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Fig. 1. Visual examples to show that our segmentation network can reliably localize the
perceptual artifacts region, as indicated by the pink boundary in the second columns.
Given the artifacts localization, we enable the inpainting model [40] iteratively fill on
the artifacts region to obtain better inpainting quality, as shown in the third columns.

Abstract. Image inpainting is an essential task for multiple practical
applications like object removal and image editing. Deep GAN-based
models greatly improve the inpainting performance in structures and
textures within the hole, but might also generate unexpected artifacts
like broken structures or color blobs. Users perceive these artifacts to
judge the effectiveness of inpainting models, and retouch these imper-
fect areas to inpaint again in a typical retouching workflow. Inspired
by this workflow, we propose a new learning task of automatic seg-
mentation of inpainting perceptual artifacts, and apply the model for
inpainting model evaluation and iterative refinement. Specifically, we
first construct a new inpainting artifacts dataset by manually annotating
perceptual artifacts in the results of state-of-the-art inpainting models.
Then we train advanced segmentation networks on this dataset to re-
liably localize inpainting artifacts within inpainted images. Second, we
propose a new interpretable evaluation metric called Perceptual Arti-
fact Ratio (PAR), which is the ratio of objectionable inpainted regions
to the entire inpainted area. PAR demonstrates a strong correlation
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with real user preference. Finally, we further apply the generated masks
for iterative image inpainting by combining our approach with multi-
ple recent inpainting methods. Extensive experiments demonstrate the
consistent decrease of artifact regions and inpainting quality improve-
ment across the different methods. Dataset and code are available at:
https://github.com/owenzlz/PAL4Inpaint

1 Introduction

Deep GAN-based image synthesis methods have been continuously improving
image inpainting performance [64,73,30,4,36,68,66,74,41] for practical applica-
tions like object removal and image editing. Due to the ill-posed nature of image
inpainting tasks, when encountering large holes or complex structures [41] within
the hole, image inpainting becomes extremely challenging. Along with almost all
state-of-the-art algorithms, inpainting artifacts tend to appear in the generated
images. Those artifacts mostly include broken structures or color bleeding in the
traditional patch synthesis methods [2], imperfect structures like disconnected
or distorted lines, GAN-based generation artifacts or color blobs. In typical re-
touching workflows, users tend to judge the inpainting performance by those
artifacts, and fix them by drawing masks on those regions and re-runing the
automatic inpainting tools. Therefore, localizing and segmenting those artifacts
is intuitively and naturally beneficial for inpainting algorithm evaluation and
performance improvement.

Intuitively, finding more or larger artifacts within the hole area indicates
a worse inpainting performance. Traditionally, image inpainting is regarded as
an image reconstruction and restoration problem, and commonly-used metrics
like PSNR, MSE and LPIPS [69] are utilized to compare the inpainted result
to the original image in terms of content or pixel similarity. However, in many
cases, image inpainting is used for foreground object removal [9,10]. Users pre-
fer a visually plausible background generation rather than a faithful foreground
reconstruction. Other quantitative metrics like Frechet Incept Distance (FID)
[17,35] and Paired/Unpaired Inception Discriminative Score (P/U-IDS) [74] are
computed on the entire images over large evaluation datasets. We are lacking
in an intuitive metric which is more interpretable, operates on localized hole re-
gions, and supports single result evaluation. Therefore, an automatic and reliable
artifacts segmentation network may fill the gap.

In practical inpainting applications, users may choose to manually fix those
artifacts by re-masking perceptually bad regions and re-running the models.
Intuitively, after a couple of iterations, inpainting results are expected to be
largely improved compared with the initial ones. Iterative hole filling has been
studied in deep learning pipelines [66,34,13], and is shown to outperform one-
pass inpainting. But the masks used in each iteration are either unreliable ones
[66] learned with image reconstruction loss or predefined eroded masks [34,13].
Hence, an automatic artifacts segmentation network can effectively detect the
perceptual artifacts in each iteration, and make the iterative filling run in a more
efficient and effective way.

https://github.com/owenzlz/PAL4Inpaint
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Although these inpainting artifacts are easily identifiable by humans, very few
studies [66] have developed models to automatically detect and localize these ar-
tifacts in inpainting results. Researchers have studied identifying manipulated
or synthesized images [50,8,48,71,32,50,5], edited image regions [5], or the entire
inpainted image regions [23,53,22]. However, automatic localization of those ar-
tifacts within the inpainted holes was seldom discussed. This is mainly because a
representative and well-organized dataset consisting of image inpainting results
and artifact annotations is not yet available. Using the knowledge and expertise
of professional photographers, deep networks can learn to efficiently detect and
segment these artifacts.

