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Abstract. This paper researches the unexplored task—point cloud
salient object detection (SOD). Differing from SOD for images, we find
the attention shift of point clouds may provoke saliency conflict, i.e., an
object paradoxically belongs to salient and non-salient categories. To
eschew this issue, we present a novel view-dependent perspective of salient
objects, reasonably reflecting the most eye-catching objects in point cloud
scenarios. Following this formulation, we introduce PCSOD , the first
dataset proposed for point cloud SOD consisting of 2,872 in-/out-door
3D views. The samples in our dataset are labeled with hierarchical an-
notations, e.g., super-/sub-class, bounding box, and segmentation map,
which endows the brilliant generalizability and broad applicability of
our dataset verifying various conjectures. To evidence the feasibility of
our solution, we further contribute a baseline model and benchmark five
representative models for a comprehensive comparison. The proposed
model can effectively analyze irregular and unordered points for detecting
salient objects. Thanks to incorporating the task-tailored designs, our
method shows visible superiority over other baselines, producing more
satisfactory results. Extensive experiments and discussions reveal the
promising potential of this research field, paving the way for further study.

Keywords: Salient object detection, point cloud, dataset, baseline.

1 Introduction

Salient objects describe the most attractive objects with respect to their sur-
roundings. Due to its myriad applications, salient object detection (SOD) can
provide the pre-processing results for many vision tasks, such as 3D shape
classification [46], compression [32], and quality assessment [30], to name a
few. Distinct from the relevant task [6, 43, 61] for predicting eye fixation po-
sitions, namely saliency detection, SOD demands locating salient objects and
completely segmenting them further, thus being more challenging. Most existing
SOD works [9,12,15,26,37,58] devote their efforts to analyzing salient objects
on regular images. With the fast revolution of 3D collection equipment, point
clouds as the raw output of many devices (such as LiDAR and depth sensors)
have a growing presence in research and applications. Compared with the adop-
tion of alternative 3D formats, data processing directly on point clouds avoids
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Fig. 1: Illustration of saliency conflict. The variation of attention allocated to the
black computer causes a contradiction that the black computer simultaneously
belongs to the salient and non-salient objects for this scene. We, therefore, propose
to analyze the salient objects of point clouds according to the views.

information loss and computational redundancy in format conversion that may
induce performance drops. Despite the flourishing advance of many point-based
tasks, e.g., classification [3], object detection [42], and segmentation [16], point
cloud SOD is still in its infancy, and many issues have not been discussed yet.

As immersive visual media, point clouds offer a watching experience with six
degrees of freedom (6DOF). Unlike the watching of static images, the attention
allocation of humans varies when the view changes. The research community
dubs the phenomenon that attention being allocated from one region to another
as the attention shift [9, 44]. However, we find that the attention shift of point
clouds may trigger a new thorny problem that we name saliency conflict, i.e., an
object paradoxically belongs to salient and non-salient categories for different
views of one point cloud scene sample. Fig. 1 shows an example of an office scene
recorded by point clouds. The attention allocated to the black computer varies as
the view changes, which causes the black computer to go from being the salient
object to the non-salient object. Then is the black computer the salient
object of this office scene? The answer matters not only the definition of
salient objects in point cloud scenarios but also the relevant dataset construction.

In this paper, we argue that the manifestations of salient objects in point
clouds depend on the views, and point cloud SOD is to compute the salient
objects of any given view in 3D space. The union of salient objects (segmentation
maps) of “given views” indicates the complete description of salient objects for
scenes in point clouds. For Fig. 1, different segmentation maps correspond to
different views, and the union of segmentation maps represents the salient objects
of this office scene. Firstly, this formulation makes it easier to grasp the nature of
the SOD problem due to the fact that humans actually observe only one view at
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a time while the viewpoint is free. Broadly speaking, the image is a special case
of only a single view. Secondly, this formulation avoids the complex modeling
to handle the whole 3D scene with saliency conflict phenomenon, which can
benefit the design of simpler models capable of analyzing different views. Thirdly,
this formulation eases the dataset construction with the human-annotated most
attractive objects via subjective experiments, since the subjective experiment
results of different views sometimes cannot be reflected into a large-scale point
cloud sample (such as the office scene sample in Fig. 1) simultaneously without
our view-dependent saliency analysis.

