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Abstract. Most existing scene text detectors focus on detecting char-
acters or words that only capture partial text messages due to missing
contextual information. For a better understanding of text in scenes, it
is more desired to detect contextual text blocks (CTBs) which consist of
one or multiple integral text units (e.g., characters, words, or phrases) in
natural reading order and transmit certain complete text messages. This
paper presents contextual text detection, a new setup that detects CTBs
for better understanding of texts in scenes. We formulate the new setup
by a dual detection task which first detects integral text units and then
groups them into a CTB. To this end, we design a novel scene text clus-
tering technique that treats integral text units as tokens and groups them
(belonging to the same CTB) into an ordered token sequence. In addi-
tion, we create two datasets SCUT-CTW-Context and ReCTS-Context
to facilitate future research, where each CTB is well annotated by an
ordered sequence of integral text units. Further, we introduce three met-
rics that measure contextual text detection in local accuracy, continu-
ity, and global accuracy. Extensive experiments show that our method
accurately detects CTBs which effectively facilitates downstream tasks
such as text classification and translation. The project is available at
https://sg-vilab.github.io/publication/xue2022contextual/.

Keywords: Scene Text Detection

1 Introduction

Scene texts often convey precise and rich semantic information that is very use-
ful to visual recognition and scene understanding tasks. To facilitate reading
and understanding by humans, they are usually designed and placed in the form
of contextual text blocks which consist of one or multiple integral
text units (e.g., a character, word, or phrase) that are arranged in natural
reading order. Contextual text blocks deliver complete and meaningful text mes-
sages and detecting them is critical to the ensuing tasks such as natural language
processing and scene image understanding.

https://sg-vilab.github.io/publication/xue2022contextual/
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Fig. 1: Illustration of traditional scene text detection and the proposed
contextual text detection: Traditional scene text detection detects integral
text units (e.g., characters or words as shown in the second column) which usu-
ally deliver incomplete text messages and have large gaps towards scene text
understanding. In contrast, the proposed contextual text detection detects con-
textual text blocks each of which consists of multiple integral text units in natural
reading order. It facilitates the ensuing tasks in natural language processing and
scene understanding greatly.

Most existing scene text detectors [23,16,53,18] focus on detecting integral
text units only as illustrated in the second column of Fig. 1. Their detection thus
cannot convey complete text messages, largely because of two factors. First, they
capture little contextual information, i.e., they have no idea which text units are
from the same sentence and deliver a complete message. Second, they capture
little text order information, i.e., they have no idea which is the previous or
the next text unit in the natural reading order. Without contextual and text
order information, the outputs of existing scene text detectors have a large gap
towards natural understanding of scene texts and relevant scene images.

We propose a new text detection setup, namely contextual text detection,
where the objective is to detect contextual text blocks (consisting of one
or multiple ordered integral text units) instead of individual integral text
units. This new setup has two challenges. First, it needs to detect and group the
integral text units into a contextual text block that transmits a complete text
message. Several studies [36,37] adopt a bottom-up approach by first detecting
characters (or words) and then grouping them into a word (or a text line).
However, their detected texts usually deliver partial text messages only, e.g.,
one text line in a contextual text block consisting of multiple text lines in Fig.
1. Second, it needs to order the detected integral text units belonging to the
same contextual text block according to the natural reading order. Though some
work [15] studies text sequencing in document images, it assumes a single block
of text in document images and cannot handle scene images which often have
multiple contextual text blocks with very different layouts and semantics.
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We design a Contextual Text Detector (CUTE) to tackle the contextual text
detection problem. CUTE models the grouping and ordering of integral text
units from a NLP perspective. Given a scene text image, it extracts contextual
visual features (capturing spatial adjacency and spatial orderliness of integral
text units) of all detected text units, transform the features into feature em-
beddings to produce integral text tokens, and finally predicts contextual text
blocks. In addition, we create two new datasets ReCTS-Context and SCUT-
CTW-Context where each contextual text block is well annotated as illustrated
in Fig. 1. For evaluation of contextual text detection, we also introduce three
evaluation metrics that measure local accuracy, continuity, and global accuracy,
respectively.

