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Abstract. Egocentric videos offer fine-grained information for high-
fidelity modeling of human behaviors. Hands and interacting objects
are one crucial aspect of understanding a viewer’s behaviors and in-
tentions. We provide a labeled dataset consisting of 11,243 egocentric
images with per-pixel segmentation labels of hands and objects being
interacted with during a diverse array of daily activities. Our dataset is
the first to label detailed hand-object contact boundaries. We introduce
a context-aware compositional data augmentation technique to adapt
to out-of-distribution YouTube egocentric video. We show that our ro-
bust hand-object segmentation model and dataset can serve as a foun-
dational tool to boost or enable several downstream vision applications,
including hand state classification, video activity recognition, 3D mesh
reconstruction of hand-object interactions, and video inpainting of hand-
object foregrounds in egocentric videos. Dataset and code are available
at: https://github.com/owenzlz/EgoHOS

Keywords: Datasets, Egocentric Hand-Object Segmentation, Egocen-
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1 Introduction

Watching someone cooking from a third-person view, we can answer questions
such as “what food is the person making?”, or “what cooking technique is the
person using?” First-person egocentric video, on the other hand, can often show
much more detailed information of human behaviors, such as “what finger poses
are needed to cut a steak into slices?”, “what are the procedures to construct
a IKEA table with all the pieces and screws?” Thus, egocentric videos are an
essential source of information to study and understand how humans interact
with the world at a fine level. In these videos, egocentric viewer’s hands and
interacting objects are incredibly informative visual cues to understand human
behaviors. However, existing tools for extracting these cues are limited, due to
lack of robustness in the wild or coarse hand-object representation. Our goal is to
create data labels and data argumentation tools for a robust fine-grained egocen-
tric hand-object segmentation system that can generalize in the wild. Utilizing
the fine-level interaction segmentation, we show how to construct a high-fidelity
model that can serve as a foundation for understanding and modeling human
hand-object behaviors.


https://github.com/owenzlz/EgoHOS
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Fig. 1. Leftmost image: our proposed dataset enables us to train a robust hand-object
segmentation model. We introduce contact boundaries to model the hand-object inter-
action explicitly. Right: our hand-object segmentation model is helpful for many vision
tasks, including recognizing hand state, activities, mesh reconstruction, and seeing-
through the hand-object.

The first and foremost factor in building a robust egocentric hand-object
segmentation model is a good-quality labeled dataset. Previous works [1,33,73]
have constructed hand segmentation datasets for egocentric videos. However,
the collected data are mostly restricted to in-lab settings or to limited scenes,
and lack labels for interacting objects. More recently, 100-DOH [58] made a
great effort to label large-scale hand and object interactions in the wild, but
the labels for hands and objects are at the bounding box level. To bridge the
gap and further advance fine-level understanding of hand-object interactions,
we propose a new dataset of 11,243 images with per-pixel segmentation labels.
A major characteristic is that our dataset contains very diverse hand-object
interaction activities and scenarios, where the frames are sparsely sampled from
nearly 1,000 videos in Ego4D [16], EPIC-KITCHEN [8], THU-READ [68], and
from our own collected GoPro videos. In addition, we also provide fine-grained
labels of whether an object is interacted with by the left hand, right hand, or both
hands and whether it is being interacted with directly (in touch) or indirectly.

To serve as an out-of-distribution test set for evaluating in-the-wild perfor-
mance, we sparsely sampled and labeled 500 additional frames from 30 egocen-
tric videos from YouTube. With our new segmentation dataset, we boost the
hand segmentation performance significantly compared to the previous datasets
[1,33,73]. Our dataset is the first to label interacting hand-object contact bound-
aries in egocentric videos. We show this label can improve the detection and seg-
mentation of interaction objects. No matter how diverse our dataset is, we will
inevitably encounter new domains with very different illumination, objects, and
background clutter. We propose a context-aware data augmentation technique
that adaptively composites hand-object pairs into diverse but plausible back-
grounds. Our experiments show that our method is effective for out-of-domain
adaptation.

We view our hand-object segmentation model as a foundation for boosting or
enabling many vision applications, of which we demonstrate three, as shown in
Fig. 1. First, we show that recognition tasks can get consistent performance im-
provement by simply adding reliably segmented hand or object masks as inputs.
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We experiment with a low-level recognition task to classify the left/right-hand
state and a high-level recognition task to understand egocentric video activi-
ties by predicting verbs and nouns. Another useful but challenging application
is reconstructing hand-object interaction in 3D mesh, which relies on the 2D
hand-object masks during optimization. In this application, we integrate our
hand-object segmentation model into the mesh reconstruction pipeline [18], and
show improvements and generalization for mesh reconstruction of hand-object,
compared to its original hand-object segmentation pipeline pretrained on COCO
[39]. Finally, we show an interesting application by combining our accurate per-
frame hand segmentation and video inpainting [12] to see through hands in ego-
centric videos, which could help scene understanding models that have not been
trained with hands in the foreground. More details of each of these applications
are discussed in Section 7.

We summarize the contributions of this work as follows: 1) We propose a
dataset of 11,243 images with fine-grained per-pixel labels of hand and inter-
acting objects, including interacting object masks, enabling hand segmentation
models to generalize much better than previous datasets. 2) We introduce the
notion of a dense contact boundary to explicitly model the relationship between
hands and interacting objects, which we show helps to improve segmentation
performance. 3) We propose a context-aware compositional data augmentation
technique, which effectively boosts object segmentation. 4) We demonstrate that
our system can serve as a reliable foundational tool to boost or enable many vi-
sion applications, such as hand state classification, video activity recognition,
3D reconstruction of hand-object interaction, and seeing through hands in ego-
centric videos. We will release our dataset, code, and checkpoints to the public
for future research.

