Adaptive Agent Transformer for
Few-shot Segmentation
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Overview
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This work aims to absorb the merits of both prototypical learning and affinity learning formulation via a
transformer encoder-decoder architecture, including a representation encoder, an agent learning
decoder and an agent matching decoder.



Representation Encoder

We propose the self-attention mechanism to capture the full image context information.
Specifically, we aggregate pixel-specific global context to each pixel position to obtain
robust context-aware pixel features that can represent object appearance well.
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Agent Learning Decoder

We distill support information into condensed agent tokens to establish the bridge
between the support and query images. To learn agent tokens well without any explicit
supervision, and to make agent tokens capable of dividing different objects into diverse
parts in an adaptive manner, we further customize the agent learning decoder according
to the three characteristics of context awareness, spatial awareness and diversity.
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Agent Learning Decoder

» Diversity

We impose the equal partition constraint to expand the discrepancy among part
masks. In this case, agent tokens can decompose different target objects into diverse
and complementary parts in an adaptive manner.
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Agent Matching Decoder

We decompose the massive pixel-level support-query matching matrix into two more
manageable matrices based on obtained agent tokens at a light computational cost, and
introduce the alignment matrix for filtering out ambiguous matching caused by noisy pixels.

Support Feature
FlOOOO0O0o F*
a s\T . ~
‘, 3 O so=EL qrofwe w=Fwk
[ Cross ]—’ S 54 O Vs
‘ nF EEAE . O Q(K®)T . .
r a __ _ Q a __ a K
fa G800 [Matmul &Ah’gn} AEEREEE JWelgl.nted FFN |1 (] I — Vo Q"=F'Wg= K*"=F'W_,
1 5 e
O S?® = Softmax(S**S* + A),
[ Cross ]—* gqa J
7 — Co 0, if argmax; S*(t,1) = argmax; S9(j, t)
R Retrieved “A(:7) = —00, otherwise
Fq[D 000 D] Feature

Query
Feature (b) Agent Matching Decoder



Experiments
» Performance on Pascal VOC 2012 and COCO Benchmark

Table 1: Comparison with other state-of-the-art methods for 1-shot and 5-shot
segmentation on Pascal-5!. The mlIoU of each fold and the FB-IoU of four folds
are reported. Best results in bold.

mloU(1-shot) FB-IoU mloU(5-shot) FB-IoU

Method Backbone 59 5T 5% 5%  Mean | (1-shot) | 5° 5T 5% 5%  Mean | (5-shot)
PANet[icovzoio] [35] 42.3 58.0 51.1 41.2 48.1 66.5 51.8 64.6 59.8 46.5 55.7 70.7
FWBicovzoio] [26] 47.0 59.6 52.6 48.3 519 - 50.9 62.9 56.5 50.1 55.1 -
SG-One[rcvie2ozo] [46] Vgeg-16 40.2 58.4 48.4 38.4 46.3 63.1 41.9 58.6 48.6 394 47.1 65.9
PMM =ccavaozo] [40] 47.1 658 50.6 48.5 53.0 - 50.0 66.5 51.9 476 54.0 -
ASR[cvpPRr2021] [21] 50.2 66.4 54.3 51.8 55.7 - 53.7 68.5 55.0 548 58.0 -
CANet[cvrPr2019] [43] 52.5 65.9 51.3 51.9 554 66.2 55.5 67.8 51.9 53.2 57.1 69.6
PGNet[iccvaoio] [42] 56.0 66.9 50.6 50.4 56.0 69.9 57.7 68.7 529 546 58.5 70.5
PPNet(zccovaozo) [22] 47.8 58.8 53.8 456 51.5 - 58.4 67.8 64.9 56.7 62.0 -
PMM =ccavaozo] [40] 55.2 66.9 52.6 50.7 56.3 - 56.3 67.3 545 51.0 57.3 -
PFENet[Tranizo20] [31] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9
SCLNetcvrr2oz1] [41] 63.0 70.0 56.5 57.7 61.8 71.9 64.5 70.9 57.3 5B8.T 629 72.8
ASGNet[cvrrzo21] [19] 58.8 67.9 56.8 53.7 59.3 69.2 63.7 T70.6 64.2 574 63.9 74.2
MMNet[1ccvaozi) [36] Res-50 62.7 70.2 57.3 57.0 61.8 - 62.2 71.5 57.5 62.4 634 -
RePRI[cvrrzo21] [1] 60.2 67.0 61.7 475 59.1 - 64.5 70.8 T1.7 60.3 66.8 -
CWTiccovaoz21] [24] 56.3 62.0 59.9 47.2 56.4 - 61.3 68.5 685 56.6 63.7 -
SAGNN[cvrr2021] [38] 64.7 69.6 57.0 57.2 62.1 73.2 64.9 70.0 57.0 59.3 62.8 73.3
ASR[cvPRr2021] [21] 55.2 70.4 53.4 537 5H8.2 72.9 59.4 71.9 56.9 55.7 61.0 74.1
CMNiccvzozi] [39] 64.3 70.0 57.4 594 62.8 72.3 65.8 70.4 5H57.6 60.8 63.7 72.8
CyCTR[nirs2021] [44] 67.8 72.8 5H58.0 58.0 64.2 - 71.1 73.2 60.5 57.5 65.6 -
AAFormer (Ours) Res-50 69.1 73.3 59.1 59.2 65.2 73.8 72.5 74.7T 62.0 61.3 67.6 76.2
FWBiccvzoio] [26] 51.3 64.5 56.7 52.2 56.2 - 54.9 67.4 62,2 553 599 -
DAN[eccvzozo] [34] 54.7 68.6 5H7.8 51.6 58.2 62.3 57.9 69.0 60.1 549 60.5 63.9
PFENet[Tranizoz0] [31] 60.5 69.4 54.4 559 60.1 72.9 62.8 70.4 549 576 614 73.5
ASGNet[cvrrzo21] [19] Res-101 59.8 67.4 55.6 544 59.3 T1L.7 64.6 71.3 64.2 57.3 64.4 75.2
RePRI[cvrrzo21] [1] 59.6 68.6 62.2 47.2 594 - 66.2 71.4 67.0 5B7.7 65.6 -
CWTiccovzozi] [24] 56.9 65.2 61.2 488 58.0 - 62.6 70.2 68.8 57.2 64.7 -
CyCTR[nirs2021] [44] 69.3 72.7 56.5 58.6 64.3 72.9 73.5 T74.0 586 60.2 66.6 75.0