The contributions of this work are three-fold. First, we propose contextual
text detection, a new text detection setup that aims to detect contextual text
blocks that transmit complete text messages. To the best of our knowledge, this
is the first work that studies the contextual text detection problem. Second, we
design CUTE, a contextual text detector that detects integral text units and
groups them into contextual text blocks in natural reading order. Third, we
create two well-annotated datasets on contextual text detection and introduce
three metrics to evaluate contextual text detection from multiple perspectives.

2 Related Works

2.1 Scene Text Detection

Recent scene text detectors can be broadly classified into two categories. The first
category takes a bottom-up approach which first detects low-level text elements
and then groups them into words or text lines. For example, CRAFT [2] and
SegLink [31,35] detect characters or small segments of text instance and link
them together to form text bounding boxes. The second category treats words
as one specific type of objects and detects them directly by adapting various
generic object detection techniques. For example, EAST [55], TextBoxes++ [17],
RRD [19] and PSENet [41] detect text bounding boxes directly with generic
object detection or segmentation techniques. Recent studies further improve by
introducing border or counter awareness [47,42,56,8], local refinement [51,11],
deformation convolution [39,43], Bezier curve [22], etc. Besides, document layout
analysis [7,54,12,26,24] have been studied for years that usually take reading
order of texts in document as consideration.

The existing scene text detectors have achieves very impressive performance.
However, they are designed to detect individual text units like characters or
words while the contextual information is missed. Differently, we propose a new
setup that aims to detect contextual text blocks that deliver complete text mes-
sages.

2.2 Sequence Modeling

Sequence modeling has been widely studied in the field of NLP. Seq2Seq [34]
presents an encoder-decoder structure for sequential natural language processing
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by using Recurrent Neural Network (RNN) [29]. Attention mechanisms [3,25] is
also introduced to relate different positions of a single sequence in order to com-
pute a representation of the sequence. More recently, the advanced Transformer
[38] is proposed which relies entirely on self-attention to compute representations
of the input and output without using sequence-aligned RNNs or convolution.

Sequence modeling has also been adopted in computer vision tasks. RNNs
[32,33] and Transformers [49,45,44] have been widely used in recent scene text
recognition studies since most scene texts are sequentially placed in scenes. Some
work also studies visual permutation for Jigsaw puzzle [30,27]. With the recent
advances in Transformers, some work models different computer vision tasks
sequentially in image recognition [9], object detection [5], etc. More recently,
[15,40] learn text sequences in document analysis by using Graph Convolution
Network (GCN) [14].

We propose a contextual text detector which detects integral texts and groups
them into contextual text blocks by attention mechanism. Different from existing
work, the proposed CUTE can detect multiple contextual text blocks that convey
different text messages in one image.

3 Problem Definition

In this section, we formalize the definition of terminologies in the contextual text
detection problem.
Integral Text Unit: We define the basic detection units as integral text units
which are usually integral components of a contextual text block. These units
could be characters, words to text lines, depending on different real-world sce-
narios and applications. In contextual text detection problem, each integral text
unit in image I ∈ R3×H×W is localized by using a bounding box t by:

t = (p0,p1, ...,pk−1),

pi = (xi, yi), xi ∈ [0,W − 1], yi ∈ [0, H − 1],
(1)

where k is the number of vertices in bounding boxes and it varies depending on
different shapes of bounding boxes.
Contextual Text Block: A contextual text block is defined by a set of integral
text units arranged in natural reading order. It delivers a complete text message
which can be one or multiple sentences lying in one or multiple lines. Each
contextual text block c is defined by:

c = (t0, t1, ..., tm−1), (2)

where m is the number of integral text units in C.
Contextual Text Detection: Given an input image I ∈ R3×H×W , contextual
text detection aims for a model f that can predict a set of contextual text blocks
by :

C = f(I), C = {c0, c1, ..., cn−1}, (3)

where n is the number of contextual text blocks in I.
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Fig. 2: The framework of the proposed contextual text detector
(CUTE): Given a scene text image as input, CUTE first detects integral text
units with an Integral Text Detector. For each detected integral text unit, it then
learns textual Feature Embeddings, Indexing Embeddings and Spatial Embeddings
that capture visual text features, text order features, and text spatial adjacency
features, respectively. Finally, it models the relationship of integral text units by
learning from the three types of embeddings with a Contextual Text Block Gen-
erator and produces contextual text blocks that convey complete text messages.