2 Related Work

2.1 Hand Segmentation

Prior to deep learning, several works have attempted to solve the hand segmenta-
tion task. Jedynak et al. [22] used a color statistics—based approach to separate
the skin region and the background. Ren and Gu [52] proposed a bottom-up
motion-based approach to segment hand and object using the different motion
patterns between hands and background in egocentric videos. Following up with
[52], Fathi et al. [10] further separates hand and interacting object from the whole
foreground by assuming a color histogram prior over hand super-pixels, and uses
graph-cut to segment hands and objects. Li and Kitani [31,32] first addressed the
hand segmentation problem under various illuminations, and proposed to adap-
tively select a model that works the best under different illumination scenarios

during inference time. Zhu et al. [34] proposed a novel approach by estimating a
probability shape mask for a pixel using shape-aware structured forests. Beyond
the egocentric viewer, Lee et al. [30] studied the problem of hand disambiguation

of multiple people in egocentric videos by modeling the spatial, temporal, and
appearance coherency constraints of moving hands.
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More recently, many works [1,73,4,34,36,37,58,59,61,24,50] have applied deep
networks for hand or object segmentation. Bambach et al. [1] introduced a
dataset that contains 48 egocentric video clips for people interacting with others
in real environments with over 15,000 labeled hand instances. The authors also
proposed CNNs to first detect hand bounding boxes and then use GrabCut [56]
to segment the hands. Following up on the same dataset, Urooj and Borji [73]
used the RefineNet-ResNet101 [38] to achieve the state-of-the-art hand segmen-
tation performance at the time. To alleviate the generalization issue, Cai et al.
[4] proposed the use of a Bayesian CNN to predict the model uncertainty and
leveraged the common information of hand shapes to better adapt to an unseen
domain. There are also some other dataset efforts regarding hand segmentation.
Li et al. [34] proposed the Georgia Tech Egocentric Activity Datasets (GTEA),
which includes 625 frames with two-hand labeling and 38 frames with binary
labeling. Later, Li et al. [33] extended the dataset (EGTEA) with 1,046 frames
with two-hand labels and 12,799 frames with binary masks. Lin et al. [36,37]
also explored artificially composited hands with various backgrounds to scale
up a large-scale synthetic dataset. Urooj et al. [73] recognized the constrained
environment as one big limitation of existing datasets and collected an in-the-
wild dataset by sampling frames from YouTube videos (EYTH). Though it is
more diverse, it is relatively small with around 2,000 frames sampled from only 3
videos. Since frames are selected by simply sampling at a fixed rate, many frames
are similar to each other in appearance. In addition to datasets with per-pixel
labels, Shan et al. [58] labeled 100K video frames with bounding box labels for
hands and interacting objects. More recently, Shan et al. [59] also proposed to
learn hand and hand-held objects segmentation from motion using image and
hand location as inputs.

Our work differs from previous works in two main aspects. While previous
work mainly focus on egocentric hand segmentation, we take a step further to
study not only hand segmentation but also interacting object segmentation. In
addition, previous datasets were mainly focused on certain constrained scenes
and limited activities. Our proposed dataset includes diverse daily activities with
hundreds of human subjects. More detailed comparisons are shown in Section 3.

2.2 Hand-Object Interaction

Many works have studied hand-object interaction from different angles other
than segmentation. One highly related direction is to model and estimate 3D
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object pose [14,28,29,35,43,57,64,71,76,31], or both [6,17,18,19,69]. A line of
works [2,7,21,23,67] have also attempted to generate hand pose conditioned on
objects. Mostly related to our work, Hasson et al. [18] and Cao et al. [6] used

segmentation masks of hands and interacting objects to compute 2D projection
loss in order to optimize the 3D mesh reconstructions of hand-object pairs. How-
ever, the instance segmentation model [25] they used to pre-compute hand and
object masks are pretrained on COCO [39], which is not tailored to egocentric
hand-object segmentation, and thus heavy human intervention is often needed
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to fix or filter out wrongly predicted masks. Other directions of hand-object in-
teraction involve using hands as probes for object understanding [15], affordance
hotspot reasoning [47,49], or even leveraging visual hand-object understanding
for robotic learning [41,42,48]. Overall, we view our work as an orthogonal foun-
dational tool for many of these vision tasks.

3 Dataset

Gathering Data from Multiple Sources. A big motivation of this work
is that the existing datasets do not support researchers to train a model that
generalizes well in the wild. Therefore, we collect data from multiple sources,
including 7,458 frames from Ego4d [16], 2,121 frames from EPIC-KITCHENS
[8], 806 frames from THU-READ [68], as well as 350 frames of our own collected
indoor egocentric videos. This results in a total of 11,243 frames sparsely sampled
from nearly 1,000 videos covering a wide range of daily activities in diverse
scenarios. We manually select diverse and non-repetitive video frames from the
sampled set that contain interesting hand-object interactions to label with per-
pixel segments, as shown in Fig. 2. More details on video frame sampling are
included in the supplementary materials.

THU-READ Escape Room

Ego4D EPIC-KITCHEN

Fig. 2. A selection of images from multiple sources which we label with per-pixel hand
and object segments. Color mapping: red — left hand, blue — right hand, green —
object interacted by both hands, pink — object interacted by left hand, cyan — object
interacted by right hand.

Annotations. For every image in the dataset, we obtained the following per-
pixel mask annotations if applicable: (a) left-hand; (b) right-hand; (c¢) left-hand
object; (d) right-hand object; (e) two-hand object. For each type of interacting
object, we also provide two levels of interaction: direct and indirect interaction.
We define direct interaction between hand and object if the hand touches the
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objects, such as the blue, cyan, or pink masks in Fig.2. Otherwise, we label the
object as indirectly interacted with by the hand if the object is being indirectly
interacted with, without touching, such as the light cyan masks in the third
row of Fig.2. In this work, we only study directly interacting objects, but we
will release the data to support future research into indirect interacting object
segmentation. Note that previous works define hand masks in two types: hand
only [1,73] and hand with arm [33]. We think both types of labels are useful
depending on the application, so we provide both types of hand mask labels for
all images in our dataset, where one for hands and another one for the rest of
the arms.

