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1 Mask Generation

In this work, all of our images are uniformly sampled from Places2 dataset [17].
We generate two types of masks for our experiments, which are masks on the
background region and masks covering a complete object. We discuss the details
of how to generate these masks in below.

Masks on the Background. Since current inpainting models still can not
understand the object-level prior and thus can not properly fill the object region,
we do not want to sample masks that cover partial objects, which none of the
current methods can properly deal with. To this end, we first use Mask R-CNN
[3] to find all object masks, and then avoid sampled holes to partially overlap with
these object regions. We use both free-form masks [12] and instance masks in
our experiments, where the hole size ratio over the entire image ranges from 0.08
to 0.3. The instance masks are collected from multiple segmentation datasets,
such as COCO [6] and Pascal VOC [2]. Some examples of these masks are shown
in Fig. 1.

Free-form Masks Instance Masks

Fig. 1. Some visual examples of mask sampling for labeling and evaluation. The orange
masks indicate the foreground region, where the hole masks avoid to overlap with.

Masks for Object Removal. In this work, we propose Perceptual Arti-
facts Ratio (PAR) metric to evaluate the inpainting quality for object removal
scenario, which is often consider to be a hard but commonly used scenario for
inpainting. To generate the hole mask at scale, we used Mask R-CNN [3] to first
find all object masks in the image, then randomly select one object mask, and
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Fig. 2. Some visual examples of mask sampling for object removal inpainting scenarios.

dilate the mask with 5 x 5 kernel for three iterations to increase coverage of the
object. Some examples of these object removal masks are shown in Fig. 2.

For our perceptual artifacts labeling, we use a mix of both types of masks.
Similarly, in our user study for evaluating ”original fill vs. iterative fill” in section
6.2, half of cases use the masks sampled on the background and another half of
the cases use the object removal masks. For our PAR metric study in section 5
in the main paper, we use only the masks covering complete objects, since we
are evaluating the inpainting quality for object removal scenario.

2 Training Details of the Segmentation Network

In this section, we describe the training details of our perceptual artifacts seg-
mentation network. For our final chosen model with ResNet-50 backbone [1] and
PSP head [15], we also added an auxiliary FCN head [7], which has a loss ratio
of 0.4 compared to the PSP head [15]. We train the segmentation network for
20,000 iterations using SGD optimizer with learning rate of 0.01, momentum
of 0.9, and weight decay of 0.0005. The learning rate is schedule to decay in
polynomial manner by power of 0.9, where the minimum is set to be 0.0001. For
the data augmentation, we adopt random flip with a probability of 0.5 as well
as JPEG compression. All of our models are trained on 4 NVIDIA RTX-Titan
with a batch of 8 on each GPU. All images are trained at 512 x 512, which is
the native resolution of inpainting outputs.

3 Perceptual Artifacts Labeling Interface

As discussed in the data labeling section in the main paper, we provide a copy of
the filled image besides the image that workers actually mark on. The reason is
that we want to provide workers a reference to know the original image content,
which are useful to judge the perceptual artifacts region. Here, we show an actual
worker’s interface in Fig. 3.

4 User Study Interface

In this work, we have conducted two user studies using Amazon Mechanical Turk
(AMT). In the first user study, we ask users to select the preferred image from
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Fig. 3. User labeling interface.

two different inpainting methods, where the results are used for evaluating the
metric correlation with human in section 5.3 in the main paper. In the second
user study, we ask users to choose whether they think the iterative fill is better,
same, or worse than the original fill, which are used for evaluation in section 6.2
in the main paper. Here, we show the user interfaces for the first and second
studies in the left and right of Fig. 4, respectively. We intentionally do not
show the original images to use, since we want to users to judge based on pure
perceptual quality without any bias. We use bounding box to indicate the rough
hole region instead of the actual hole boundary, so that users would have less
bias on the boundary artifacts.