In this paper, inspired by a typical user workflow when using inpainting
tools, we assume that automatic perceptual artifacts segmentation for image
inpainting will potentially benefit algorithm evaluation and boost inpainting
performance. To verify our hypothesis, we collect inpainting results generated
by multiple state-of-the-art deep inpainting models and annotate pixel-wise ar-
tifacts with a team of human professionals, and benchmark the dataset using
advanced segmentation networks. Our proposed artifacts localization network
outputs a binary mask highlighting the artifacts region. This mask can be used
to: (1) compute the occupation ratio over the hole mask to evaluate and compare
different inpainting algorithms on single test image without ground truth, and
(2) achieve iterative filling to progressively improve inpainting performance. In
summary, our contributions are in three folds:

– We study the importance of a novel task, inpainting artifacts segmentation.
Given its strengths in inpainting evaluation and result refinement, we con-
struct a dataset consisting of 4,795 inpainting results with per-pixel percep-
tual artifacts annotations. We further benchmark the dataset using multiple
segmentation network structures and analyze the human subjective factors in
detail. Extensive experiments demonstrate its robustness on state-of-the-art
inpainting models.

– We present the Perceptual Artifact Ratio (PAR) calculated from the artifact
area detected inside the hole. PAR is an interpretable, intuitive, simple yet
effective evaluation metric for comparing inpainting algorithms on a single
image without ground truth. Our metric makes it possible to automatically
evaluate object removal performance. Our user study also shows that PAR
correlates more strongly with real user preferences than other metrics.

– We applied the artifacts segmentation network to iterative filling pipeline.
After each iteration, we visualize that the detected artifact regions are con-
sistently shrinking for all the tested inpainting models, and the results are
refined with better structures and colors. Another user study suggests that
iterative filling using our proposed artifacts masks will likely not degrade the
inpainting performance and in many cases improve it.
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2 Related Work

2.1 Image Inpainting

Classical image inpainting methods include diffusion-based methods [3,1] that
propagate information from the boundary inwards to fill the hole, and patch-
based methods [2] that search for the reference region to fill the hole. On the rise
of deep learning, researchers proposed deep models to improve the inpainting per-
formance from diverse angles, such as attention mechanism [19][62][29][55][28][63][45]
[41], loss function and discriminator design [19][58][59][62][65], progressive [13][66]
[25] [24][24][67] or multiscale [57][60][65][52] architectures, use of intermediate
guide respresentation [62][33][38][39][26][56][47][51][12], and multimodal plausi-
ble outputs [75][64][73][14][30][4][36][68]. Among these works, ProFill [66], CoMod-
GAN [74], and LaMa [41] are the most recent leading models. ProFill [66] pro-
posed to implicitly learn a confidence map that guides the generator to iteratively
fill the hole, as well as a attention-guided refinement module to upsample the
output. CoMod-GAN [74] leveraged the StyleGAN architecture [20] to condi-
tionally synthesize filled region, where their filled content could be creative and
not necessarily existed in the context. Finally, LaMa [40] integrated the fast
Fourier convolution [6] to effectively capture global contextual information, and
set the new state-of-the-arts. The goal of our work is to detect and localize the
perceptual artifacts in the filled images independent of the inpainting models,
and thus is in an orthogonal direction to these previous inpainting works.