Datasets Label #Frames #Hands #Objects Objects Interaction L/R Hand +#Subjects #Activities

100-DOH [33] box. 100K 189.6K  110.1K Yes Yes Yes - -
EGTEA [33]  seg. 13,847 - - Yes No No 32 1
EgoHand[!] seg. 4,800 15,053 - Yes - Yes 4 4
EYTH [73]  seg. 1,290 2,600 - No No No - -

Ours seg. 11,243 20,701 17,568 Yes Yes Yes 100+ 300+
Table 1. Egocentric Hand-Object Segmentation Datasets Comparison. Un-
known information is denoted with a dash ”-”. Compared to previous datasets, our

proposed datasets cover relatively diverse scenes and activities with fine-grained seg-
mentation labels of both hands and interating objects.

Comparison with Existing Datasets. In Table 1, we compare our pro-
posed dataset with existing labeled datasets. 100-DOH [58] also provide a large
volume of labelled images and objects, but its labels are at the bounding box
level and not tailored towards egocentric images only. Although 100-DOH [58]
has made a great effort to improve the generalization of hand-object bounding
box detection, we think that having the segmentation prediction is particularly
useful or necessary for many downstream vision applications, such as mesh re-
construction of hand-object interaction and seeing through the hands, as shown
in Section 7. Compared to other segmentation datasets, one important charac-
teristic of our dataset is that our images cover diverse activities and many human
subjects. Since we do not have frame-level semantic labels, our conservative esti-
mation of the number of human subjects and activity types are 300+ and 100+
respectively, according to the video IDs/names in the datasets [3,16,68]. Both
the number of subjects and activities are orders of magnitude larger than previ-
ous segmentation datasets. In addition, unlike previous segmentation datasets,
we are also the first to provide per-pixel mask labels for the interacting objects.

4 Hand-Object Contact Boundary

A key challenge of hand-object segmentation is the explicit understanding and
modeling of the relationship between the hand and the interacting object. Seg-
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menting the object purely based on appearance, as in traditional segmentation
tasks, would not properly solve our problem. The reason is that the same ob-
ject requires segmentation in certain frames but not in the others, depending on
whether the hand is in contact with the object. To this end, we propose to explic-
itly model the interaction relationship between hand and object by introducing
the notion of a dense contact boundary.

A Causal Hand-Object Segmentation Pipeline 1 Dense Contact Boundary Generation

4

Fig. 3. Left: an overview of our causal hand-object segmentation pipeline. Right: a
demo to show how dense contact boundary is defined.

Conceptually, the dense contact boundary is defined to be the contact re-
gion between the hand and the interacting object. In our implementation, we
first dilate both the labeled hand and the object masks in an image, then find
the overlapped region between the two dilated masks, and finally binarize the
overlapped region as our pseudo-ground truth for contact boundary, as shown
in the yellow region in Fig. 3. With such a pipeline, we automatically generate
supervision on the contact boundary for all images, where we could train the
network to make prediction for it with standard binary cross entropy loss.

The advantages of explicitly predicting a dense contact boundary for inter-
acting object segmentation are: 1) the contact boundary could provide a cue
as to whether there is an interacting object for a given hand mask; 2) it also
provides a clearer hand-object separation cue to improve segmentation accuracy.
Our experiments show that the contact boundary helps the segmentation model
to achieve a higher averaged object mask mloU, and more ablation studies are
shown in Section 6.2. Other advantages of the contact boundary besides boosting
segmentation performance include: 1) the contact boundary segmentation con-
tains crucial information for many downstream tasks, such as activity recognition
and 3D mesh modeling of hand and object; 2) it could also provide potential
metrics for evaluating segmentation, specifically for object-hand segmentation
during an interaction.

We experiment with one hand-object segmentation pipeline that uses dense
interaction boundary as an intermediate stage output. We sequentially predict
first the left/right hand, then the contact boundary, and finally the interacting
object in three stages, as shown in the left of Fig. 3. In each stage, we concate-
nate the outputs from previous stages as additional inputs. For example, the
left /right hand masks are concatenated with the RGB image as inputs to pre-
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dict the contact boundary; and in the last stage, the RGB image, hand masks,
and contact boundary masks are concatenated as inputs to predict the interact-
ing object masks. Our model is built by sequentially stacking networks, which
we tried both a convolutional architecture (ResNet-18 backbone [20] and HRNet
head [74]) and a transformer architecture (Swin-L backbone [40] and UperNet
head [77]). Note that we do not focus on the architecture and loss design in this
work, and more training details are described in the supplementary materials.

5 Context-Aware Compositional Data Augmentation

Copying-and-pasting foreground instances at different locations into different
background scenes has shown to be a simple and effective data augmentation
technique for object detection and instance segmentation, as shown in [9,13,82].
In order to further expand the dataset and improve our model performance, we
build a context-aware compositional data augmentation pipeline such that the
new composite image has semantically consistent foreground (hand-object) and
background context.

”Clean” Background Extraction by Inpainting

”Clean” Background Extraction by Classifier

/

Background to Be Filled Query Background

R
U=

Hands and Interacting Objects Final Composite Image Selected New Background

Image with Mask Annotations

Fig. 4. An overview of our context-aware compositional data augmentation pipeline.

Our overall pipeline design is shown in Fig. 4. In the first step, we need to
find the “clean” background scenes that do not contain any hands or interacting
objects. The reason is that the image should only contain one egocentric viewer’s
hands and interacting objects after the composition. To this end, we propose two
ways to generate “clean” background. The first is to build a simple binary clas-
sifier that finds the frames with no hands from a large pool of video frames, as
shown in the top left of Fig. 4. The second way is to remove the existing hand-
object using an image inpainting model [65] and the labeled segmentation masks,
as shown in the top right of Fig. 4. Both approaches enable us generate a large
pool of “clean” background candidates. On the other hand, when given an image
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with hand-object segmentation masks, we first inpaint the hand-object regions
using the inpainting model [65] to generate the “clean” query background, and
then use it to retrieve the top-K similar background scenes from the “clean” back-
ground candidate pool based on deep features extracted by [62]. Finally, multiple
background scenes are sampled from the top-K retrieved background images, as
shown in the bottom of Fig. 4. Overall, our designed context-aware image com-
position pipeline allows us to generate semantically consistent hand-object and
context as much as needed. In the experiments, we show the effectiveness of our
proposed data augmentation technique.