Following our formulation of point cloud SOD, we introduce PCSOD—the
first versatile dataset for point cloud SOD with densely annotated labels. Our
dataset contains 2,872 frequent 3D views that belong to over one hundred in-
/out-door scenes. The manual data collection phase lasts over one year, and the
samples reflect a wide range of scenarios in our lives. Detailed statistics show that
our dataset has 138 object categories and 53.4% difficult samples, which ensures
its brilliant generalizability. To extend the applicability of this new dataset, we
provide hierarchical annotations for each sample, including super-/sub-class,
bounding box, and segmentation map. The proposed dataset as a comprehensive
platform can conveniently support research on multi-task learning [48] and other
valuable vision tasks, not limited to point cloud SOD.

Since point clouds record 3D information in the format of irregular and
unordered points, existing SOD models [9, 12, 15, 26, 58] for images cannot be
transferred for point cloud processing. Additionally, though several representative
point-based models [3, 16,25,38, 59] have been developed for other segmentation
tasks, they are incapable of performing well in SOD. These models for other
segmentation tasks fail to consider the particularities of SOD, i.e., the benefits of
multi-scale features [35] and the refinement of global semantics [4,27]. To prove the
feasibility of our solution, we further develop a baseline model and benchmark five
representative segmentation models for comparison and analysis of point cloud
SOD. Owing to incorporating the task-tailored designs, the proposed baseline
model can take full advantage of the multi-scale features and global semantics
to locate salient objects and accurately separate them. Extensive experiments
verify the effectiveness of our solution for point cloud SOD.

In summary, we conclude the contributions as follows:

1) We propose a novel view-dependent perspective of point cloud SOD. Our
formulation avoids the saliency conflict, emphasizes the nature of SOD, and
reasonably reflects the most eye-catching objects in point cloud scenarios.

2) We construct the first versatile dataset for point cloud SOD, termed PCSOD.
Our dataset has brilliant generalizability and broad applicability, expected
to be a catalyst for point cloud SOD and many other vision tasks.

3) We develop a baseline model for point cloud SOD. Our baseline model has a
full consideration of the particularities of SOD, outperforming other baseline
models by a clear margin.

4) We establish the first benchmark of point cloud SOD, conduct a thorough
analysis, and bring a new perspective toward point cloud SOD.
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2 Related Work

Salient Object Detection. Following the pioneer attempt [17], many early
works [24, 36, 47, 53] design hand-crafted features to exploit low-level cues. These
methods cannot obtain satisfactory accuracy because of the lack of semantic
cues. Thanks to the powerful capability of neural networks in abstracting seman-
tics, the bottleneck of traditional methods is broken. Hou et al. [15] introduce
short connections into a skip-layer structure. The advanced representations at
multiple layers thus can be fully utilized. Siris et al. [45] propose a semantic
scene context-aware framework to capture sufficient high-level semantics for
locating salient objects. To rich the semantic information diluted during the
top-down transmission, some recent works [4, 27, 35] explicitly extract global
semantics and append them into low-level features, achieving visible performance
improvement. Despite the gratifying achievements of existing RGB image-based
methods [28,40,55,60], they still have difficulty understanding complex scenes for
lacking spatial geometry information. Consequently, researchers begin extending
the task of SOD on 3D images, such as RGB-D images [10,15,20,22,26,56,58]
and light field images [23,29,50,57], which show significant potential. A detailed
description of these image-based methods is beyond the scope of this article.
Please refer to the relevant surveys [11, 51, 62] for more introduction. We can
conclude that all these efforts are confined to the image domain. This work will
disentangle the limitation and probe SOD on point clouds.

Regarding the attention modeling on point clouds, we also learn that a
few methods [6, 13, 18, 43, 46, 61] are developed to automatically compute the
human attention distribution. The algorithms of these methods merely produce
a heatmap of the attention distribution, while the SOD task we study demands
completely segmenting the salient objects, thus being more challenging.