2.2 Image Inpainting Quality Assessment

There are two types of commonly used metrics for image inpainting. The first
quantifies the performance for a whole dataset of generated images. These met-
rics include Frechet Incept Distance (FID) [17][35] and Paired/Unpaired Incep-
tion Discriminative Score (P/U-IDS) [74], which measure the distance between
the distribution of generated and real images using the deep Inception features
[42]. For single image quality assessment, previous works often treat inpainting
as a reconstruction task and thus compare the filled image with the original
image using the reconstruction metrics, such as MSE, SSIM, PSNR or LPIPS
[69]. This is reasonable only when holes are sampled on the background region.
When holes largely overlap with or totally cover a foreground object, the cur-
rent models would mostly fill the hole using background pixels, which is totally
irrelevant to the original content. In these cases, the filled region of object re-
moval could look natural and realistic, but could be totally different from the
original object. Thus, reconstruction metric would no longer be a proper met-
ric. Other potential assessments for measuring single image inpainting quality
of object removal are No-Reference Image Quality Assessment (NR-IQA) meth-
ods [11][40][43][61][70][21]. Although previous inpainting works have rarely used
NR-IQA metrics, we tried out two recent methods Hyper-IQA [40] and MUISQ
[21], and found that MUISQ [21] has a relatively reasonable correlation with
human perception compared to the other existing metrics for measureing object
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removal inpainting quality. In this work, we aim to use the area size of localized
inpainting artifacts as a no-reference metric to measure the quality of hard case
inpainting, which is object removal. Experimental studies in section 5 show that
our proposed metric outperforms both reconstruction-based metrics and existing
NR-IQA in terms of correlation with human perception.

2.3 Detecting Artifacts in Generated Images

Other related works include detecting the generated/fake images and localizing
the manipulated region in the image. One line of works [8][48][71][32][50][5] have
studied training a binary classifier to classify the generated images, and Wang
et al. [50] has shown surprising generalization on diverse and unseen model out-
puts by detecting the common artifacts in CNNs/GANs. Chai et al. [5] proposed
patch-based classifier to localize the region that causes the fake image detectable.
Another line of works [7][18][37][49] have proposed techniques to detect general
image manipulations, such JPEG and resampling, other than GANs. In the im-
age inpainting domain, Li et al. [23] first proposed to use the high-pass filter
CNNs to detect the inpainting region given the filled image. Later, Wu et al.
[53] and Li et al. [22] further improves the generalization of the mask detection
to diverse inpainting models by proposing novel architecture or explicitly pro-
cess high-frequency noise residual. Although all these works are related to us, a
fundamental difference is that we aim to detect the perceptual artifacts that are
judged by humans rather than simply detecting high-frequency noise/artifacts
in the generated images. More specifically, in the inpainting context, our system
detects the perceptual artifact region rather than the whole mask region, where
perceptual artifact region is often a small subset of the mask. Thus, our work is
essentially a different task from [23][53][22].

3 Dataset Labeling and Statistics

In order to train a system that can detect the perceptual artifacts in the inpainted
images, we build a dataset that consists of 4,795 images with per-pixel perceptual
artifacts labels from humans. We use three leading inpainting models ProFill [66],
CoMod-GAN [74], and LaMa [41] to generate images to label. A labeling interface
and a few examples of the labeled images are shown in the left and right of Fig.5,
respectively. During labeling, we provide the users a filled image without showing
the original image, and ask users to label regions with perceptual artifacts on
their tablets. We intentionally do not include the original images in the interface,
since otherwise users might have bias to compare everything with the original
content in the hole. As we have discussed in section 2.2, the filled image could
look natural and realistic, even though it’s very different from the original image.
We also put dilated bounding box around the hole region to help users more
easily find the labeling region and focus on it. We intentionally do not indicate
the hole mask in the image, so that the workers do not have any bias labeling
around the hole boundary, and thus can purely make judgement based on the
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Fig. 2. The left is an illustration of interface that users label on the inpainted image,
where the blue bounding box indicates the region the users should inspect. On the
right, we show a few examples of bad fill labels from users, where the blue and pink
boundaries indicate the holes and user labels, respectively.

perceptual quality. In this case, since workers do not know where the hole is,
their labeling might go over the hole boundary. However, this is not an issue,
as we simply intersect the hole masks with the human labels as a post-process.
In addition, we provide a duplicate of the filled image in the interface, so that
when workers can see the unbrushed filled image as reference during brushing.

From the labeling perspective, one fundamental challenge is that this task
is highly subjective compared to traditional segmentation, since different people
may have different opinions or standards to judge perceptual artifacts. Therefore,
in order to standardize the labeling as much as possible, we recruit and train a
professional team for this task. We use two rounds of checks to avoid ”missed
labeled” or ”overly labeled” regions. In the first round, the professional workers
cross check the results with each other. In the second round, a single human
expert checks through all the labels. On average, approximately 10% of labels
have been rectified during the checking process. In addition, in order to generate
high-quality labels, we recruited five human experts with photography or design
background in our team to label these images. Since these workers are heavy
users of image editing tools, i.e. Photoshop, their labeling criterion could better
reflect the common unsatisfactory/retouch regions in the hole filling process.