6 Experiments on Hand-Object Segmentation

In this section, we first make comparison studies with the existing datasets on
hand segmentation, and then we discuss the benchmark performance of the hand-
object segmentation with an ablation study. In order to evaluate the in-the-wild
segmentation performance, we sparsely sampled 500 frames from 30 collected
Youtube egocentric videos to label as our out-of-distribution test set. In the
following segmentation experiments, all results are evaluated on this test set
unless otherwise specified. All of our models are trained and evaluated using the
MMSegmentation codebase.

6.1 Two-Hand Segmentation

Previous hand segmentation datasets have different definitions of hand labels,
such as left/right hand [1], binary hand [73] or binary hand + arm [33]. Since
our datasets provide all these types of hand labels, we compare individually with
the previous datasets in their settings. For a fair comparison, we train the same
ResNet-18 backbone [20] and HRNet head [74] on each dataset, select the best
checkpoints based on the validation set, and finally compute the results on the
same held-out test set.

Datasets mloU mPrec mRec mF1

EgoHand[!] 10.68/33.28 43.61/43.20 12.39/59.16 19.30/49.93
100-DOH[53] + BoxInst[70] 36.30/37.51 50.06/61.63 56.91/48.94 53.27/54.55
Ours 76.29/77.00 83.39/87.06 89.97/86.95 86.55/87.00
+ CCDA 79.73/82.17 84.26,/90.38 93.68/90.04 88.72/90.21

Table 2. Left/Right Hand Segmentation.

! MMSegmentation github: https://github.com/open-mmlab/mmsegmentation
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Datasets mloU mPrec mRec mF1

EgoHand([1] 56.51 76.33 68.52 72.22

Datasets mloU mPrec mRec mF1

100- 69.50 84.80 79.67 82.00
DOH[]+ ﬁg;]TEA 33.26 38.24 71.87 49.92
BoxInst[70] .

EYTH[73] 75.94 85.17 87.51 86.32 Ours 92.46 96.67 9550 96.08
O 318 8931 9231 ooma T CCDA 0520 97.68 9740 97.54

Table 4. Binary Hand + Arm Segmenta-
+ CCDA 8545 90.11 943 9215 ¢jon.

Table 3. Binary Hand Segmentation.

EgoHand 100-DOH + Boslnst Ours Ours + CCDA

Fig.5. A qualitative comparison between segmentation models trained on previous
datasets and our proposed dataset. The top row shows the comparison with EgoHand
and 100-DOH + BoxInst in Left/Right Hand segmentation, where red and cyan in-
dicate left hand and right hand respectively. The bottom left shows the comparison
with EGTEA on binary Hand + Arm segmentation. The bottom right shows the
comparison with EYTH on binary Hand segmentation.

In the first type of labeling, EgoHand [1] labeled the left and right hands of
people in egocentric activities. Similarly, 100-DOH [58] also labeled large-scale
left /right hands but with only bounding box annotations. We compare with
100-DOH by training a weakly supervised segmentation model, BoxInst [70],
which learns to segment objects given bounding box annotation. To make the
hand segmentation performance as good as possible for 100-DOH, we pre-trained
BoxInst on 2000 frames sampled from EPIC-KITCHEN. As shown in Table 2,
the model trained on our dataset significantly outperforms the model trained
on EgoHand and 100-DOH with BoxInst. From the visual results, as shown in
the first row of Fig. 5, we observe that models trained on EgoHand and 100-
DOH often generate wrong mask categorical labels, which causes significantly
lower mIoU (mean Intersection over Union) for left/right hand segmentation.
When we binarize the predicted left /right hand masks of EgoHand and 100-DOH
and evaluate them on the binary hand segmentation task, the performance gap
bridges closer to us, as shown in Table 3. This again shows that mis-classification
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of left/right hand is indeed a major issue that causes low mIoU in Table 2 for
the models trained on [1,58].

The other two datasets EYTH [73] and EGTEA [33] provide only binary
mask labels for both hands without differentiating between left or right. EYTH
[73] labeled only the hand region, and EGTEA [33] labeled both hand and arm
regions. In Table 3 and Table 4, the quantitative results show that the model
trained on our datasets also outperforms previous datasets by an obvious margin
in both “hand” and “hand 4+ arm” settings, and visual comparisons are shown
in the bottom of Fig. 5. In all these hand segmentation settings, we observe
that our context-aware compositional data augmentation (CCDA) consistently
improves the hand segmentation performance quantitatively. More qualitative
comparisons are included in the supplementary materials.

6.2 Hand and Interacting Object Segmentation

Since our dataset is the first to provide mask labels for interacting objects, we dis-
cuss the benchmark performance of hand-object segmentation with an ablation
study in this section. In this task, we assign hands to left and right categories, and
objects to three categories based on the interacting hand: left-hand object, right-
hand object, and two-hand object. A naive solution is to train a segmentation
network that decodes five channels of outputs in parallel, as shown in the 1°¢ row
of Table 5. However, this might not be ideal, since parallel decoding of outputs
does not leverage any explicit understanding of the hand-object relationship, as
discussed in Section 4. Thus, we propose to try to sequentially decode the hand
first, and then use predicted left /right hand mask information to explicitly guide
the interacting object segmentation, as shown in the 3" row of Table 5. We also
studied adding contact boundary (CB) as intermediate guide information, and
found that it effectively boosts the object segmentation performance, as shown in
the comparison between 3"¢ and 5 rows. More details about contact boundary
are discussed in Section 4. Finally, we evaluated the effectiveness of our context-
aware compositional data augmentation (CCDA) by integrating it on top of
both parallel and sequential models. As shown in the comparison between rows
15,374 5th and rows 2%, 4th 6" CCDA slightly improves the left /right hand
segmentation and significantly boosts the object segmentation performance. We
think the reasons are that compositional augmentation enables the network to
learn the pixel grouping of objects more easily when placing them into many
different background. More details are on how we choose the quantity of aug-
mented images are are discussed in the supplementary materials. The qualitative
results for dense contact boundary prediction and hand-object segmentation in
diverse activities are shown in the supplemental materials.

