
Dense Gaussian Processes for Few-Shot Segmentation 19

Supplementary Material

We first provide additional results in Appendix A. Then, in Appendix B we provide
analyses of the covariance neighborhood size and the effect of training the image en-
coder. The equations for the different kernels used in our ablation study are shown
in Appendix C. In Appendix D, we list the runtimes of the different components in
our approach. Appendix E contains pseudo-code for our dense GP, a list detailing the
trainable layers of our approach, and the details on how the output of the GP is pre-
sented to the decoder. Finally, in Appendix F, we provide a qualitative comparison
and qualitative results.

A Additional Results

We provide the per-fold results on the COCO-20i to PASCAL transfer experiment and
a list of the classes included; the per-shot results used to generate Fig. 1 in the main
paper; and the per-fold results used in the state-of-the-art comparison.

A.1 Cross-dataset Evaluation

COCO-20i to PASCAL Transfer We supply additional details on the cross-dataset
evaluation experiment in Table 2 of the main paper. This experiment was proposed by
Boudiaf et al . [4] and we follow their setup. First, our approach is trained on each of
the four folds of COCO-20i. Next, we test each of the four versions on PASCAL, using
only the classes held-out during training. We list the classes of each fold in Table 7.
The full per-fold results are presented in Table 6.

Table 6. The results of our approach in a COCO-20i to PASCAL transfer experiment
(mIoU, higher is better). Following Boudiaf et al . [4], the approach is trained on a fold
of COCO-20i training set and tested on the PASCAL validation set. The testing folds
are constructed to include classes not present in the training set, and thus not the same
as PASCAL-5i.

Method
1-Shot 5-Shot

F-0 F-1 F-2 F-3 Mean F-0 F-1 F-2 F-3 Mean

RPMM [40] 36.3 55.0 52.5 54.6 49.6 40.2 58.0 55.2 61.8 53.8
PFENet [31] 43.2 65.1 66.5 69.7 61.1 45.1 66.8 68.5 73.1 63.4
RePRI [4] 52.8 64.0 64.1 71.5 63.1 57.7 66.1 67.6 73.1 66.2

Ours, ResNet50 55.1 ± 0.8 71.0 ± 0.4 69.2 ± 0.9 80.3 ± 0.8 68.9 ± 0.4 70.3 ± 0.9 75.3 ± 0.4 78.5 ± 0.7 85.8 ± 0.4 77.5 ± 0.2
Ours, ResNet101 55.1 ± 0.4 72.2 ± 0.3 70.7 ± 0.8 82.3 ± 0.8 70.1 ± 0.3 70.7 ± 0.7 75.6 ± 0.6 80.2 ± 0.1 87.3 ± 0.3 78.5 ± 0.3

A.2 1-10 Shot Results

Here, we provide the full results from 1-10 shots, which was used to generate Figure 1.
In Table 8 and 9 our results on PASCAL-5i and COCO-20i are presented. Note that
our approach was trained for 1 shot in the 1-shot setting, and 5 shots in the other nine
settings.

20 J. Johnander et al.

Table 7. The classes used for testing in the COCO-20i to PASCAL transfer experi-
ment, as proposed by Boudiaf et al . [4]. This split is different from that of PASCAL-5i

in order to avoid overlap between the training and testing classes.

Fold-0 Fold-1 Fold-2 Fold-3

Airplane, Boat,
Chair, Dining
Table, Dog, Person

Bicycle, Bus, Horse,
Sofa

Bird, Car, Potted
Plant, Sheep, Train,
TV-monitor

Bottle, Cat, Cow,
Motorcycle

Table 8. 1 to 10 -shot PASCAL-5i results.

1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot 9-shot 10-shot

DGPNet (ResNet101) 64.8 ± 0.5 68.4 ± 0.5 72.4 ± 0.3 74.2 ± 0.5 75.4 ± 0.4 76.1 ± 0.4 76.6 ± 0.4 77.0 ± 0.4 77.5 ± 0.4 77.7 ± 0.4

Table 9. 1 to 10 -shot COCO-20i results.

1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot 9-shot 10-shot

DGPNet (ResNet101) 46.8 ± 0.3 51.7 ± 0.2 55.0 ± 0.2 56.7 ± 0.3 57.9 ± 0.3 58.7 ± 0.2 59.2 ± 0.3 59.7 ± 0.3 60.0 ± 0.3 60.2 ± 0.2

A.3 Per-Fold Results

In this section, we provide the full results for our state-of-the-art comparison. In Tables
10 and 11 the per-fold results for both ResNet50 and ResNet101 are presented. In
general our results are stable for all folds.