Among these 4,795 images, there are 832 images that have nearly perfect fills,
and thus workers did not label anything on these images. Although these images
do not have segmentation labels, adding them into training could effectively
help the network avoid predicting false positives. In terms of size of the labeling
region, we found that the averaged ratio of ”perceptual artifacts region / hole
mask region” is 29.67%. This number once again shows that detecting perceptual
artifacts is fundamentally different from detecting the hole mask in [23][53][22].
We plan to release our dataset to the community for future research.



Perceptual Artifacts Localization for Inpainting 7

Models IoU Precision Recall Fscore

ResNet-50 backbone [16] + HRNet head [46] 41.35 58.45 58.56 58.51

Swin-B backbone [31] + Uper head [54] 44.20 63.01 59.69 61.30

ResNet-50 backbone [16] + PSPNet head [72] 46.04 59.78 66.71 63.05

- Perfect Filled Images 43.83 64.92 57.43 60.94

- Pretrained Weights 44.93 66.22 58.29 62.00

+ Hole Mask 45.96 66.07 60.16 62.98

+ Pseudo Pretraining 46.44 62.01 64.91 63.43

+ Pseudo Pretraining & Real Images 46.77 59.59 68.49 63.73

Human Subject A 45.60 75.07 53.73 62.64

Human Subject B 42.21 60.40 58.36 59.36

Human Subject C 36.85 61.47 47.93 53.86

Table 1. An ablation study of the segmentation model, and human performance.

4 Perceptual Artifacts Segmentation

In this section, we discuss the details of our segmentation model along with
extensive ablation studies. During training, we used ”8:1:1” ratio to randomly
split the train/val/test set. In total, we have 3,836 training images, 480 validation
images, and 479 test images. In each model training, we use the validation set
to select the best checkpoint, and evaluate the performance on the test set. All
of our models are trained and evaluated using the MMSegmentation codebase 1.

4.1 Ablation Studies

In the ablation study, we first tried out a few advance segmentation back-
bones/heads, such as HRNet [46] head, PSPNet [72] head, ResNet-50 backbone
[16], and Swin Transformer [31] backbone, as shown in the top 3 rows (excluding
the header) of Table 1. However, we do not observe obvious improvement when
using the more complex backbones or heads for our task, after several trials of
training comparison. We think a major potential reason is that our segmenta-
tion performance of the simpler backbone [16] and head [72] is nearly saturated
given the highly subjective labels, and thus simply adding capacity or complex-
ity of backbone does not improves much. This is discussed more in details when
we compare with human performance in section 4.2. Thus, we chose ResNet-50
backbone [16] + PSPNet head [72] as our base network, due to its simplicity and
efficiency. The rest of ablation studies all shared the same base network for fair
comparison, and thus the results should be compared with 3rd row.

Besides the network backbones, we also studied other aspects that might
potentially affect the segmentation performance. As we mentioned in section 3,

1 MMSegmentation github: https://github.com/open-mmlab/mmsegmentation

https://github.com/open-mmlab/mmsegmentation
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832 images in the labeled dataset have almost perfect fill and thus have no mask
labeling, and thus we wonder whether having these images in the training would
be helpful. In the 4th row, we can see that the model trained without using these
images indeed has worse performance, which concludes that adding perfect fills to
training is important. All of our models starts training based on the checkpoints
pretrained on ADE20K [76], and we show that the performance also decreases
obviously without pretrained weights, as shown in the 5th row. Another intuitive
thing is to concatenate the hole mask in the input, as it could theoretically help
the network quickly localize the potential artifacts region. However, as shown
in the 6th row, our experiments show that adding the mask into input channel
does not actually boost the segmentation performance, and thus we decide not
to use it for the simplicity purpose.

We also studied the possibility of generating pseudo labels on large scale
unlabeled images for the pretraining purpose. Inspired by BoxInst [44], which
used bounding box masks as weak supervision to train instance segmentation,
we aim to find some similar ”enlarged” masks covering the artifacts region as
our pseudo labels. Initially, we tried using the hole mask as weak supervision,
but realize that the network quickly overfits on the high-frequency artifacts on
the hole boundary, which is not useful for our purpose. To this end, we used a
pretrained artifacts segmentation network to generate artifacts mask regions on
100K unlabeled images, and then enlarged the segmented masks by some random
dilation iterations to cover the perceptual artifacts region. The results in the 7th

row show that such pretraining strategy slight improves the performance. Finally,
we also tried adding the same quantity of real images into training, where the
masks are empty for these real images. The 8th row shows that this is also useful
to further boost the performance.