4 Method

We propose a network CUTE for contextual text detection which consists an
Integral Text Detector, an Integral Embedding Extractor and a Contextual Text
Block Generator as illustrated in Fig. 2. The Integral Text Detector first localizes
a set of integral text units from input images. The Integral Embedding Extractor
hence learns visual and contextual feature embeddings for each detected integral
text unit. Finally, the Contextual Text Block Generator groups and arranges the
detected integral texts in reading order to produce contextual text blocks.

4.1 Integral Text Detector

We adopt Transformer-based generic object detector [5] as the integral text
detector in our CUTE which is built upon CNN and Transformer architecture.
Given an input image I ∈ R3×H×W , the DETR first extracts image features
x ∈ R3×H0×W0 by using a CNN backbone (e.g., ResNet [10]). A Transformer
hence predicts bounding boxes t (in Equation 1) of integral text units from the
extracted features x.

One of the major advances of the Transformer-based detector is that the
Transformer models all interactions between elements of image features for ob-
ject detection. Specifically, the feature map x is first flattened to a sequence of
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elements (i.e., pixels) accompanied with 2D positional embeddings. The Trans-
former hence focuses on image regions for each object by learning the rela-
tionships between each pair of elements in feature map x. As such, we adopt
Transformer-based detector as the integral text detector in our CUTE for better
modelling of element interactions in the visual features from network backbone.
More details are available in the Supplementary Material.

4.2 Integral Embedding Extractor

Both visual and contextual features of integral text units are indispensable to
accurate detection of contextual text blocks. We therefore design an Integral Em-
bedding Extractor to extract three types of embeddings for each integral text
unit including: (1) feature embeddings that are learnt from visual features of
integral text units; (2) indexing embeddings that are encoded for integral order-
ing; (3) spatial embeddings that are predicted from spatial features of integral
text units.
Feature Embeddings: We first extract visual features of integral text units
and predict a set of feature embeddings. Given the image features x that are
extracted from backbone network, the feature embeddings of the integral text
units vfe ∈ Rr×d are defined by:

vfe = (v0
fe,v

1
fe, ...,v

r−1
fe ),

vi
fe = xi

cW + b, xi
c = flatten(ROIAlign(x, ti)).

(4)

Specifically, we first crop the visual features xc for each of detected integral
text units from the image features x by using the detected integral text boxes
t from integral text detector. These features xc are hence flattened and linearly
projected to dimension d to produce feature embeddings vfe, where r is the
number of detected integral text units in image. More details about dimension
d are available in Appendix.
Indexing Embeddings: We also introduce indexing embeddings for integral
text ordering. Given a set of detected integral text units, we assign each integral
text unit with an index number i, where i ∈ [0, r − 1] refers to the i-th integral
text unit. Next, we adopt sinusoidal positional encoding [38] on these indices to
produce indexing embeddings vie ∈ Rr×d by:

vie = (v0
ie,v

1
ie, ...,v

r−1
ie ),

vi
ie =

{
sin(i/100002dk/d), if dk = 2n,

cos(i/100002dk/d), if dk = 2n+ 1.

(5)

Spatial Embeddings: The spatial information of each detected integral text
unit (i.e., size and position of integral texts in images) are lost because integral
text features are extracted by cropping and resizing. For accurate contextual
text block detection, we introduce spatial embeddings that encodes the spatial
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information to each integral text unit. Specifically, we use a vector vi
s to represent

the spatial information of i-th integral text unit which is defined by:

vi
s = (w, h, x1, y1, x2, y2, w × h), (6)

where w, h, (x1, y1) and (x2, y2) refer to the width, height, top-left vertex coor-
dinate, and bottom-right vertex coordinate of integral text bounding box ti. The
spatial embeddings vse ∈ Rr×d are hence obtained by two linear transformations:

vse = (v0
se,v

1
se, ...,v

r−1
se ),

vi
se = max(0,max(0,vi

sW1 + b1)W2 + b2).
(7)