7 Applications

7.1 Boosting Hand State Classification and Activity Recognition

Understanding the hand state and recognizing types of activities in egocentric
videos are important for human behavior analysis. Similarly to 100-DOH [58],
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Models Left Hand Right Hand Left-Hand Object Right-Hand Object Two-Hand Object
Para. Decode 69.08 73.50 48.67 36.21 37.46
Para. Decode + CCDA 77.57 81.06 54.83 38.48 39.14
Seq. Decode 73.17 80.56 54.83 38.48 39.14
Seq. Decode + CCDA 87.70 88.79 58.32 40.18 46.24
Seq. Decode + CB 77.25 81.17 59.05 40.85 49.94
Seq. Decode + CB 4+ CCDA  87.70 88.79 62.20 44.40 52.77

Table 5. A quantitative ablation study on the hand-object segmentation.

we define hand states for both left and right hands as the following: (contact
with) portable, (contact with) stationary, no-contact, self-contact, and not-exist.
The goal of this task is to classify a correct state for each of the two hands of
the egocentric viewer, where we use two classification heads to handle this. To
this end, we labeled the hand states of 3,531 frames from EPIC-KITCHEN [g]
dataset with diverse hand-object interaction. During training, we adopt 8:1:1
ratio to split train, val, and test sets. As shown in Table 6, by adding hand mask
and hand-object masks into the input channel, a classifier with the same back-
bone [62] could effectively improve its classification performance compared to the
baseline that uses RGB images only. For the video activity recognition, we used
a subset data of EPIC-KITCHEN Action Recognition benchmark [8] as well as
its evaluation protocol. With the SlowFast network [1 1], we show that by adding
hand masks into training, the top-1 classification accuracy of “verbs/nouns”
boosts from 23.95%/36.77% to 25.98%/37.04%. A visual illustration of these
two tasks is shown in the supplemental.

Models Accuracy Precision Recall F1 score
Baseline 78.53%/74.29% 43.02%/37.70% 36.86%,/30.60% 37.53%/32.02%
+ Hand Mask 84.18%/83.33% 64.33%,66.16% 57.31%/56.34% 59.42%,/59.00%

+ Hand & Object Mask ~ 86.72%/83.33%  68.18%/69.04%  57.12%/56.08%  60.35%,/59.64%

Table 6. Quantitative results for left/right hand state classification.

7.2 Improved 3D Mesh Reconstruction of Hand-Object Interaction

Mesh reconstruction of hand-object interaction is a useful but very challenging
task. One mainstream approach [0,18] to solve this task is to jointly optimize
the 3D scale, translation and rotation of a given 3D object model, as well as the
MANO parameters [54] for hand. Such optimization process often relies on the
estimated hand and object segmentation masks to compute the 3D mesh to 2D
projection error. In previous works, researchers [6,18] leverage the 100-DOH’s



Egocentric Hand-Object Segmentation 13

[58] detector to localize the hand and interacting object at bounding box level,
and then use PointRend [25] pre-trained on COCO [39] to segment the hand
and object masks. The interacting object mask is assigned by a heuristic that
the object mask with highest confidence score is the one in interaction.

In this work, we integrate our robust hand-object segmentation model into
the previous mesh reconstruction pipeline [18]. Since our hand-object segmen-
tation could generalize better than the previous segmentation component, we
enable the hand-object reconstruction generalize in more diverse scenarios with
higher visual fidelity. As shown in the first row of Fig. 6, the previous segmen-
tation pipeline oftentimes fails to segment the complete object, and thus the
object was optimized into a wrong 3D pose, while our accurate hand-object seg-
mentation enables the object mesh reconstruction to be more accurate. In the
second row of Fig. 6, we observe that the previous segmentation pipeline some-
times completely misses the interacting object at the bounding box detection
stage, and thus no segmentation and 3D mesh could be generated. In contrast,
our pipeline provides higher recall on the object detection, and thus is able to
recover the object mesh, as shown in the bottom right of Fig. 6.

Image with Mesh Mesh Image with Mesh Mesh
Hand-object Seg. (Original View) (Rotated View) Hand-object Seg. (Original View) (Rotated View)

A | =9

A
i}

Fig. 6. Visual comparison between 3D mesh reconstruction of hand-object interaction.
The left results are from the original code of [18], where they use 100-DOH [58] detector
with PointRend [25] to compute hand-object masks. The right results are computed
by integrating our hand-object segmentation into [18] for mesh optimization.

7.3 Seeing Through the Hand in Egocentric Videos

Finally, in this work, we propose a new interesting application, where the goal is
to see through the hand in egocentric videos. With our robust per-frame segmen-
tation of hand masks, we use the recent flow-guided video inpainting algorithm
[12] to completely remove the hands such that we could see the original con-
tent occluded by hands in the videos. A visual example of this application is
shown in supplemental, where the hand is removed and the bottles and fridge
layers that are originally occluded can now been visualized in every video frame.
More video results are included in the supplementary materials. In the ego-
centric videos, since hands are prevalent and almost moving all the time, they
create large occlusions of visual contents. The practical use of our “hand see
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through” system is that we could potentially enable the vision system analyze
more previously occluded information, for example, in the future AR system.