Fig. 3. Qualitative results of the predicted bad fill segmentation on six different in-
painting model outputs. The pink and blue boundaries indicate the predicted bad fill
region and the hole region, respectively. Please feel free to zoom in to see the details.
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4.2 Analysis on Human Perceptual Judgement

As mentioned in section 3, the labeled dataset from our labeling team has been
carefully checked and thus have relatively high quality. In order to better under-
stand how subjective human judgements are and the human performance bound,
we ask three more human subjects to label on the 479 test images. Then, we com-
pare the labels from these three human subjects with the previous labels from
the labeling team, which are shown in the last three rows of Table 1. Regarding
the three workers’ background, human subject A has worked on this task before
but not these images, and human subjects B & C have never worked on this task
before but are taught by the labeling team with a bunch of labeled examples.
Thus, human subject A should theoretically have better understanding of the
task as well as the labeling criterion of the labeling team, compared to the other
two subjects. All of them have photography or design background.

Interestingly, the results show that our segmentation model reaches and even
surpasses the best human subject on all metrics except for precision. This infers
that our model actually learns a better understanding of averaged judgement
criterion of the labeling team, compared to each individual human. On the other
hand, these results also indicate that humans have very subjective opinions on
the labeling the artifacts regions, as the quantitative scores deviate obviously
from each other. A visual illustration of different people’s labels on the same
filled image is shown in Fig. 4, and we include more examples like this in the
supplemental. Since our segmentation performance surpasses the human perfor-
mance, this indicates that our segmentation model reaches to a near saturation
point for this highly subjective segmentation task. This might also explain why
more complex backbone [31] or other tweaks of data or training do not provide
significant performance improvement, as we observed in the ablation study.

Filled Image Human Subject A Human Subject B Human Subject C Labeling Team Segmentation (Ours)

Fig. 4. A visual comparison between labels from multiple human subjects on the same
filled image. Our segmentation result is shown in the last column.

5 Evaluating Inpainting Quality for Object Removal

5.1 Motivation

It has been widely discussed [62][63] that image inpainting lacks good evaluation
metrics, especially for single image quality assessment. Previous works mostly
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treat image inpainting as a kind of restoration task, so the reconstruction met-
rics, such as MSE, SSIM, PSNR, and LPIPS [69], are often used to quantify the
similarity between the filled image and the original image. Thinking carefully,
we realize that reconstruction metrics might reasonably measure inpainting per-
formance only when the holes are not very large and on the background region.
When the holes largely overlap with or cover the foreground objects, most in-
painitng algorithms would fill the hole regions by using the background context,
where the object is oftentimes completely removed from the image. In these sce-
narios, reconstruction metrics are no longer proper metrics to gauge the inpaint-
ing quality, since the filled region could be totally irrelevant to the original pixels
inside the hole. As shown in Fig. 2, when removing the person from the image,
output A is visually more plausible than output B, but somehow all the ex-
isting reconstruction metrics make opposite judgement. Embarrassingly, object
removal is arguably the most frequently used applicable scenario for inpainting
algorithms. Thus, it means we really lack good metric for assessing inpainting
quality in this scenario. This motivates us to think if the perceptual artifacts
localization could be used as a no-reference metric to evaluate inpainting quality
in the object removal scenario.

Image with Mask A B Scores for A

PSNR: 16.54

LPIPS: 0.0619

HyperIQA: 55.54

MUSIQ: 54.43

PAR: 0.5111

Human Pref.:✓

PSNR: 17.06

LPIPS: 0.0582

HyperIQA: 56.04

MUSIQ: 56.11

PAR: 0.8149

Human Pref.:✗

Scores for B

Image with Mask A B Scores for A

PSNR: 17.80

LPIPS: 0.0350

HyperIQA: 31.41

MUSIQ: 46.90

PAR: 0.7567

Human Pref.:✗

PSNR: 16.71

LPIPS: 0.0467

HyperIQA: 28.22

MUSIQ: 44.55

PAR: 0.2420

Human Pref.:✓

Scores for B

Fig. 5. A visual illustration of filled outputs by two inpainting models [66][33], with
the corresponding metric scores. The red scores indicate the preferred choice according
to each metric.