Deep Learning on Point Clouds. Processing point clouds has long been a
significant challenge. Previous works [19,21] tend to first rearrange raw points via
octree or kdtree. The emergence of PointNet/PointNet++ [3, 38] shows us a new
approach for raw point processing. They employ shared multilayer perceptrons
(MLPs) to extract point-wise features and achieve state-of-the-art performance
across many vision tasks. Following PointNet, three directions are mainly adopted
to improve the performance further, i.e., powerful convolution [25,54], effective
neighborhood connection [52,59], and advanced reduction [16,39]. Li et al. [25]
propose to learn an X-transformation from raw points by imitating the typical
convolution, while Wu et al. [54] regard the typical convolution as the combination
of weight and density functions. ShellNet [59] arranges neighbors into concentric
spherical shells that have a convolution order from the inner to the outer shells.
Wang et al. [52] propose a simple operation known as EdgeConv, which extracts
local geometric features while retaining permutation invariance. To explore more
advanced reduction operations, Hu et al. [16] and Qian et al. [39] resort to
attentive pooling and anisotropic reduction, respectively. However, these methods
are not initially developed for SOD, ignoring the particularities of SOD.
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Fig. 2: Examples from our PCSOD dataset with hierarchical annotations.

3 Proposed Dataset

Datasets [9, 23, 41] have become the driving force behind many vision tasks,
especially with the emergence of deep learning. With this in mind, we introduce
PCSOD for: (1) probing a new challenging task, (2) facilitating research on new
issues, and (3) verifying new conjectures. Next, we will elaborate more details
about our dataset. Besides, some visual examples are shown in Fig. 2 and Fig. 3.

3.1 Dataset Construction

Data Collection. Point clouds in existing datasets [1, 2, 5, 14, 34] are often
collected for specific scenes (such as outdoor road or indoor office scenes). In
contrast, a high-quality SOD dataset [49] demands rich scenes, which motivates
us to collect diverse data by ourselves. The data collection phase takes over one
year, and we collect 2,872 3D views from over one hundred preset scenes across
dozens of cities. Each 3D view has 240,000 points. This process can also simulate
the 3D view acquisition when “travelling” in an off-shelf large-scale point cloud
sample (such as an office or even a city). As shown in Fig. 2, the 3D views of
a scene constitute a series of watching descriptions of this scene whose salient
objects can be obtained from subjective experiments without saliency conflict.

Data Annotation. Referring to the determination of salient objects in im-
ages [49,50], we employ thirty professional annotators to label the salient objects
from given views. Before the labeling, every annotator is pre-trained over fifteen
samples. To ensure the annotation accuracy, we divide these thirty annotators into
ten groups. Three annotators in one group jointly determine the salient objects,
then cross-validated by other groups. An object is regarded as a positive label
only if more than eighty percent of annotators verify it. The recently released
datasets [9,34] indicate that offering hierarchical annotations benefits the applica-
bility of a new dataset. As shown in Fig. 2, we hierarchically label the determined
salient objects and provide three levels of annotations, i.e., class, bounding box,
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Fig. 3: Statistics of our PCSOD dataset. (a) Categories of salient objects. (b) Il-
lustration of challenging samples. (c) Word cloud of salient objects. (d) Histogram
distribution of challenging samples.

and segmentation map. Each level of annotations is obtained through correspond-
ing professionals. Furthermore, at least two passes of verification are performed
for each annotation to ensure its quality.

Data Split. Having a standard dataset split [9,50] is conducive to fairly studying
and comparing the pros and cons of algorithms. Following the ratio of 7:3 adopted
by many datasets [50], our PCSOD is randomly split into 2,000 samples for
training and 872 samples for testing.

3.2 Dataset Statistics

Diverse Object Categories. A diverse SOD dataset should have broad cover-
age of scenes in the real world to ensure brilliant generalizability. Our PCSOD
covers a wide range of scenarios in our lives. As shown in Fig. 3(a) and Fig. 3(c),
the salient object categories have a heterogeneous variety. Specifically, objects in
our dataset can be categorized into 12 super-classes, e.g., human, animal, plant,
etc. These 12 super-classes are further comprised of 138 sub-classes, fully covering
the daily situations. The diverse salient object categories enable a comprehensive
understanding of the attention allocation of humans in real-world scenes.

Rich Annotations. A versatile dataset should not only support the study of
existing issues but also adapt to new research directions. As shown in Fig. 2, our
PCSOD offers hierarchical annotations, e.g., super-/sub-class, bounding box, and
segmentation map. These annotations help researchers understand each sample of
our dataset from different aspects (such as object property, object proposal, and



Salient Object Detection for Point Clouds 7

scene parsing), sparking novel ideas. Besides, our annotations are very precise.
The segmentation maps accurately reflect the structures of objects in 3D scenes,
even though some are very complex (see the complex structure case in Fig. 3(b)).