> Time

Fig. 7. A qualitative demo to show the application of seeing through the hand in ego-
centric videos. This application is enabled by our robust per-frame hand segmentation
together with the video inpainting model [12]. The top row are the frames with pre-
dicted hand segmentation masks, and the bottom row shows the “see through” frames
at the corresponding timestamp. More video results are shown in the supplemental.

8 Conclusion

We created a fine-grained egocentric hand-object segmentation dataset and syn-
thetic data augmentation method to 1) enable robustness against out-of-distribution
domain change and 2) support downstream tasks. Our labeled dataset of 11,243
images contains both per-pixel segmentation labels of hand and interacting ob-
jects and dense contact boundaries. Our context-aware compositional data aug-
mentation technique significantly improves segmentation performance, especially
for interacting objects. We show that our robust hand-object segmentation model
can serve as a foundational tool for several vision applications, including hand
state classification, activity recognition, 3D mesh reconstruction of hand-object
interaction, and seeing through the hand in egocentric videos.

Acknowledgment. This research is based on work supported by Toyota
Research Institute and Adobe Gift Fund. The views and conclusions contained
herein are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the sponsors.



Egocentric Hand-Object Segmentation 15

References

1.

10.

11.

12.

13.

14.

15.

16.

Bambach, S., Lee, S., Crandall, D.J.,; Yu, C.: Lending a hand: Detecting hands
and recognizing activities in complex egocentric interactions. In: Proceedings of
the IEEE International Conference on Computer Vision. pp. 1949-1957 (2015) 2,
4,6, 9,10, 11

. Brahmbhatt, S., Handa, A., Hays, J., Fox, D.: Contactgrasp: Functional multi-

finger grasp synthesis from contact. In: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). pp. 2386-2393. IEEE (2019) 4
Brahmbhatt, S., Tang, C., Twigg, C.D., Kemp, C.C., Hays, J.: Contactpose: A
dataset of grasps with object contact and hand pose. In: European Conference on
Computer Vision. pp. 361-378. Springer (2020) 4

Cai, M., Lu, F., Sato, Y.: Generalizing hand segmentation in egocentric videos with
uncertainty-guided model adaptation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 14392-14401 (2020) 4
Cai, Y., Ge, L., Cai, J., Yuan, J.: Weakly-supervised 3d hand pose estimation from
monocular rgb images. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 666—682 (2018) 4

Cao, Z., Radosavovic, 1., Kanazawa, A., Malik, J.: Reconstructing hand-object in-
teractions in the wild. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 12417-12426 (2021) 4, 12

Corona, E., Pumarola, A., Alenya, G., Moreno-Noguer, F., Rogez, G.: Ganhand:
Predicting human grasp affordances in multi-object scenes. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5031—
5041 (2020) 4

Damen, D., Doughty, H., Farinella, G.M., Fidler, S., Furnari, A., Kazakos, E.,
Moltisanti, D., Munro, J., Perrett, T., Price, W., et al.: Scaling egocentric vision:
The epic-kitchens dataset. In: Proceedings of the European Conference on Com-
puter Vision (ECCV). pp. 720-736 (2018) 2, 5, 6, 12

Fang, H.S., Sun, J., Wang, R., Gou, M., Li, Y.L., Lu, C.: Instaboost: Boosting
instance segmentation via probability map guided copy-pasting. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 682-691 (2019)
8

Fathi, A., Ren, X., Rehg, J.M.: Learning to recognize objects in egocentric activi-
ties. In: CVPR 2011. pp. 3281-3288. IEEE (2011) 3

Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recog-
nition. In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 6202-6211 (2019) 12

Gao, C., Saraf, A., Huang, J.B., Kopf, J.: Flow-edge guided video completion. In:
European Conference on Computer Vision. pp. 713-729. Springer (2020) 3, 13, 14
Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T.Y., Cubuk, E.D., Le, Q.V.,
Zoph, B.: Simple copy-paste is a strong data augmentation method for instance
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 2918-2928 (2021) 8

Gkioxari, G., Malik, J., Johnson, J.: Mesh r-cnn. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 9785-9795 (2019) 4

Goyal, M., Modi, S., Goyal, R., Gupta, S.: Human hands as probes for interactive
object understanding. arXiv preprint arXiv:2112.09120 (2021) 5

Grauman, K., Westbury, A., Byrne, E., Chavis, Z., Furnari, A., Girdhar, R., Ham-
burger, J., Jiang, H., Liu, M., Liu, X., et al.: Ego4d: Around the world in 3,000
hours of egocentric video. arXiv preprint arXiv:2110.07058 (2021) 2, 5, 6



16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Zhang and Zhou et al.

Hasson, Y., Tekin, B., Bogo, F., Laptev, 1., Pollefeys, M., Schmid, C.: Leverag-
ing photometric consistency over time for sparsely supervised hand-object recon-
struction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 571-580 (2020) 4

Hasson, Y., Varol, G., Schmid, C., Laptev, I.: Towards unconstrained joint hand-
object reconstruction from rgb videos. In: 2021 International Conference on 3D
Vision (3DV). pp. 6569-668. IEEE (2021) 3, 4, 12, 13

Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M.J., Laptev, 1., Schmid,
C.: Learning joint reconstruction of hands and manipulated objects. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 11807-11816 (2019) 4

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016) 8, 9

Jiang, H., Liu, S., Wang, J., Wang, X.: Hand-object contact consistency reasoning
for human grasps generation. arXiv preprint arXiv:2104.03304 (2021) 4

Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection.
International journal of computer vision 46(1), 81-96 (2002) 3

Karunratanakul, K., Yang, J., Zhang, Y., Black, M.J., Muandet, K., Tang, S.:
Grasping field: Learning implicit representations for human grasps. In: 2020 Inter-
national Conference on 3D Vision (3DV). pp. 333-344. IEEE (2020) 4

Kim, S., Chi, H.G.: First-person view hand segmentation of multi-modal hand
activity video dataset. BMVC 2020 (2020) 4

Kirillov, A., Wu, Y., He, K., Girshick, R.: Pointrend: Image segmentation as render-
ing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 9799-9808 (2020) 4, 13

