIM). QIM includes object
entrance and exit mechanism and temporal aggregation network (TAN).
Object Entrance and Exit. As mentioned above, some objects in video se-
quences may appear or disappear at intermediate frames. Here, we introduce the
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Fig. 4: The structure of query interaction module (QIM). The inputs of QIM
are the hidden state produced by Transformer decoder and the corresponding
prediction scores. In the inference stage, we keep newborn objects and drop
exited objects based on the confidence scores. Temporal aggregation network
(TAN) enhances long-range temporal modeling.

way we deal with the newborn and terminated objects in our method. For any
frame, track queries are concatenated with the detect queries and input to the
Transformer decoder, producing the hidden state (see the left side of Fig. 4).

During training, hidden states of terminated objects are removed if the
matched objects disappeared in ground-truths or the intersection-over-union
(IoU) between predicted bounding box and target is below a threshold of 0.5.
It means that the corresponding hidden states will be filtered if these objects
disappear at current frame while the rest hidden states are reserved. For new-
born objects, the corresponding hidden states are kept based on the assignment
of newborn object ωi

det defined in Eq. 1.

For inference, we use the predicted classification scores to determine appear-
ance of newborn objects and disappearance of tracked objects, as shown in Fig. 4.
For object queries, predictions whose classification scores are higher than the en-
trance threshold τen are kept while other hidden states are removed. For track
queries, predictions whose classification scores are lower than the exit threshold
τex for consecutive M frames are removed while other hidden states are kept.

Temporal Aggregation Network. Here, we introduce the temporal aggrega-
tion network (TAN) in QIM to enhance temporal relation modeling and provide
contextual priors for tracked objects.

As shown in Fig. 4, the input of TAN is the filtered hidden state for tracked
objects (object “1”). We also collect the track query qitr from the last frame
for temporal aggregation. TAN is a modified Transformer decoder layer. The
track query from the last frame and the filtered hidden state are summed to
be the key and query components of the multi-head self-attention (MHA). The
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hidden state alone is the value component of MHA. After MHA, we apply a
feed-forward network (FFN) and the results are concatenated with the hidden
state for newborn objects (object “3”) to produce the track query set qi+1

tr for
the next frame.

3.6 Collective Average Loss

Training samples are important for temporal modeling of track since MOTR
learns temporal variances from data rather than hand-crafted heuristics like
Kalman Filtering. Common training strategies, like training within two frames,
fail to generate training samples of long-range object motion. Different from
them, MOTR takes video clips as input. In this way, training samples of long-
range object motion can be generated for temporal learning.

Instead of calculating the loss frame-by-frame, our collective average loss
(CAL) collects the multiple predictions Ŷ = {Ŷi}Ni=1. Then the loss within the
whole video sequence is calculated by ground-truths Y = {Yi}Ni=1 and the match-
ing results ω = {ωi}Ni=1. CAL is the overall loss of the whole video sequence,
normalized by the number of objects:

Lo(Ŷ |ω, Y ) =

N∑
n=1

(L(Ŷ i
tr|ωi

tr
, Y i

tr) + L(Ŷ i
det|ωi

det
, Y i

det))

N∑
n=1

(Vi)

(3)

where Vi = V i
tr+V i

det denotes the total number of ground-truths objects at frame
i. V i

tr and V i
det are the numbers of tracked objects and newborn objects at frame

i, respectively. L is the loss of single frame, which is similar to the detection loss
in DETR. The single-frame loss L can be formulated as:

L(Ŷi|ωi
, Yi) = λclsLcls + λl1Ll1 + λgiouLgiou (4)

where Lcls is the focal loss [14]. Ll1 denotes the L1 loss and Lgiou is the general-
ized IoU loss [21]. λcls, λl1 and λgiou are the corresponding weight coefficients.