The text tokens are hence obtained by:

vtoken = Concat(vfe,vie,vse). (8)

4.3 Contextual Text Block Generator

Taking the integral tokens vtoken as input, the Contextual Text Block Generator
groups and arranges these integral tokens in reading order. As illustrated in
Fig. 2, it learns the relationship between each pairs of integral tokens vtoken by
a multi-head attention layer and produces contextual text blocks by an index
prediction head and a contextual text graph generator.
Multi-Head Attention: We use multi-head self-attention mechanism to model
the relationships between each pair of integral text units. Six stacked attention
modules are adopted and each of them contains a multi-head self-attention layer
following by a linear transformation layer. Layer normalization [1] is applied to
the input of each layer. The text tokens vtoken serve as values, keys, and queries
of the attention function.
Index Prediction Head: We model the contextual information learning as
an index classification problem by an index prediction head. We adopt a linear
projection layer is predict a set of indices INX = (INX0, INX1, ..., INXr−1),
where vj

token follows vi
token in reading order if INXi = j. Cross-entropy loss is

adopted for network optimization. Note we assign a random but unique index
to each detected integral text unit as the detected integral text units are usually
in random order.

For the i-th indexed query token vi
token, three cases are considered including:

(1) if vi
token is not the last integral text in a contextual block, the index prediction

head outputs index class j if vj
token follows vi

token; (2) if vi
token is the last integral

unit in a contextual block, the class i will be predicted; (3) if vitoken is not a text
(i.e., false alarms from Integral Text Detector), it will be classified to ‘not a
text’ class. In this way, a (N +1)-way classification problem is defined for index
prediction where ‘N ’ refers the number of index categories and ‘+1’ is the ‘not a
text’ category. ‘N ’ is a fixed number that is significantly larger than the possible
number of integral text units in an image.
Contextual Text Graph Generator: A directed contextual text graph G =
(V,E) is constructed by a Contextual Text Graph Generator which consid-
ers the detected integral text units as vertices V . The E refers to the edges
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Table 1: The statistics of the ReCTS-Context and SCUT-CTW-Context
datasets: ‘integral’: Integral Text Units; ‘block’: Contextual Text Blocks; ‘#’:
Number.

Dataset Integral
Text # integral # block # image # integral

per block
# integral
per image

# block
per image

ReCTS-Context Character 440,027 107,754 20,000 4.08 22.00 5.39

SCUT-CTW-Context Word 25,208 4,512 1,438 5.56 17.65 3.17

of the graph G that is obtained from the Index Prediction Head (IPH) by
E = {(Vi, Vj)|IPH(vi

token) = j, i ∈ |V |, j ∈ |V |}. A set of weakly connected
components G′ = {G′

0, G
′
1, ...G

′
n} are produced from graph G where n refers to

the number of contextual text blocks in the image. Each G′
i = (V ′

i , E
′
i) represents

a contextual text block in image where V ′
i refers its integral text units and E′

i

produces their reading order.

5 Datasets and Evaluation Metrics

5.1 Datasets

We create two contextual-text-block datasets ReCTS-Context and SCUT-CTW-
Context as shown in Table 1. Fig. 3 shows two samples where integral text units
belonging to the same contextual text block are grouped in proper order.
ReCTS-Context (ReCTS): We annotate contextual text blocks for images in
dataset ICDAR2019-ReCTS [52], which are split into a training set and a test
set with 15,000 and 5,000 images, respectively. It contains largely Chinese texts
with characters as integral text units.
SCUT-CTW-Context (SCUT-CTW): We annotate contextual text blocks
for dataset SCUT-CTW-1500 dataset [50] which consists of 940 training images
and 498 test images. Most integral text units in this dataset are words which
have rich contextual information as captured in various scenes. More details
about the two created datasets are available in Appendix.