Kulon, D., Guler, R.A., Kokkinos, I., Bronstein, M.M., Zafeiriou, S.: Weakly-
supervised mesh-convolutional hand reconstruction in the wild. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
4990-5000 (2020) 4

Kulon, D., Wang, H., Giiler, R.A., Bronstein, M., Zafeiriou, S.: Single image
3d hand reconstruction with mesh convolutions. arXiv preprint arXiv:1905.01326
(2019) 4

Kundu, A., Li, Y., Rehg, J.M.: 3d-rcnn: Instance-level 3d object reconstruction via
render-and-compare. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 3559-3568 (2018) 4

Kuo, W., Angelova, A., Lin, T.Y., Dai, A.: Mask2cad: 3d shape prediction by
learning to segment and retrieve. In: Computer Vision—-ECCV 2020: 16th European
Conference, Glasgow, UK, August 2328, 2020, Proceedings, Part III 16. pp. 260—
277. Springer (2020) 4

Lee, S., Bambach, S., Crandall, D.J., Franchak, J.M.; Yu, C.: This hand is my
hand: A probabilistic approach to hand disambiguation in egocentric video. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. pp. 543-550 (2014) 3

Li, C., Kitani, K.M.: Model recommendation with virtual probes for egocentric
hand detection. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 2624-2631 (2013) 3

Li, C., Kitani, K.M.: Pixel-level hand detection in ego-centric videos. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
3570-3577 (2013) 3



33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Egocentric Hand-Object Segmentation 17

Li, Y., Liu, M., Rehg, J.M.: In the eye of beholder: Joint learning of gaze and actions
in first person video. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 619-635 (2018) 2, 4, 6, 9, 10, 11

Li, Y., Ye, Z., Rehg, J.M.: Delving into egocentric actions. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 287-295
(2015) 4

Lim, J.J., Pirsiavash, H., Torralba, A.: Parsing ikea objects: Fine pose estimation.
In: Proceedings of the IEEE International Conference on Computer Vision. pp.
2992-2999 (2013) 4

Lin, F., Martinez, T.: Ego2hands: A dataset for egocentric two-hand segmentation
and detection. arXiv preprint arXiv:2011.07252 (2020) 4

Lin, F., Wilhelm, C., Martinez, T.: Two-hand global 3d pose estimation using
monocular rgb. In: Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision. pp. 2373-2381 (2021) 4

Lin, G., Milan, A., Shen, C., Reid, I.: Refinenet: Multi-path refinement networks
for high-resolution semantic segmentation. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 1925-1934 (2017) 4

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollér, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740-755. Springer (2014) 3, 4, 13

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 10012-10022
(2021) 8

Mandikal, P., Grauman, K.: Dexvip: Learning dexterous grasping with human hand
pose priors from video. In: 5th Annual Conference on Robot Learning (2021) 5
Mandikal, P., Grauman, K.: Learning dexterous grasping with object-centric vi-
sual affordances. In: IEEE International Conference on Robotics and Automation,
ICRA 2021, Xi’an, China, May 30 - June 5, 2021. pp. 6169-6176. IEEE (2021) 5
Michel, F., Kirillov, A., Brachmann, E., Krull, A., Gumhold, S., Savchynskyy,
B., Rother, C.: Global hypothesis generation for 6d object pose estimation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 462-471 (2017) 4

Moon, G., Chang, J.Y., Lee, K.M.: V2v-posenet: Voxel-to-voxel prediction network
for accurate 3d hand and human pose estimation from a single depth map. In:
Proceedings of the IEEE conference on computer vision and pattern Recognition.
pp. 5079-5088 (2018) 4

Mueller, F., Bernard, F., Sotnychenko, O., Mehta, D., Sridhar, S., Casas, D.,
Theobalt, C.: Ganerated hands for real-time 3d hand tracking from monocular
rgb. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 49-59 (2018) 4

Muller, L., Osman, A.A., Tang, S., Huang, C.H.P., Black, M.J.: On self-contact and
human pose. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 9990-9999 (2021) 4

Nagarajan, T., Feichtenhofer, C., Grauman, K.: Grounded human-object interac-
tion hotspots from video. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. pp. 8688-8697 (2019) 5

Nagarajan, T., Grauman, K.: Shaping embodied agent behavior with activity-
context priors from egocentric video. Advances in Neural Information Processing
Systems 34 (2021) 5



18

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Zhang and Zhou et al.

Nagarajan, T., Li, Y., Feichtenhofer, C., Grauman, K.: Ego-topo: Environment
affordances from egocentric video. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 163-172 (2020) 5
Narasimhaswamy, S., Nguyen, T., Nguyen, M.H.: Detecting hands and recognizing
physical contact in the wild. Advances in neural information processing systems
33, 7841-7851 (2020) 4

Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A.A., Tzionas, D.,
Black, M.J.: Expressive body capture: 3d hands, face, and body from a single
image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 10975-10985 (2019) 4

Ren, X., Gu, C.: Figure-ground segmentation improves handled object recognition
in egocentric video. In: 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. pp. 3137-3144. IEEE (2010) 3

Romero, J., Kjellstrom, H., Kragic, D.: Hands in action: real-time 3d reconstruction
of hands in interaction with objects. In: 2010 IEEE International Conference on
Robotics and Automation. pp. 458-463. IEEE (2010) 4

Romero, J., Tzionas, D., Black, M.J.: Embodied hands: Modeling and capturing
hands and bodies together. ACM Transactions on Graphics, (Proc. SIGGRAPH
Asia) 36(6) (Nov 2017) 12

Rong, Y., Shiratori, T., Joo, H.: Frankmocap: Fast monocular 3d hand and body
motion capture by regression and integration. arXiv preprint arXiv:2008.08324
(2020) 4

Rother, C., Kolmogorov, V., Blake, A.: ” grabcut” interactive foreground extrac-
tion using iterated graph cuts. ACM transactions on graphics (TOG) 23(3), 309-
314 (2004) 4