Difficult Samples. A valuable dataset should contain a certain amount of
difficult samples and dive into the problems. The difficult samples benefit the
performance of models confronting various complex scenes. With this considera-
tion, we add many challenging samples to our dataset, including multiple objects,
small objects, complex structures, low illumination, etc. Some visual examples
are shown in Fig. 3(b). Fig. 3(d) further details the proportion of samples with
each attribute. Statistics indicate that our dataset has 53.4% difficult samples,
which evidences that the proposed PCSOD is very challenging.

4 Proposed Method

Extending the concept of salient objects in images to point clouds, we formulate
that the salient objects of views from a scene indicate the complete description
of salient objects in this scene. Point cloud SOD aims to identify the salient
objects of any given view. While various methods have been developed for image-
based SOD, they cannot handle irregular and unordered point clouds. Moreover,
existing point-based segmentation models for other tasks cannot guarantee the
performance of identifying salient objects. These circumstances motivate us to
design a baseline model and excavate potential directions for point cloud SOD.

4.1 Overall Architecture

As shown in Fig. 4, the proposed baseline model inherits a typical encoder-
decoder architecture. The encoder extracts multi-level features from raw points,
while the decoder enhances and fuses the extracted features to predict salient
objects. To illustrate the effectiveness of our designs, we introduce the classical
PointNet++ [38] as the encoder. It has been studied [27] that high-level features
will be gradually diluted when transmitted to low-level ones. To address this
issue, some recent image-based methods [4,27,35] explicitly extract global seman-
tics and append them into low-level features, observing gratifying performance
improvement. Inspired by the philosophical designs of these methods, we design
two key modules, i.e., Point Perception Block (PPB) and Saliency Perception
Block (SPB), to take full advantage of the benefits of multi-scale features and
the refinement of global semantics for locating salient objects.

Formally, let V = {v1, v2, ..., vN} represent a view of N points with associated
point-wise features (e.g., RGB colors), where v ∈ Rdin . To obtain the probabili-
ties P = {p1, p2, ..., pN} of corresponding points being salient, the encoder first
extracts multi-level features {Fl}4l=1 from raw points V. The lth level features
Fl = {f l

1, f
l
2, ..., f

l
Nl
} have Nl =

N
4l

aggregated points with doubling the feature
dimension compared with Fl−1 (except the feature dimension of the first level
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Fig. 4: Overall architecture of the proposed baseline model, which has a typical
encoder-decoder architecture.

is fixed to 64). Then we aggregate multi-level features {Fl}4l=1 into the com-
pact representations Fc via the Feature Aggregation Block (FAB). As shown in
Fig. 5, the operations in FAB are very straightforward, i.e., upsampled high-level
features are sequentially fused with low-level features. We adopt the common
trilinear interpolation as the upsampling operation to match the spatial size of
different level features, while the fusion operation we employ is concatenation
along the feature dimension followed by MLPs. Following previous works [16, 38],
the feature concatenation can simultaneously retain the originality of the fused
two level features and is proved to be very effective for point cloud feature fusion.
Note that the feature fusion in all modules is uniformly through concatenation
unless otherwise stated. To prevent the dilution of high-level features, the PPB
is proposed to abstract global semantics and strengthen the multi-scale repre-
sentations. We obtain global semantics Fs and multi-scale features Fm from the
highest-level features F4 and the compact representations Fc, respectively, using
two PPBs with different configurations. The global semantics can supplement the
diluted high-level features in multi-scale features and alleviate the distraction of
non-salient background. To achieve this, we further develop the SPB to integrate
multi-scale features Fm and global semantics Fs, and produce the final prediction
P. Next, we will elaborate on the details of our PPB and SPB.

4.2 Proposed Modules

Point Perception Block. The global semantics and multi-scale features are
important for SOD [4,27,35]. The former helps to locate the positions of salient
objects, while the latter is conducive to recognizing salient objects of different
sizes. Besides, the acquisition of them demands enlarging the receptive fields
of features and capturing the context information. Inspired by the widely used
Receptive Field Block [31], we introduce the PPB to achieve this goal.