3.7 Discussion

Based on DETR, our concurrent works, TransTrack [29] and TrackFormer [18]
also develop the Transformer-based frameworks for MOT. However, our method
shows large differences compared to them:

TransTrack models a full track as a combination of several independent
short tracklets. Similar to the track-by-detection paradigm, TransTrack decou-
ples MOT as two sub-tasks: 1) detect object pairs as short tracklets within
two adjacent frames; 2) associate short tracklets as full tracks by IoU-matching.
While for MOTR, we model a full track in an end-to-end manner through the
iterative update of track query, requiring no IoU-matching.
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Table 1: Comparison with other MOT
methods based on Transformer.
Method IoU match NMS ReID

TransTrack [29] !

TrackFormer [18] ! !
MOTR (ours)

Table 2: Statistics of chosen datasets
for evaluation.
Datasets Class Frame Video ID

DanceTrack [28] 1 106k 100 990
MOT17 [19] 1 11k 14 1342
BDD100K [41] 8 318k 1400 131k

TrackFormer shares the idea of track query with us. However, TrackFormer
still learns within two adjacent frames. As discussed in Sec. 3.6, learning within
short-range will result in relatively weak temporal learning. Therefore, Track-
Former employs heuristics, such as Track NMS and Re-ID features, to filter out
duplicate tracks. Different from TrackFormer, MOTR learns stronger temporal
motion with CAL and TAN, removing the need of those heuristics. For direct
comparison with TransTrack and TrackFormer, please refer to the Table 1.

Here, we clarify that we started this work independently long before Track-
Former and TransTrack appear on arXiv. Adding that they are not formally
published, we treat them as concurrent and independent works instead of previ-
ous works on which our work is built upon.

4 Experiments

4.1 Datasets and Metrics

Datasets. For comprehensive evaluation, we conducted experiments on three
datasets: DanceTrack [28], MOT17 [19], and BDD100k [41]. MOT17 [19] contains
7 training sequences and 7 test sequences. DanceTrack [28] is a recent multi-
object tracking dataset featuring uniform appearance and diverse motion. It
contains more videos for training and evaluation thus providing a better choice
to verify the tracking performance. BDD100k [41] is an autonomous driving
dataset with an MOT track featuring multiple object classes. For more details,
please refer to the statistics of datasets, shown in Table 2.
Evaluation Metrics. We follow the standard evaluation protocols to evaluate
our method. The common metrics include Higher Order Metric for Evaluat-
ing Multi-object Tracking [17] (HOTA, AssA, DetA), Multiple-Object Tracking
Accuracy (MOTA), Identity Switches (IDS) and Identity F1 Score (IDF1).

4.2 Implementation Details

Following the settings in CenterTrack [44], MOTR adopts several data augmen-
tation methods, such as random flip and random crop. The shorter side of the
input image is resized to 800 and the maximum size is restricted to 1536. The
inference speed on Tesla V100 at this resolution is about 7.5 FPS. We sample
keyframes with random intervals to solve the problem of variable frame rates.
Besides, we erase the tracked queries with the probability pdrop to generate more
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samples for newborn objects and insert track queries of false positives with the
probability pinsert to simulate the terminated objects. All the experiments are
conducted on PyTorch with 8 NVIDIA Tesla V100 GPUs. We also provide a
memory-optimized version that can be trained on NVIDIA 2080 Ti GPUs.

We built MOTR upon Deformable-DETR [45] with ResNet50 [10] for fast
convergence. The batch size is set to 1 and each batch contains a video clip of 5
frames. We train our model with the AdamW optimizer with the initial learning
rate of 2.0·10−4. For all datasets, we initialize MOTR with the official Deformable
DETR [45] weights pre-trained on the COCO [15] dataset. On MOT17, we
train MOTR for 200 epochs and the learning rate decays by a factor of 10 at
the 100th epoch. For state-of-the-art comparison, we train on the joint dataset
(MOT17 training set and CrowdHuman [23] val set). For ∼5k static images
in CrowdHuman val set, we apply random shift as in [44] to generate video
clips with pseudo tracks. The initial length of video clip is 2 and we gradually
increase it to 3,4,5 at the 50th,90th,150th epochs, respectively. The progressive
increment of video clip length improves the training efficiency and stability.
For the ablation study, we train MOTR on the MOT17 training set without
using the CrowdHuman dataset and validate on the 2DMOT15 training set. On
DanceTrack, we train for 20 epochs on the train set and learning rate decays
at the 10th epoch. We gradually increase the clip length from 2 to 3,4,5 at the
5th,9th,15th epochs. On BDD100k, we train for 20 epochs on the train set and
learning rate decays at the 16th epoch. We gradually increase the clip length
from 2 to 3 and 4 at the 6th and 12th epochs.