5.2 Metric Definition

Since our segmentation model could generalize reasonably well to diverse and
unseen inpainting methods, we start to wonder whether the size of the detected
artifacts region can be used as a metric to assess the inpainting quality. Basically,
we assume that an image with good inpainting quality should have relatively
smaller the perceptual artifacts region, and vice versa. We name this metric as
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Perceptual Artifacts Ratio (PAR), which is the ratio of ”size of the perceptual
artifact region / size of the input hole”. The metric computation procedure is
that we first run the segmentation model on the filled image and then compute
PAR for any filled images, without the need of using the original image. During
the quality comparison between different inpainting models, we simply evaluate
which inpainting ouptuts have smaller artifacts region among the comparisons.

5.3 Correlation with Human Perception

In order to evaluate how well our PAR metric correlates with human perception,
we collected user preferences on the filled images between four pairs of inpaint-
ing methods. Among these user comparisons, two pairs of comparisons happen
between two strong inpainting models, as shown in the first two rows of Table. 2,
and another two pairs are between one strong and one relatively weak model, as
shown in the bottom two rows of Table. 2. In each pair of methods comparison,
we show users two filled images with randomized order, and ask users to pick
the preferred image out of the two options. The user studies were conducted on
Amazon Mechanical Turk (AMT), where we asked five users to vote on each
image. Finally, we consider that one filled image is strongly preferred than the
other, only if 4 out of 5 users reach an agreement. In this study, we only used
the strongly preferred image pairs as human preference ground truth to reduce
the noise as much as possible, where the number of strongly preferred cases are
shown in the 2nd column of Table 2. Since we are evaluating inpainting quality
in the object removal scenarios, we use Mask R-CNN [15] pretrained on COCO
[27] to generate object masks, and dilate three iterations with 5 × 5 kernel to
increase the mask coverage on the object.

As shown in Table 2, out of 1,000 images for each pair of method comparison,
we found that users reach strong agreement on a subset of images with quantity
ranging from 321 to 718 shown in the 2nd column. The reason why the number
of strongly preferred cases of ”LaMa vs. ProFill” are less than the others is that
these two methods have relatively closer inpainting performance, which causes
more disagreement. Other columns in Table 2 basically indicates the percent-
age of correct ranking from each metric, with respect to the human perceptual
judgement. In this study, we compare with two reconstruction metrics PSNR and
LPIPS [69], as well as two NR-IQA metrics Hyper-IQA [40] and MUSIQ [21].
Overall, the quantitative results show that our PAR metric outperforms all these
existing metrics for assessing inpainting quality in object removal scenarios.

5.4 PAR Analysis with Hole Size and Scene Types

We claimed that inpainting artifacts mostly appear in larger holes and complex
scene structures. Using our pretrained artifacts segmentation model, we also
studied how PAR would change with respect to the hole size in two scenarios:
man-made scenes and natural scenes. In the places2 testing dataset, we sampled
man-made scenes from the categories, such as building, room, shop, stadium,
studio, factory and so on. On the other hand, natural scenes are sampled from
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Comparisons No. Pairs PSNR LPIPS [69] HyperIQA [40] MUSIQ [21] PAR (Ours)

LaMa vs. ProFill 321 56.70 % 62.31 % 39.97% 65.11% 65.42 %

LaMa vs. CoMod-GAN 367 48.77 % 48.77 % 51.50% 55.31% 69.21 %

ProFill vs. EdgeConnect 560 23.92 % 11.96 % 56.39% 49.62% 79.82 %

LaMa vs. EdgeConnect 718 44.71 % 43.45 % 35.71% 71.72% 72.70 %

Overall 1966 41.50% 38.55 % 45.24% 61.28% 72.89 %

Table 2. Quantitative results for measuring the correlation between different metrics
and human perceptual judgement.
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Fig. 6. Left: relationship between PAR and hole size for both man-made scenes and
natural scenes. Right: some visual examples of segmented perceptual artifacts region
(pink boundary) with varying hole (blue boundary) size. Inpainting models like LaMa
produce more artifacts when the hole is larger and scenes are more complex.

categories, such as sky, land, mountain, forest, garden, pasture, beach, desert,
and so on. We sampled 2,000 test images for both scenarios and randomly placed
stroke holes of specific sizes on them. Then we run LaMa to fill the hole. The
relationship between PAR and hole size for natural or man-made scenes is shown
in Fig. 6. Our conclusions from the figure are: (1) As the hole size increases, LaMa
has a higher possibility of generating inpainting artifacts. (2) Inpainting models
like Lama struggles more to complete man-made structures than natural scenes.
We believed that this rule applies to other inpainting algorithms as well.