As shown in Fig. 5, the PPB consists of five branches to capture the context
information of point-wise features. The first four branches with similar structures
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Fig. 5: Details of the components in the proposed baseline model, i.e., Point
Perception Block, Feature Aggregation Block, and Saliency Perception Block.

encode center points by their local regions of different sizes. Each branch has
three sub-units, i.e., grouping, embedding, and reduction. To be more specific,
let Xp = {xP

1 , x
P
2 , ..., x

p
M} denote the spatial coordinates of input points X with

intermediate learned features Xf = {xf
1 , x

f
2 , ..., x

f
M}. M indicates the number

of points. For each point xp
i ∈ Xp, the grouping sub-unit gathers its k nearest

neighbors N (xp
i ) = {xp

i,1, x
p
i,2, ..., x

p
i,k} by K-nearest neighbours (KNN). The

spatial size of the local region N (xp
i ) centered on xp

i varies as k takes different
values. To learn local geometric representations, the embedding sub-unit embeds
the relative spatial position between xp

i and its neighbor xp
i,j as

eji = MLPs([xp
i , x

p
i,j , x

p
i − xp

i,j ,D(xp
i , x

p
i,j)]), (1)

where D(·) and [] denote the Euclidean distance between two points and the
concatenation operation, respectively. Because eji merely contains the geometric
features and lacks associated point-wise features, we concatenate eji with corre-
sponding point-wise features xf

i to obtain the advanced representations aji . All
advanced representations Ai = {a1i , a2i , .., aki } of k neighbors express each of their
semantic contributions to the center point xp

i . The reduction sub-unit aggregates
the neighborhood semantic contributions by a Mean-max reduction operation

x̂f
i = MLPs([max(Ai),mean(Ai)]), (2)

where max(·) and mean(·) denote the max function and mean function, re-
spectively. Compared with the input features Xf , the branch outputs X̂f =
{x̂f

1 , x̂
f
2 , ..., x̂

f
M} have enlarged receptive fields and capture the context informa-

tion in local regions. Finally, we fuse the output features {X̂f
b }4b=1 of the first four

branches and further introduce a skip connection of the fifth branch to retain
the original features

Ŷ f = MLPs([X̂f
1 , X̂

f
2 , X̂

f
3 , X̂

f
4 ]) +MLPs(Xf ). (3)

Similar to the Receptive Field Block, by setting K = {k1, k2, k3, k4} for the
first four branches reasonably, the global semantics and multi-scale features can
be obtained, respectively. Besides, the input points X and corresponding outputs
Y of our PPB share the same feature size. Therefore, our PPB can be easily
embedded in various networks to improve their performance.
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Saliency Perception Block. The utilization of our PPB allows the acquisition
of global semantics and multi-scale features. Subsequently, how to seamlessly
merge the two kinds of features and obtain the final prediction is still open.

As shown in Fig. 5, our SPB enhances the multi-scale features using the
global semantics. The global semantics can effectively alleviate the distraction of
non-salient background in multi-scale features and emphasize the salient regions
(see Fig. 8). The enhanced multi-scale features are then used to predict the
salient objects. Specifically, the SPB first upsamples the global semantics Fs

and multi-scale features Fm to the spatial size of the input V. The upsampling
operation is followed by MLPs to reduce the aliasing effect. Then we use the
upsampled global semantics to enhance the multi-scale features

Fe = MLPs([MLPs(U(Fs)),S(MLPs(U(Fm)))]), (4)

where U and S denote the upsampling and softmax operations, respectively. Fe

is the enhanced multi-scale features. In this approach, the enhanced multi-scale
features include both the accurate positions and fine-grained structures of salient
objects. Finally, we use a prediction layer (MLPs) to predict salient objects P
from the enhanced multi-scale features Fe.

5 Experiments

5.1 Experimental Setup

Implementation Details. We use the popular Pytorch framework to implement
our method on an NVIDIA TITAN XP GPU. The points in the inputs are
represented by nine-dimensional vectors (din = 9) consisting of spatial coordinates,
RGB colors, and normalized spatial coordinates. Due to the limitations of memory
capacity, we randomly sample N = 4, 096 points with replacement from inputs
in the training stage, while the sampling operations in the testing are without
replacement for testing all 240,000 points in a 3D view. We use random rotation
to augment data. The parameters K of the PPB for abstracting global semantics
are {1, 4, 9, 16} while those of another PPB are {1, 9, 25, 49}. Our loss function is
defined on the standard cross-entropy loss. We train the proposed baseline model
by Adam optimizer with an initial learning rate of 5e-4 and a weight decay of
1e-4. The total training epochs are 3,000, with a batch size of 32. A three-time
voting strategy [38] is adopted to produce the predictions in the testing phase.