4.3 State-of-the-art Comparison on MOT17

Table 3 compares our approach with state-of-the-art methods on MOT17 test
set. We mainly compare MOTR with our concurrent works based on Trans-
former: TrackFormer [18] and TransTrack [29]. Our method gets higher IDF1
scores, surpassing TransTrack and TrackFormer by 4.5%. The performance of
MOTR on the HOTA metric is much higher than TransTrack by 3.1%. For the
MOTA metric, our method achieves much better performance than TrackFormer
(71.9% vs. 65.0%). Interestingly, we find that the performance of TransTrack is
better than our MOTR on MOTA. We suppose the decoupling of detection and
tracking branches in TransTrack indeed improves the object detection perfor-
mance. While in MOTR, detect and track queries are learned through a shared
Transformer decoder. Detect queries are suppressed on detecting tracked objects,
limiting the detection performance on newborn objects.

If we compare the performance with other state-of-the-art methods, like Byte-
Track [42], it shows that MOTR is frustratingly inferior to them on the
MOT17 dataset. Usually, state-of-the-art performance on the MOT17 dataset
is dominated by trackers with good detection performance to cope with various
appearance distributions. Also, different trackers tend to employ different detec-
tors for object detection. It is pretty difficult for us to fairly verify the motion
performance of various trackers. Therefore, we argue that the MOT17 dataset
alone is not enough to fully evaluate the tracking performance of MOTR. We
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Table 3: Performance comparison between MOTR and existing methods on the
MOT17 dataset under the private detection protocols. The number is marked in
bold if it is the best among the Transformer-based methods.

Methods HOTA↑ AssA↑ DetA↑ IDF1↑ MOTA↑ IDS↓
CNN-based:
Tracktor++[2] 44.8 45.1 44.9 52.3 53.5 2072
CenterTrack[44] 52.2 51.0 53.8 64.7 67.8 3039
TraDeS [40] 52.7 50.8 55.2 63.9 69.1 3555
QDTrack [20] 53.9 52.7 55.6 66.3 68.7 3378
GSDT [35] 55.5 54.8 56.4 68.7 66.2 3318
FairMOT[43] 59.3 58.0 60.9 72.3 73.7 3303
CorrTracker [32] 60.7 58.9 62.9 73.6 76.5 3369
GRTU [33] 62.0 62.1 62.1 75.0 74.9 1812
MAATrack [27] 62.0 60.2 64.2 75.9 79.4 1452
ByteTrack [42] 63.1 62.0 64.5 77.3 80.3 2196

Transformer-based:
TrackFormer [18] / / / 63.9 65.0 3528
TransTrack[29] 54.1 47.9 61.6 63.9 74.5 3663
MOTR (ours) 57.8 55.7 60.3 68.6 73.4 2439

further evaluate the tracking performance on DanceTrack [28] dataset with uni-
form appearance and diverse motion, as described next.

4.4 State-of-the-art Comparison on DanceTrack

Recently, DanceTrack [28], a dataset with uniform appearance and diverse mo-
tion, is introduced (see Tab. 2). It contains much more videos for evaluation
and provides a better choice to verify the tracking performance. We further
conduct the experiments on the DanceTrack dataset and perform the perfor-
mance comparison with state-of-the-art methods in Tab. 4. It shows that MOTR
achieves much better performance on DanceTrack dataset. Our method gets a
much higher HOTA score, surpassing ByteTrack by 6.5%. For the AssA metric,
our method also achieves much better performance than ByteTrack (40.2% vs.
32.1%). While for the DetA metric, MOTR is inferior to some state-of-the-art
methods. It means that MOTR performs well on temporal motion learning while
the detection performance is not that good. The large improvements on HOTA
are mainly from the temporal aggregation network and collective average loss.