Table 10. Per-fold results on PASCAL-5i

1-Shot 5-Shot
Method 50 51 52 53 Mean 50 51 52 53 Mean

CANet (ResNet50) 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1
DENet (ResNet50) 55.7 69.7 63.6 51.3 60.1 54.7 71.0 64.5 51.6 60.5
PFENet (ResNet50) 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9
RePri (ResNet50) 60.2 67.0 61.7 47.5 59.1 64.5 70.8 71.7 60.3 66.8
ASGNet (ResNet101) 59.8 67.4 55.6 54.4 59.3 64.6 71.3 64.2 57.3 64.4
SCL (ResNet50) 63.0 70.0 56.5 57.7 61.8 64.5 70.9 57.3 58.7 62.9
SAGNN (ResNet50) 64.7 69.6 57.0 57.2 62.1 64.9 70.0 57.0 59.3 62.8

DGPNet (ResNet50) 63.5 ± 0.9 71.1 ± 0.5 58.2 ± 1.6 61.2 ± 0.7 63.5 ± 0.4 72.4 ± 0.8 76.9 ± 0.2 73.2 ± 0.9 71.7 ± 0.4 73.5 ± 0.3
DGPNet (ResNet101) 63.9 ± 1.2 71.0 ± 0.5 63.0 ± 0.6 61.4 ± 0.6 64.8 ± 0.5 74.1 ± 0.6 77.4 ± 0.6 76.7 ± 0.9 73.4 ± 0.6 75.4 ± 0.4

B Detailed Analysis

We present results from two additional experiments. First, the size of the local co-
variance region is analyzed. Then, we investigate the impact of freezing the backbone
during episodic training.

B.1 Additional Covariance Neighborhood Experiments

In section 3.5 we show how the covariance with neighbors in a local region is fed to
the decoder. In Table 12, we supply additional results with different sized windows.

Dense Gaussian Processes for Few-Shot Segmentation 21

Table 11. Per-fold results on COCO-20i

1-Shot 5-Shot
Method 200 201 202 203 Mean 200 201 202 203 Mean

DENet (ResNet50) 42.9 45.8 42.2 40.2 42.8 45.4 44.9 41.6 40.3 43.0
PFENet (ResNet50) 36.8 41.8 38.7 36.7 38.5 40.4 46.8 43.2 40.5 42.7
RePri (ResNet50) 31.2 38.1 33.3 33.0 34.0 38.5 46.2 40.0 43.6 42.1
ASGNet (ResNet50) - - - - 34.6 - - - - 42.5
SCL (ResNet101) 36.4 38.6 37.5 35.4 37.0 38.9 40.5 41.5 38.7 39.9
SAGNN (ResNet101) 36.1 41.0 38.2 33.5 37.2 40.9 48.3 42.6 38.9 42.7

DGPNet (ResNet50) 43.6 ± 0.5 47.8 ± 0.8 44.5 ± 0.8 44.2 ± 0.6 45.0 ± 0.4 54.7 ± 0.7 59.1 ± 0.5 56.8 ± 0.6 54.4 ± 0.6 56.2 ± 0.4
DGPNet (ResNet101) 45.1 ± 0.5 49.5 ± 0.8 46.6 ± 0.8 45.6 ± 0.3 46.7 ± 0.3 56.8 ± 0.8 60.4 ± 0.9 58.4 ± 0.4 55.9 ± 0.4 57.9 ± 0.3

We experiment with N ∈ {1, 3, 5, 7}. Larger windows improve the results but the
improvement seems to saturate after N = 5.

Table 12. Performance for different configurations of covariance windows on the
PASCAL-5i and COCO-20i benchmarks. Measured in mIoU (higher is better).

PASCAL-5i COCO-20i

1x1 3x3 5x5 7x7 1-shot 5-shot 1-shot 5-shot ∆

62.1 69.9 41.7 51.2 0.0
✓ 60.0 70.3 42.2 51.7 -0.2

✓ 62.0 71.1 43.6 53.0 1.2
✓ 62.5 71.8 43.8 53.7 1.7

✓ 63.0 71.7 43.7 53.5 1.8

B.2 Effect of Training the Image Encoder

In Table 13 we compare our final approach trained with a frozen and unfrozen backbone.
Several prior works found it beneficial to freeze the image encoder during episodic
training. In contrast, we find it beneficial to not freeze it and keep learning visual
representations. By differentiating through our GP learner during episodic training,
the proposed method can thus refine the underlying feature representations, which is
another important advantage of our approach. However, our approach still improves
upon state-of-the-art when employing a frozen backbone.

B.3 Additional Baseline Experiments

We supply three additional baseline experiments to validate the effect of the proposed
DGP-module. We evaluate three variants: (i) We remove the GP (the f-branch) and
let the decoder rely only on the shallow features. (ii) We replace the GP with the
Prior-mask learning mechanism proposed in PFENet. (iii) We replace the GP with a
prototype-based approach where the support features are mask-pooled and the result
compared to the query features using cosine-similarity, similar to e.g. PANet. Results
on PASCAL and COCO are reported in the Table 14. Our approach outperforms all
baselines by a large margin. This further validates the superiority of our GP module.

22 J. Johnander et al.

Table 13. Comparison between freezing the backbone and fine-tuning it with a low
learning rate.