5.2 Evaluation Metrics

We propose three evaluation metrics for the evaluation of contextual text detec-
tion:
Local Accuracy (LA): We introduce LA to evaluate the accuracy of order pre-
diction for neighbouring integral text units. Considering two correctly detected
integral text units a and b (with b following a as ground-truth), a true positive is
counted if the detection box of b is predicted as directly following that of a. We
compute LA by LA = TP/N where TP denotes the number of true positives
and N is the total number of connected pairs in ground-truth.
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Fig. 3: Illustration of contextual text block annotation: We annotate each
contextual text block by an ordered sequence of integral text units (characters
or words) which together convey a complete textual message. The two sample
images are picked from datasets ReCTS and SCUT-CTW, respectively.

Local Continuity (LC): We introduce LC to evaluate the continuity of integral
text units by computing a modified n-gram precision score as inspired by BLEU
[28]. Specifically, we compare n-grams of the predicted consecutive integral text
units with the n-grams of the ground-truth integral texts and count the number
of matches, where n varies from 1 to 5. For n = 1, we only consider the scenario
that the contextual text block contains one integral text.
Global Accuracy (GA): Besides LA and LC which focus on local character-
istics of integral text units ordering, we also evaluate the detection accuracy of
contextual text blocks. TP is counted if all integral texts in a contextual text
block are detected and the reading orders are accurately predicted. The global
accuracy is hence computed by GA = TP/N where N is the total number of
contextual text blocks in ground-truth.

Besides, a detected integral text unit is determined to be matched with
ground-truth text if the intersection-over-union (IoU) of these two bounding
boxes are larger than a threshold. We adopt three IoU threshold standards that
are widely-used in generic object detection task [20] including IoU = 0.5, IoU =
0.75 and IoU = 0.5 : 0.05 : 0.95 for thorough evaluation.

6 Experiments

6.1 Comparing with State-of-the-art

We evaluate the proposed CUTE on ReCTS-Context and SCUT-CTW-Context
datasets qualitatively and quantitatively as shown in Fig. 4 and Table 2-4.

Since there is little prior research on contextual text block detection, we
develop a few baselines for comparisons. The first baseline is CLUSTERING
that groups integral text units by mean shift clustering [6]. The second and the
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Table 2: Quantitative comparison of CUTE with state-of-the-art methods on
ReCTS-Context. LA: Local Accuracy; LC: Local Continuity; GA: Global Ac-
curacy.

Model IoU=0.5 IoU=0.75 IoU=0.5:0.05:0.95

LA LC GA LA LC GA LA LC GA

CLUSTERING [6] 32.22 19.06 10.59 26.06 17.01 9.66 25.60 16.13 9.02

CRAFT-R50 [2] 63.66 53.26 45.96 51.22 48.39 36.76 50.06 45.46 35.60
LINK-R50 [46] 68.15 57.50 48.39 53.83 50.19 38.36 52.95 47.69 37.33
CUTE-R50 70.43 64.74 51.55 54.39 56.63 39.52 53.92 53.56 38.92

CRAFT-R101 [2] 65.21 54.59 47.02 52.01 48.65 37.21 51.56 46.10 36.33
LINK-R101 [46] 70.78 59.10 49.92 54.53 51.02 38.98 53.42 48.26 37.94
CUTE-R101 72.36 67.33 53.76 55.14 57.03 40.21 54.56 53.94 39.42

Table 3: Quantitative comparison of CUTE with state-of-the-art methods
on SCUT-CTW-Context. LA: Local Accuracy; LC: Local Continuity; GA:
Global Accuracy.

Model IoU=0.5 IoU=0.75 IoU=0.5:0.05:0.95

LA LC GA LA LC GA LA LC GA

CLUSTERING [6] 18.36 7.93 6.78 14.11 5.88 4.72 13.54 5.71 4.88

LINK-R50 [46] 25.47 3.33 18.88 20.25 3.15 14.70 19.31 2.93 14.26
CUTE-R50 54.01 39.19 30.65 41.62 31.19 23.71 39.44 29.03 22.10

LINK-R101 [46] 25.71 3.41 19.18 20.02 2.89 14.68 19.56 2.72 14.39
CUTE-R101 55.71 39.38 32.62 40.61 29.04 22.77 39.95 28.30 22.69

third baselines are CRAFT [2] and LINK [46], two bottom-up scene text de-
tection methods that group characters/words to text lines. Since both CRAFT
and LINK do not have the concept of contextual text blocks, we sort integral
text units within each contextual text block according to the common reading
order of left-to-right and top-to-down. In addition, we evaluate with two back-
bones ResNet-50 and ResNet-101 (denoted by ‘R50’ and ‘R101’) to study the
robustness of the proposed CUTE.