6 Making Inpainting Models Iterative

Modern inpainting algorithms have shown consistent performance improvement
over the last few years. However, when inpainting large holes, we often still
observe that the inpainting models could often perfectly fill a partial region
of the hole while generating obvious artifacts on the other regions. Given this
observation, an intuitive idea is that: if the perceptual artifacts region can be
reliably segmented out, can we enable the inpainting refill on the artifacts region?
In this section, we discuss how we make the inpainting models iteratively fill on
the artifacts region, and its effectiveness to improve the inpainting quality.



Perceptual Artifacts Localization for Inpainting 13

6.1 Iterative Fill Pipeline

In Fig. 7, we show an overview of our iterative fill pipeline. The input image
with hole is first fed into an inpainting model to generate a filled image. Then,
the filled image is fed into our perceptual artifacts segmentation model to detect
the artifacts region, which are converted into the hole mask for the next itera-
tion inpainting. We post-process the segmentation output of artifacts region by
multiplying it with the original hole mask in an element-wise manner, so that
we ensure not to change any pixels outside the original hole during iterative fill.
Our iterative fill pipeline is extremely simple to integrate with and agnostic to
all the inpainting models.

Inpainting
Artifacts
Detector

Inpainting
Model

1st it
er. In

put

1st it
er. Fi

ll

A single Pass Inpainting

2nd i
ter. F

ill

1st it
er. A

rtifac
ts

PAR vs. Fill Iteration

Pe
rc
ep

tu
al
Ar
tif
ac
ts
Ra
tio

(P
AR

)

Fill Iteration2nd i
ter. I

nput
2nd it

er. A
rtifac

ts

…

Fig. 7. Left: an overview pipeline of our iterative fill. Right: curves that show pre-
dicted perceptual artifacts ratio consistently decreases over the fill iteration for all
inpainting models.

6.2 Performance Improvement by Iterative Fill

We evaluate the performance of the iterative fill from two aspects. First, we com-
pute the size of the detected artifacts region or PAR over the fill iterations, as
shown in the right of Fig. 7. We observe that the detected artifacts region consis-
tently decreases as more iterative fill happens. This indicates that our iterative
fill indeed improves the filled image quality, such that less perceptual artifacts
are detected. Here, we show up to 5th iterative fill in the main paper, and put
analysis on more iterations of refill in the supplemental. We also conducted a
user study that shows whether users think the 5th iteratively filled image are
better, same, or worse than the original fill for four inpainting models. As shown
in Table 3, our iterative fill pipeline improves approximately 30% of images com-
pared to the original fill, and rarely make the filled images worse, especially for
the best model LaMa [40]. This implies that our system can be safely integrated
into these inpainting models to boost inpainting quality. All of our user stud-
ies are conducted on AMT. In each inpainting method, we uniformly sampled
500 images from the testset, which result in 2,000 images in total. We asked 20
turkers to carefully check on each image and averaged the preference. We do not
use the traditional metrics to quantify the performance between original fill and
iterative fill, since we found that these metric scores between them are too close
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and sometimes random, which does not reflect much information. We have more
discussion on this in the supplemental.

We show visual comparison between original fill and 5th iterative fill in Fig. 8.
We observe that iterative fill could oftentimes help the inpainting models refine
both structure and texture in many cases. However, due to the limitation of
the inpainting algorithms themselves, the predicted perceptual artifact regions
would not always reach to zero and thus would still leave some artifacts in the
image.

Models Preferred Original Fill Same Preferred Iterative Fill

EdgeConnect 53 (10.6%) 258 (51.6%) 189 (37.8%)

CoMod-GAN 45 (9.0%) 334 (66.8%) 121(24.2%)

ProFill 14 (2.8%) 337 (67.4%) 149 (29.8%)

LaMa 9 (1.8%) 341 (68.2%) 150 (30.0%)

Table 3. A user study to show the comparison between original fill and the 5th refill.

Fig. 8. Qualitative comparison between the original fill and the 5th iterative fill.
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