Sahasrabudhe, M., Shu, Z., Bartrum, E., Alp Guler, R., Samaras, D., Kokkinos,
I.: Lifting autoencoders: Unsupervised learning of a fully-disentangled 3d mor-
phable model using deep non-rigid structure from motion. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops. pp. 0-0
(2019) 4

Shan, D., Geng, J., Shu, M., Fouhey, D.F.: Understanding human hands in con-
tact at internet scale. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 9869-9878 (2020) 2, 4, 6, 9, 10, 11, 13
Shan, D., Higgins, R., Fouhey, D.: Cohesiv: Contrastive object and hand embedding
segmentation in video. Advances in Neural Information Processing Systems 34
(2021) 4

Sharp, T., Keskin, C., Robertson, D., Taylor, J., Shotton, J., Kim, D., Rhemann,
C., Leichter, I., Vinnikov, A., Wei, Y., et al.: Accurate, robust, and flexible real-
time hand tracking. In: Proceedings of the 33rd annual ACM conference on human
factors in computing systems. pp. 3633-3642 (2015) 4

Shilkrot, R., Narasimhaswamy, S., Vazir, S., Hoai, M.: Workinghands: A hand-tool
assembly dataset for image segmentation and activity mining. In: BMVC. p. 258
(2019) 4

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014) 9, 12

Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand
motion tracking using rgb and depth data. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 2456-2463 (2013) 4

Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T., Tenenbaum, J.B., Free-
man, W.T.: Pix3d: Dataset and methods for single-image 3d shape modeling. In:



65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

e

78.

79.

Egocentric Hand-Object Segmentation 19

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 2974-2983 (2018) 4

Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov,
A., Kong, N., Goka, H., Park, K., Lempitsky, V.: Resolution-robust large mask
inpainting with fourier convolutions. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. pp. 2149-2159 (2022) 8, 9
Tagliasacchi, A., Schroder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.:
Robust articulated-icp for real-time hand tracking. In: Computer Graphics Forum.
vol. 34, pp. 101-114. Wiley Online Library (2015) 4

Taheri, O., Ghorbani, N., Black, M.J., Tzionas, D.: Grab: A dataset of whole-
body human grasping of objects. In: European Conference on Computer Vision.
pp. 581-600. Springer (2020) 4

Tang, Y., Tian, Y., Lu, J., Feng, J., Zhou, J.: Action recognition in rgh-d egocentric
videos. In: 2017 IEEE International Conference on Image Processing (ICIP). pp.
3410-3414. IEEE (2017) 2, 5, 6

Tekin, B., Bogo, F., Pollefeys, M.: H+ o: Unified egocentric recognition of 3d
hand-object poses and interactions. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 4511-4520 (2019) 4

Tian, Z., Shen, C., Wang, X., Chen, H.: Boxinst: High-performance instance seg-
mentation with box annotations. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 5443-5452 (2021) 9, 10

Tulsiani, S., Gupta, S., Fouhey, D.F., Efros, A.A., Malik, J.: Factoring shape, pose,
and layout from the 2d image of a 3d scene. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 302-310 (2018) 4

Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.: Cap-
turing hands in action using discriminative salient points and physics simulation.
International Journal of Computer Vision 118(2), 172-193 (2016) 4

Urooj, A., Borji, A.: Analysis of hand segmentation in the wild. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4710-4719
(2018) 2, 4, 6, 9, 10, 11

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan,
M., Wang, X., et al.: Deep high-resolution representation learning for visual recog-
nition. IEEE transactions on pattern analysis and machine intelligence 43(10),
3349-3364 (2020) 8, 9

Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: Posing face, body, and
hands in the wild. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10965-10974 (2019) 4

Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: A convolutional neu-
ral network for 6d object pose estimation in cluttered scenes. arXiv preprint
arXiv:1711.00199 (2017) 4

Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene
understanding. In: Proceedings of the European conference on computer vision
(ECCV). pp. 418-434 (2018) 8

Yang, L., Yao, A.: Disentangling latent hands for image synthesis and pose esti-
mation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 9877-9886 (2019) 4

Ye, Q., Yuan, S., Kim, T.K.: Spatial attention deep net with partial pso for hierar-
chical hybrid hand pose estimation. In: European conference on computer vision.
pp. 346-361. Springer (2016) 4



20

80.

81.

82.

83.

84.

85.

Zhang and Zhou et al.

Yuan, S., Garcia-Hernando, G., Stenger, B., Moon, G., Chang, J.Y., Lee, K.M.,
Molchanov, P., Kautz, J., Honari, S., Ge, L., et al.: Depth-based 3d hand pose
estimation: From current achievements to future goals. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 2636-2645 (2018) 4
Zhang, J.Y., Pepose, S., Joo, H., Ramanan, D., Malik, J., Kanazawa, A.: Perceiv-
ing 3d human-object spatial arrangements from a single image in the wild. In:
European Conference on Computer Vision. pp. 34-51. Springer (2020) 4

Zhang, L., Wen, T., Min, J., Wang, J., Han, D., Shi, J.: Learning object placement
by inpainting for compositional data augmentation. In: European Conference on
Computer Vision. pp. 566-581. Springer (2020) 8

Zhou, Y., Habermann, M., Xu, W., Habibie, I., Theobalt, C., Xu, F.: Monocular
real-time hand shape and motion capture using multi-modal data. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
5346-5355 (2020) 4

Zhu, X., Jia, X., Wong, K.Y.K.: Pixel-level hand detection with shape-aware struc-
tured forests. In: Asian Conference on Computer Vision. pp. 64-78. Springer (2014)
3

Zimmermann, C., Brox, T.: Learning to estimate 3d hand pose from single rgh
images. In: Proceedings of the IEEE international conference on computer vision.
pp. 4903-4911 (2017) 4



	Fine-Grained Egocentric Hand-Object Segmentation: Dataset, Model, and Applications