We compare CUTE with the three baselines over ReCTS where integral text
units are at character level. As Table 2 shows, the clustering-based method
cannot solve the contextual text detection problem effectively because the inte-
gral text units are usually with different sizes, positions, and orientations. The
bottom-up scene text detectors work better by focusing on visual features only.
The proposed CUTE performs the best consistently as it models the relation be-
tween each pair of integral text units by considering both visual representative
features and contextual information.
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Fig. 4: Illustration of the proposed CUTE: Sample images are collected
from SCUT-CTW-Context and ReCTS-Context datasets, where the color boxes
highlight the detected integral text units and the green arrows show the predicted
text orders. The integral text units of each contextual text block are highlighted
in the same color.

Table 4: Quantitative comparison of CUTE with state-of-the-art methods on
integral text grouping and ordering task: The ground-truth integral text
bounding boxes are adopted for evaluations on integral text grouping and order-
ing task only. LA: Local Accuracy; LC: Local Continuity; GA: Global Accuracy.

Model SCUT-CTW ReCTS

LA LC GA LA LC GA

CLUSTERING [6] 27.94 12.74 10.76 69.70 49.15 32.20

LINK-R50 [46] 30.17 4.48 22.84 83.77 68.44 61.10
CUTE-R50 71.48 58.53 49.67 92.08 82.79 76.02

LINK-R101 [46] 45.54 6.28 31.69 86.66 75.03 69.55
CUTE-R101 71.54 58.68 52.57 93.12 83.70 77.81

We further conduct experiments over SCUT-CTW where integral text units
are at word level. We compare CUTE with CLUSTERING and LINK only be-
cause CRAFT cannot group texts lying on different lines. As Table 3 shows,
CLUSTERING achieves very low performance due to the complex contextual
relations among integral text units. LINK obtains very low scores on LC, show-
ing that only short contextual text blocks with small number of integral text
units are detected. CUTE instead outperforms all three baselines by large mar-
gins consistently across LA, LC and GA. Note the detection performances over
SCUT-CTW are relatively low because it contains many texts with more com-
plex layouts as compared with ReCTS.

Additionally, to validate CUTE’s effectiveness on the grouping and ordering
of integral text units alone, we assume that all integral text units are accurately
detected by feeding the bounding boxes of ground-truth integral text units to the
Integral Embedding Extractor and Contextual Text Block Generator. As Table 4
shows, the proposed CUTE groups and orders integral text units effectively.
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Fig. 5: Contextual text detection facilitates scene text translation sig-
nificantly: The output of CUTE conveys complete text messages which can be
better translated to other languages as ‘natural language’ with rich contextual
information as shown in column 3. As a comparison, scene text detectors pro-
duce individual text units which can not be translated well as shown in column
2.

Table 5: Ablation studies of CUTE over SCUT-CTW. LA: Local Accuracy;
LC: Local Continuity; GA: Global Accuracy.

Model vfe vse vie LA LC GA

1 ✓ 6.86 3.34 1.94
2 ✓ ✓ 8.99 4.56 2.18
3 ✓ ✓ 28.65 25.71 21.89
4 ✓ ✓ ✓ 71.48 58.53 49.67

6.2 Ablation Study

The proposed CUTE detects contextual text blocks by using both visual fea-
tures (feature embeddings) and contextual features that capture spatial and or-
dering information, respectively. We conduct ablation studies over SCUT-CTW-
Context to identify the contribution of each embedding. We trained four models
with different combinations of the three embeddings. As Table 5 shows, CUTE
does not work well with either feature embeddings alone or feature embeddings
plus spatial embeddings. However, combining feature embeddings with indexing
embeddings improves detection greatly as indexing embeddings introduce cru-
cial text order information. The combination of all three embeddings performs
the best by large margins, demonstrating the complementary nature of the three
embeddings.
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Table 6: The significance of contextual text detection to scene text detection
task: The proposed CUTE effectively helps to improve scene text detection
performance of different detectors (in mAP) by filtering out the false alarms.