Evaluation Metrics. To compare the results of different methods, we adopt
four popular evaluation metrics for performance benchmarking, i.e., mean ab-
solute error (MAE), F-measure [33], E-measure [8], and intersection over union
(IoU). MAE estimates the point-wise approximation degree between predicted
segmentation maps and corresponding ground truths. It can be formulated as
MAE = 1

N

∑N
i=1 |pi − gi|, where pi ∈ P and gi ∈ G are the prediction and

ground truth, respectively. F-measure is the harmonic mean value of the precision
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Methods Years MAE ↓ F-measure ↑ E-measure ↑ IoU ↑

PointNet [3] CVPR’17 0.116 0.632 0.768 0.519
PointNet++ [38] NeurIPS’17 0.077 0.738 0.816 0.608
PointCNN [25] NeurIPS’18 0.142 0.409 0.575 0.265
ShellNet [59] ICCV’19 0.074 0.753 0.848 0.648
RandLA [16] TPAMI’21 0.127 0.633 0.740 0.517

Ours - 0.069 0.769 0.851 0.656
Table 1: Benchmarking results of six representative baseline models on our
PCSOD dataset. “ ↑ ”/“ ↓ ” suggests that larger/smaller is better. Note that the
best results are shown in boldface

E
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ThresholdThreshold

Fig. 6: F-measure and E-measure under different thresholds.

(prec) and recall (reca), i.e., F-measure = (1−β2)prec·reca
β2prec+reca , where β2 is set to

0.3 for emphasizing the importance of precision. E-measure captures both the
local matching and region-level matching information of segmentation maps
for assessment. IoU is a metric describing the extent of overlap between two
segmentation maps. It is defined as IoU = inter

union , where inter and union indicate
the intersection and union of two segmentation maps, respectively. Note that the
relevant concepts of S-measure [7] in 3D space may change, thus being ignored.

5.2 Comparison and Analysis

To the best of our knowledge, there is no deep learning-based method designed
for point cloud SOD. Consequently, we introduce five representative baseline
models [3, 16, 25, 38, 59] from others segmentation tasks for comparison and
analysis. PointNet [3] and its improved version, namely PointNet++ [38], are
the two most representative models in point cloud processing. PointCNN [25],
ShellNet [59], and RandLA [16] indicate three promising directions of point
cloud processing, i.e., powerful convolution, effective neighborhood connection,
and advanced reduction. For a fair comparison, we retrain these models on our
PCSOD dataset according to the recommended parameter settings and produce
the final results by the same voting strategy as our method.
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Fig. 7: Qualitative comparison of six baseline models on views of two common
scenes, i.e., a supermarket (Scene 1) and a park (Scene 2). Note that “GT”,
“PNet”, “PNet2”, “PCNN”, “SNet”, and “RLA” mean the ground truth, PointNet [3],
PointNet++ [38], PointCNN [25], ShellNet [59], and RandLA [16], respectively.

Quantitative Comparison. In Tab. 1, we list the results of six baseline models
on four evaluation metrics. We can learn that the proposed method achieves
state-of-the-art performance and outperforms all competitors by a clear mar-
gin. Specifically, our model surpasses the second-best model ShellNet by 6.8%,
2.1%, 0.4%, and 1.2% on MAE, F-measure, E-measure, and IoU. RandLA is
a recently proposed model with significant superiority over PointNet++ for
semantic segmentation. However, experiments in Tab. 1 show that RandLA has
no advantage on SOD and even performs worse than PointNet++, indicating
designing tailored models for point cloud SOD is non-trivial. Though our baseline
model has the best performance, there is still considerable room for performance
improvement, which demands further efforts from the research community. To
study the generalizability of these baseline models under different thresholds, we
plot the F-measure scores and E-measure scores by taking different thresholds.
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No. Methods MAE ↓ F-measure ↑ E-measure ↑ IoU ↑
1 PointNet++ [38] 0.077 0.738 0.816 0.608
2 +SPB 0.076 0.748 0.828 0.624
3 +SPB, +PPB 1 0.073 0.754 0.840 0.639
4 +SPB, +PPB 1, +PPB 2 0.069 0.769 0.851 0.656
5 Mean Reduction 0.071 0.764 0.843 0.649
6 Max Reduction 0.070 0.765 0.843 0.651
7 Attentive Reduction [16] 0.074 0.758 0.847 0.658
8 Mean-max Reduction 0.069 0.769 0.851 0.656