AAFormer (Ours) Res-101 | 69.9 73.6 57.9 59.7 65.3 74.9 75.0 75.1 59.0 63.2 68.1 77.3




Experiments
» Performance on Pascal VOC 2012 and COCO Benchmark

Table 2: Comparison with other state-of-the-art methods for 1-shot and 5-shot
segmentation on COCO-20%. The mIoU of each fold and the FB-IoU of four folds

are reported. Best results in bold.

Method Backbone . IlnIoU(la—shot) ‘ FB-IoU ] 1;1[0[J(c':2—shot) : FB-IoU
20 20 20 20° Mean | (1-shot) | 20 20 20 20"  Mean | (5-shot)
PPNet[Eccvzoz0] [22] 28.1 30.8 295 27.7 29.0 - 39.0 40.8 37.1 37.3 38.5
PMM[eccvzozo] [40] 29.5 36.8 289 27.0 30.6 - 33.8 42,0 33.0 33.3 35.5
MMNet[1ccvao21] [36] 34.9 41.0 37.2 37.0 37.5 - 37.0 40.3 39.3 36.0 38.2
RePRI[cvrrzo21] [1] Res-50 31.2 38.1 33.3 33.0 34.0 - 38.5 46.2 40.0 43.6 421
ASR[cvPR2021] [21] 30.6 36.7 327 354 339 - 33.1 395 34.2 36.2 35.8 -
CMNicovzozi] [39] 37.9 44.8 387 356 393 61.7 42.0 50.5 41.0 38.9 43.1 63.3
CyCTR[niPs2021] [44] 38.9 43.0 39.6 39.8 40.3 - 41.1 48.9 45.2 47.0 45.6
FWBicovaoio] [26] 17.0 18.0 21.0 28.9 21.2 - 19.1 21.5 23.9 30.1 23.7 -
PFENet|TrAnIz020] [31] 34.3 33.0 32.3 30.1 324 58.6 38.5 38.6 38.2 343 374 61.9
SCLNet|cvrRr2021] [41] Res-101 36.4 38.6 375 354 37.0 - 38.9 40.5 41.5 38.7 399
CWTiccovzozi) [24] 30.3 36.6 30.5 322 324 - 38.5 46.7 39.4 432 420 -
SAGNN[cvrrzo21] [38] 36.1 41.0 38.2 33.5 37.2 60.9 40.9 48.3 42.6 38.9 42.7 63.4
AAFormer (Ours) Res-50 39.8 446 40.6 41.4 41.6 67.7 42.9 50.1 45.5 49.2 46.9 68.2

We consistently observe that our AAFormer outperforms all previous models under both 1-shot and 5-
shot settings, which strongly proves the effectiveness of our method.

Compared with some recent prototypical learning methods (e.g., ASGNet), our method achieves a large
margin of 6.0% and 3.7% in mloU. This is because the agent matching decoder in our method further
explores the pixel-wise support information and contributes to accurate segmentation.



Experiments

» Qualitative Comparison with Baseline
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Contributions

* We propose an Adaptive Agent Transformer (AAFormer) for the few-shot segmentation in a
unified framework. Specifically, we design the representation encoder to acquire global
context-aware pixel features, the agent learning decoder to condense support information
Into agent tokens for bridging the support and query images, and the agent matching
decoder to decompose the direct pixel-level matching matrix into two more
computationally-friendly matrices for suppressing the noisy pixels.

« To the best of our knowledge, this is the first work to absorb the merits of both prototypical
learning and affinity learning formulation by modeling adaptive agent tokens for pixel-level
matching. To learn agent tokens well without any explicit supervision, and to make agent
tokens capable of dividing different objects into diverse parts in an adaptive manner, we
further customize the agent learning decoder according to the three characteristics of
context awareness, spatial awareness and diversity.

« Extensive experimental results with two different backbones on two challenging
benchmarks demonstrate that our AAFormer performs favorably against state-of-the-art
FSS methods
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