Model w/o CUTE with CUTE

PSENet[41] 52.30 53.69 (+1.39)
MSR[48] 60.07 61.80 (+1.73)
DETR[5] 56.11 57.37 (+1.26)
LINK[46] 62.03 62.84 (+0.81)

Table 7: The significance of contextual text detection to text classification
task: The proposed CUTE effectively helps to improve text classification perfor-
mance of different text classifiers by learning from recognized texts in contextual
text blocks.

Model w/o CUTE with CUTE

TextCNN[13] 90.56 92.40 (+1.84)
TextRNN[21] 79.55 87.20 (+7.65)
Fast Text[4] 90.96 91.82 (+0.86)

Transformer[38] 89.69 92.54 (+2.85)

6.3 Discussion

Contextual text detection facilitates downstream tasks: The proposed
detection setup for contextual text blocks can facilitate both scene text detection
and many downstream tasks. We first study how the proposed contextual text
detection can improve the scene text detection task over SCUT-CTW. Specifi-
cally, traditional scene text detectors tend to produce false detection at image
background that has similar visual representations as scene texts. CUTE can
suppress such false detection effectively (i.e., classify the false detection into ‘not
a text’ category) by learning the text ordering through not only visual features
but also contextual information of texts (details in Section 4.3). As Table 6
shows, CUTE improves the scene text detection performance consistently across
a number of scene text detectors that adopt different backbones and detection
strategies.

We also study how the proposed contextual text detection can facilitate var-
ious downstream tasks. We focus on the scene text translation task that is very
useful to scene understanding for visitors with different home languages. Specif-
ically, we feed each detected text (i.e. a character, word, or contextual text
block) to a neural machine translator (Google Translator) for translation across
different languages. As Fig. 5 shows, CUTE groups and orders scene texts into
contextual text blocks (delivering complete textual messages) which facilitates
scene text translation greatly as compared with traditional scene text detectors
without the concept of contextual text blocks.
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Fig. 6: Typical failure cases of the proposed CUTE: Correct, incorrect and
missing orders or integral text units are highlighted by arrows in yellow, red and
blue, respectively. The proposed CUTE may fail if the images contain complex
text layouts.

We additionally study how contextual text detection facilitates text classi-
fication task in NLP. Specifically, we classify and annotate the transcription of
texts in ReCTS-Context into three categories (i.e., ‘Address’, ‘Phone Number’
or ‘Restaurant Name’) according to the text semantics. We train models by dif-
ferent text classification techniques and test on the detected texts from integral
texts (denoted by ‘w/o CUTE’) and contextual text blocks (denoted by ‘with
CUTE’), respectively. As shown in Table 7, the use of CUTE helps to improve
the text classification consistently across different text classifiers.
Typical failure cases: The proposed CUTE may fail if the images contain
complex text layouts. As shown in Fig. 6, the proposed CUTE may fail if the
texts from different contextual text blocks are in similar font styles and extremely
close to (or far from) each other.

7 Conclusion and Future Work

We study contextual text detection, a new text detection setup that first detects
integral text units and then groups them into contextual text blocks. We design
CUTE, a novel method that detects contextual text blocks effectively by com-
bining both visual and contextual features. In addition, we create two contextual
text detection datasets within which each contextual text block is well annotated
by an ordered text sequence. Extensive experiments show that CUTE achieves
superior contextual text detection, and it also improves scene text detection and
many downstream tasks significantly.

In the future, we will continue to study contextual text detection when scene
texts have complex layouts. Specifically, we will expand and balance our datasets
by including more complex scenes and text layouts. We will also study how to
leverage text semantics (from scene text recognition) for better contextual text
detection.
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