4.5 Generalization on Multi-Class Scene

Re-ID based methods, like FairMOT [43], tend to regard each tracked object
(e.g., person) as a class and associate the detection results by the feature similar-
ity. However, the association will be difficult when the number of tracked objects
is very large. Different from them, each object is denoted as one track query in
MOTR and the track query set is of dynamic length. MOTR can easily deal with
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Table 4: Performance comparison between MOTR and existing methods on the
DanceTrack[28] dataset. Results for existing methods are from DanceTrack [28].

Methods HOTA AssA DetA MOTA IDF1

CenterTrack [44] 41.8 22.6 78.1 86.8 35.7
FairMOT [43] 39.7 23.8 66.7 82.2 40.8
QDTrack [20] 45.7 29.2 72.1 83.0 44.8
TransTrack [29] 45.5 27.5 75.9 88.4 45.2
TraDes [40] 43.3 25.4 74.5 86.2 41.2
ByteTrack [42] 47.7 32.1 71.0 89.6 53.9

MOTR (ours) 54.2 40.2 73.5 79.7 51.5

Table 5: Performance comparison between MOTR and existing methods on the
BDD100k[41] validation set.

Methods mMOTA mIDF1 IDSw

Yu et al. [41] 25.9 44.5 8315
DeepBlueAI [1] 26.9 / 13366
MOTR (ours) 32.0 43.5 3493

the multi-class prediction problem, by simply modifying the class number of the
classification branch. To verify the performance of MOTR on multi-class scenes,
we further conduct the experiments on the BDD100k dataset (see Tab. 5). Re-
sults on bdd100k validation set show that MOTR performs well on multi-class
scenes and achieves promising performance with fewer ID switches.

4.6 Ablation Study

MOTR Components. Table 6a shows the impact of integrating different com-
ponents. Integrating our components into the baseline can gradually improve
overall performance. Using only object query of as original leads to numerous
IDs since most objects are treated as entrance objects. With track query in-
troduced, the baseline is able to handle tracking association and improve IDF1
from 1.2 to 49.8. Further, adding TAN to the baseline improves MOTA by 7.8%
and IDF1 by 13.6%. When using CAL during training, there are extra 8.3% and
7.1% improvements in MOTA and IDF1, respectively. It demonstrates that TAN
combined with CAL can enhance the learning of temporal motion.

Collective Average Loss. Here, we explored the impact of video sequence
length on the tracking performance in CAL. As shown in Table 6b, when the
length of the video clip gradually increases from 2 to 5, MOTA and IDF1 metrics
are improved by 8.3% and 7.1%, respectively. Thus, multi-frame CAL can greatly
boost the tracking performance. We explained that multiple frames CAL can help
the network to handle some hard cases such as occlusion scenes. We observed
that duplicated boxes, ID switches, and object missing in occluded scenes are
significantly reduced. To verify it, we provide some visualizations in Fig. 5.
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Table 6: Ablation studies on our proposed MOTR. All experiments use the
single-level C5 feature in ResNet50.

(a) The effect of our contributions. TrackQ:
track query. TAN: temporal aggregation net-
work. CAL: collective average loss.

TrackQ TAN CAL MOTA↑ IDF1↑ IDS↓
- 1.2 33198

✓ 37.1 49.8 562
✓ ✓ 44.9 63.4 257
✓ ✓ 47.5 56.1 417
✓ ✓ ✓ 53.2 70.5 155

(b) The impact of increasing video clip
length in Collective Average Loss dur-
ing training on tracking performance.