Current Progress: 4 / 100 (Please zoom in your screen to see the details! )

If you think the two images are equally good or bad and feel very uncertain which one to
choose, please select "same" in the answer. Otherwise, please select the image
with relatively better quality (more real or natural) at least on a portion of the image:

Please select the image with relatively better quality (more real or natural):

Left Right

Left Same Right

Fig. 4. Left: user study interface for evaluating between two inpainting models, which
used for our PAR metric study in section 5.3. Right: user study interface for evaluating
whether the iteratively filled images are better than the original fill, which are used as
evaluation for section 6.2 in the main paper. Note that left /right images are randomized
for each case.
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5 More Iterations of Fill

In the main paper, we show how Perceptual Artifacts Ratio (PAR) consistently
decreases over the fill iteration up to the 5" iteration for 5,000 test images.
However, we observe that methods like LaMa [10] still have slight tendency
of decreasing PAR when increasing the fill iteration. Thus, we run a study by
setting the number of iterative fill up to 20 for LaMa [11]. As shown in Table. 1,
we observe that PAR still consistently decreases over the fill iteration, but the
decreasing rate of PAR goes down to a very small number.

Iters ‘ PAR ‘ Iters ‘ PAR ‘ Iters ‘ PAR ‘ Iters ‘ PAR
1 | o378 | 6 | 01091 | 11 | 00707 | 16 | 0.0552
2 | 02439 | 7 ] 00975 | 12 | 00666 | 17 | 0.0533
3 Jo1sir | 8 | 0085 | 13 | 00628 | 18 | 0.0514
4 | 01464 | 9 | 00814 | 14 | 00600 | 19 | 0.0497
5 | 01241 | 10 | 00756 | 15 | 0.0575 | 20 | 0.0481

Table 1. PAR vs. Fill Iters. for LaMa [10].

6 Why Existing Metrics Are Not Suitable for Comparing
“Original Fill vs. Iterative Fill”?

While previous works often use metrics, such as LPIPS [14], PSNR or FID [5][9],
to evaluate the performance of different inpainting methods. We found these
metrics are not suitable to compare the inpainting qualities between original
fill and iterative fill in our case, since the scores are often too similar to make
a judgement. The main reason is that since both original fill and iterative fill
share the same inpainting algorithm, the difference between their outputs are less
obvious than the difference between different inpainting methods, even though
the difference might be obvious to human perception. In addition, we found that
even when the holes are on the background region, reconstruction metrics LPIPS
[141] and PSNR still often prefer the image that is opposite to human judgement,
where the typical observations are shown in Fig. 5. Thus, we used our proposed
PAR metric, which is proven to have strong correlation with human perception in
paper’s section 4, as well as extensive user studies to evaluate the improvement
between original fill and iterative fill, as discussed in section 6.2 in the main

paper.

7 More Visual Results

To help readers have better understanding and more insights on our work, we
provide more visual examples of human annotations and our predictions of in-
painting artifacts, and results of our iterative fill model.
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Image with Hole Original Fill Iterative Fill Image with Hole Original Fill Iterative Fill

LPIPS: 0.02162 LPIPS: 0.02428 LPIPS: 0.04252 LPIPS: 0.04242

PSNR: 23.78 PSNR: 21.45 PSNR: 24.99 PSNR: 23.06
PAR: 0.5479 PAR: 0.0956 PAR: 0.7782 PAR: 0.0269
Human: X Human: v/ Human: X Human: v/

Fig. 5. Metric scores amd human preference for original fill and iterative fill.

7.1 Human Labelings

Visualize Subjective Opinions. As discussed in section 4.2 in the main paper,
labeling perceptual artifacts is a highly subjective task, and different human
subjects might have different opinions or standard to label. Here, we show more
visual examples of different labels on the same filled images in Fig. 6.

More Human Labelings. In Fig. 7, we show more visual examples of
perceptual artifacts labeling from the human professional team. The original hole
masks and the artifacts regions are indicated by the blue and pink boundary,
respectively. As we mentioned in section 3 in the main paper, there are 832
images that have nearly perfect fills so that human did not put any labels on
these images. The visual illustration of these perfect fills are shown in the last
row of Fig. 7. We can see that sometimes human’s labels go outside of the actual
hole mask, since we do not provide hole mask for the workers to avoid any
potential bias. However, this won’t be an issue, since we intersect the labels with
the hole mask to clean up the overly labeled regions as a post-process.
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Filled Image Human Subject A Human Subject B Human Subject C Labeling Team  Segmentation (Ours)

Fig. 6. More qualitative examples of visual comparison between multiple human sub-
jects who label on the same images. The filled images with hole (blue boundary) are
shown in the first column, and our segmentation results are shown in the last column.