Table 2: Ablation analysis of the proposed point cloud SOD model. No.1-No.4
study the effectiveness of our SPB and PPB, respectively. “PPB 1” and “PPB
2” denote the PPBs for producing global semantics and multi-scale features,
respectively. No.5-No.8 investigate the alternative reduction operations.

As shown in Fig. 6, the results of our method are much flatter at most thresholds,
which demonstrates that our method has excellent generalizability.

Qualitative Comparison. To further reveal the feasibility of our solution
predicting salient objects of any given 3D views, we illustrate the results of several
frequent views from two common scenes in Fig. 7. Scene 1 is a supermarket (indoor
scene), while Scene 2 is a park (outdoor scene), both of which are unseen by these
models. It can be seen that most baseline models can locate the salient objects
of given views, except for PointCNN. Though some views are very challenging,
e.g., cluttered background (column 2), transparent object (column 3), complex
structure (column 4), and random view with non-central object (column 5 and
6), our method can consistently produce accurate and complete segmentation
maps with high contrast, which evidences the superiority of our method.

5.3 Ablation Study

To analyze the fundamentals of our baseline model, we conduct extensive ablation
experiments in Tab. 2. The ablation experiments are based on the encoder
PointNet++ [38], studying the effectiveness of the designs in our decoder, i.e.,
key modules and feature reduction operations. In each experiment, only one
influential factor is changed as the others keep the same for a fair comparison.

To investigate the contributions from our SPB and PPB separately, we first
load the SPB into the encoder. By comparing No.1 and No.2 in Tab. 2, we can
learn that the introduction of our SPB can help promote the performance of
our model in locating salient objects. However, because the high-level features
from the encoder have limited receptive fields, directly utilizing them as the
semantics can only achieve suboptimal performance. As demonstrated in Tab. 2
(No.3), a properly configured PPB helping acquire semantics with global receptive
fields can unlock the potential of the SPB. Besides, the PPB with a different
configuration can also strengthen the multi-scale representations of features,
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View GT Feature 2Feature 1 Feature 3 Prediction

Fig. 8: 3D heatmap visualization of feature maps. Feature 1, Feature 2, and
Feature 3 represent the multi-scale features, global semantics, and enhanced
multi-scale features, respectively.

which benefits the perception of objects of different sizes. Therefore, another PPB
in the ablation No.4 can bring orthogonal contributions to SOD. Fig. 8 further
shows how the feature maps change. Due to the dilution of high-level features,
multi-scale features incorrectly focus on the non-salient background, whereas
the global semantics have an accurate perception of salient objects. The SPB
can correct the deviation of multi-scale features by combining global semantics
and obtain the enhanced multi-scale features. The ablations No.4-No.8 in Tab. 2
study various reduction manners. It can be seen that our Mean-max reduction
can outperform the individual Mean reduction or Max reduction. Furthermore,
compared to the attentive reduction [16], our method has a better performance
without increasing the number of network parameters.

6 Conclusion

In this paper, we present the first comprehensive study on point cloud SOD,
involving its formulation, dataset construction, and baseline design. To avoid
the saliency conflict, we propose a novel view-dependent perspective of salient
objects. Our formulation can reasonably reflect the salient objects in point cloud
scenarios. Then we elaborately construct a high-quality dataset, namely PCSOD,
and contribute a baseline model for point cloud SOD. Our dataset has excellent
generalizability and broad applicability, expected to boost the advance of SOD
and many other vision tasks. We conduct extensive experiments on our dataset to
verify the feasibility of our solution. Experimental results show that our baseline
model has significant superiority and produces visually favorable predictions. Our
work reveals the potential of point cloud SOD and pave the way for further study.
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