Length MOTA↑ IDF1↑ IDS↓
2 44.9 63.4 257
3 51.6 59.4 424
4 50.6 64.0 314
5 53.2 70.5 155

(c) Analysis on random track query eras-
ing probability pdrop during training.

pdrop MOTA↑ IDF1↑ IDS↓
5e-2 49.0 60.4 411
0.1 53.2 70.5 155
0.3 51.1 69.0 180
0.5 48.5 62.0 302

(d) Effect of random false positive inserting
probability pinsert during training.

pinsert MOTA↑ IDF1↑ IDS↓
0.1 51.2 71.7 148
0.3 53.2 70.5 155
0.5 52.1 62.0 345
0.7 50.7 57.7 444

(e) The exploration of different combinations of
τex and τen in QIM network.

τex 0.6 0.6 0.6 0.5 0.6 0.7
τen 0.7 0.8 0.9 0.8 0.8 0.8

MOTA↑ 52.7 53.2 53.1 53.5 53.2 52.8
IDF1↑ 69.8 70.5 70.1 70.5 70.5 68.3
IDS↓ 181 155 142 153 155 181

(f) The effect of random sampling in-
terval on tracking performance.

Intervals MOTA↑ IDF1↑ IDS↓
3 53.2 64.8 218
5 50.8 62.8 324
10 53.2 70.5 155
12 53.1 69 158

Erasing and Inserting Track Query. In MOT datasets, there are few train-
ing samples for two cases: entrance objects and exit objects in video sequences.
Therefore, we adopt track query erasing and inserting to simulate these two cases
with probability pdrop and pinsert, respectively. Table 6c reports the performance
using different value of pdrop during training. MOTR achieves the best perfor-
mance when pdrop is set to 0.1. Similar to the entrance objects, track queries
transferred from the previous frame, whose predictions are false positives, are
inserted into the current frame to simulate the case of object exit. In Table 6d,
we explore the impact on tracking performance of different pinsert. When pro-
gressively increasing pinsert from 0.1 to 0.7, our MOTR achieves the highest
score on MOTA when pinsert is set to 0.3 while the IDF1 score is decreasing.
Object Entrance and Exit Threshold. Table 6e investigates the impact of
different combination of object entrance threshold τen and exit threshold τex
in QIM. As we vary the object entrance threshold τen, we can see that the
performance is not that sensitive to τen (within 0.5% on MOTA) and using an
entrance threshold of 0.8 produces relatively better performance. We also further
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Fig. 5: The effect of CAL on solving (a) duplicated boxes and (b) ID switch
problems. Top and bottom rows are the tracking results without and with CAL,
respectively.

conduct experiments by varying the object exit threshold τex. It is shown that
using a threshold of 0.5 results in slightly better performance than that of 0.6.
In our practice, τen with 0.6 shows better performance on the MOT17 test set.
Sampling Interval. In Table 6f, we evaluate the effect of random sampling
interval on tracking performance during training. When the sampling interval
increases from 2 to 10, the IDS decreases significantly from 209 to 155. During
training, the network is easy to fall into a local optimal solution when the frames
are sampled in a small interval. Appropriate increment on sampling interval can
simulate real scenes. When the random sampling interval is greater than 10,
the tracking framework fails to capture such long-range dynamics, leading to
relatively worse tracking performance.

5 Limitations

MOTR, an online tracker, achieves end-to-end multiple-object tracking. It im-
plicitly learns the appearance and position variances in a joint manner thanks to
the DETR architecture as well as the tracklet-aware label assignment. However,
it also has several shortcomings. First, the performance of detecting newborn ob-
jects is far from satisfactory (the result on the MOTAmetric is not good enough).
As we analyzed above, detect queries are suppressed on detecting tracked ob-
jects, which may go against the nature of object query and limits the detection
performance on newborn objects. Second, the query passing in MOTR is per-
formed frame-by-frame, limiting the efficiency of model learning during training.
In our practice, the parallel decoding in VisTR [36] fails to deal with the com-
plex scenarios in MOT. Solving these two problems above will be an important
research topic for Transformer-based MOT frameworks.
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