7.2 Perceptual Artifacts Localization

In Fig. 8, we show more qualitative results of the perceptual artifacts segmen-
tation across different inpainting methods. Note that our models are trained on
filled images generated by LaMa [10], CoMod-GAN [16], and ProFill [13]. Nev-
ertheless, our trained network generalizes reasonably well to unseen inpainting
models, including EdgeConnect [3], DeepFillv2 [12], and PatchMatch [1].

7.3 Iterative Fill over Iterations

In Fig. 1, we show more examples of iteratively filled images during the process.

7.4 Original Fill vs. Iterative Fill

In Fig. 10, 11, 12, and 13, we show the comparisons between original fill and our
iterative fill for LaMa [10], CoMod-GAN [16], ProFill [13], and EdgeConnect [8],
respectively.

7.5 Situations where Iterative Fill Does Not Help

In section 6.2 in the main paper, we have studied how many cases that users
think the iteratively filled images are better, similar, or worse than the original
fills. The results show that users think iterative fill and original fill are similar
for lots of cases. In this section, we take a deeper look at why this is the case.
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Fig. 7. More qualitative examples of perceptual artifacts labels from the professional
human labeling team. The last row shows the perfectly filled images, so the workers do
not label anything on them.

In general, we observe two major reasons that cause iterative fill are simi-
lar to the original fill. First, when the holes are easy, the inpainting algorithm
could already fill the holes reasonably well in a single pass. In this case, our seg-
mentation network usually would not detect much artifacts region, and thus the
iterative fill would produce very similar or even identical images as the original
fill, as shown in the left of Fig. 14. Second, when the holes are large and there
are not enough useful context, the original fill would usually fail obviously and
our artifacts segmentation network could pick up large artifacts regions, or even
as large as nearly the entire hole. However, since the useful context is still very
limited, the same struggle remains almost unchanged for the same inpainting
algorithm and thus iterative fill would fail to produce better outputs, and thus
can not further improve the inpainting quality, as shown in the right of Fig. 14.
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Fig. 8. More qualitative examples of the predicted perceptual artifacts localization
from our segmentation network for different inpainting models. In the last column, our
network does not predict any mask, since the filled images look almost perfect.
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Fig. 9. More qualitative results of iterative fill by LaMa [11]. The blue and pink bound-
aries indicate the original hole mask and perceptual artifacts localization, respetively.
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Image with Hole Original Fill Sthjterative Fill Image with Hole Original Fill SthIterative Fill

Fig. 10. Visual comparisons between the original fill and our iterative fill for LaMa
[11].
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Image with Hole Original Fill Sthjterative Fill Image with Hole Original Fill SthIterative Fill

Fig. 11. Visual comparisons between the original fill and our iterative fill for CoMod-
GAN [16].
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Image with Hole Original Fill Sthjterative Fill Image with Hole Original Fill 5t |terative Fill
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Fig. 12. Visual comparisons between the original fill and our iterative fill for ProFill
[13].
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Image with Hole Original Fill 5t Iterative Fill Image with Hole Original Fill 5t terative Fill

Fig. 13. Visual comparisons between the original fill and our iterative fill for EdgeCon-
nect [3]. Note that the 5" iterative fill still has obvious artifacts due to the limitation
of the algorithm itself, but looks visually more pleasant than the original fill.
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Image with Hole Original Fill St Iterative Fill Image with Hole Original Fill 5t Iterative Fill

Fig. 14. Typical situations where iterative fill does not help. Left: when the holes
are easy and original fill already looks good, our segmentation network would not
detect much artifacts region and thus the iterative fill often looks very similar to the
original fill. Right: when the holes are very large and context is limited, even if our
segmentation network detects the artifacts region, iterative fill still can not properly fill
the hole region and thus can not improve the inpainting quality for these hard cases.
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