PASCAL-5i COCO-20i

Backbone Method 1-shot 5-shot 1-shot 5-shot

ResNet50
DGPNet (Frozen Backbone) 61.9 ± 0.3 72.4 ± 0.3 43.1 ± 0.3 54.5 ± 0.2
DGPNet (Ours) 63.5 ± 0.4 73.5 ± 0.3 45.0 ± 0.4 56.2 ± 0.4

ResNet101
DGPNet (Frozen Backbone) 63.4 ± 0.5 74.3 ± 0.3 44.6 ± 0.5 56.6 ± 0.3
DGPNet (Ours) 64.8 ± 0.5 75.4 ± 0.4 46.7 ± 0.3 57.9 ± 0.3

Table 14. Additional baseline experiments to validate the effect of the DGP-module.

PASCAL-5i COCO-20i

Method 1-shot 5-shot 1-shot 5-shot

No GP 42.9 43.0 23.5 23.5
PFENet prior mask 54.0 54.7 35.8 37.2
Prototype 57.5 63.0 41.5 49.9
DGPNet (Ours) 63.5 73.5 45.0 56.2

C Kernel Details

In this section we provide the definitions of the kernels used in our ablation study. First
we define the homogenous linear kernel as,

κlin(x, y) = xT y .

As was noted in the paper, this kernel corresponds to Bayesian Linear Regression with
a specific prior. One could also consider learning a bias parameter, however we chose
not to learn such parameters for reasons of method simplicity. Next we consider the
exponential kernel,

κexp(x, y) = exp

(

−||x− y||2
ℓ

)

.

This kernel behaves similarly as the SE kernel, however with a sharper peak and slower
rate of decay. For completeness we additionally define the SE kernel here again,

κSE(x, y) = exp

(

−||x− y||22
2ℓ2

)

.

We chose the length of the exponential kernel as ℓ =
√
D and the squared exponen-

tial kernel as ℓ2 =
√
D, we found the performance in general to be robust to different

values of ℓ. Note that we used the same value of ℓ for both benchmarks and for all
number of shots.

In Table 15 we provide a kernel hyperparameter sensitivity analysis. We run one
experiment per value and choose the values to cover one order of magnitude centered
around the values adopted. Perturbing the hyperparameters with a factor of 0.3 or
3.0 leads to minor but statistically significant drops in performance. One exception is
increasing σ2

f by a factor of 3.0, which does not adversely affect performance.

Dense Gaussian Processes for Few-Shot Segmentation 23

Table 15. Kernel hyperparameter sensitivity analysis for the SE-kernel, which is
adopted in the main paper. The sensitivity analysis is based on the full, final approach
with a ResNet50 backbone and performed on the 5-shot setting in PASCAL-5i. The
hyperparameters values are chosen to cover one order of magnitude of hyperparameter
values, centered at the values adopted in the main paper.

ℓ2 = 0.3
√
D ℓ2 =

√
D ℓ2 = 3.0

√
D σ2

f = 0.3 σ2
f = 1.0 σ2

f = 3.0 σ2
y = 0.03 σ2

y = 0.1 σ2
y = 0.3

72.9 73.5± 0.3 72.8 72.8 73.5± 0.3 73.6 73.0 73.5± 0.3 72.9

Table 16. Runtimes of the different functions in our approach, measured in millisec-
onds (ms). Timings are measured in evaluation mode on 512 × 512 sized images from
COCO-20i.

Batch size 1 Batch size 20
1-shot 5-shot 1-shot 5-shot

Image encoder on support 15.5 23.4 48.5 197.5
Mask encoder on support 2.1 2.1 1.6 6.6
GP preparation on support 8.3 13.9 7.2 113.5
Image encoder on query 9.7 13.6 39.8 39.9
GP inference on query 7.9 9.4 12.1 38.1
Decoder 6.2 6.9 40.0 40.5

Total 49.7 ms 69.3 ms 149.2 ms 436.1 ms

D Runtimes

We show the runtime of our method in Table 16. We partition the timing into dif-
ferent parts. The Gaussian process (GP) is split into two. One part preparing and
decomposing the support set matrix in (6) and (7) of the main paper, and another
part computing the mean and covariance of the query given the pre-computed matrix
decomposition.

The timings are measured in the 1-shot and 5-shot settings on images from COCO-
20i of 512 × 512 resolution, using either a single episode per forward or a batch of 20
episodes in parallel. We run the method in evaluation mode via torch.no_grad().
Timing is measured by injecting cuda events around function calls and measuring the
elapsed time between them. The events are inserted via torch.cuda.Event(enable_-

timing=True). We run our approach on a single NVIDIA V100 for 1000 episodes and
report the average timings of each part.

E Additional Implementation Details

We provide code for the Gaussian Process inference, the neural network layers that
make up the modules used in our approach, and the details of how the predictive
output distribution from the GP is fed to the decoder.

24 J. Johnander et al.

E.1 Code for Gaussian Process

Pseudo-code for the dense GP is shown in Listing 1.1. Equation 7 involves the multipli-
cation with a matrix inverse. It is in practice computed via the Cholesky decomposition
and solving the resulting systems of linear equations. For brevity and clarity, we omit
device casting and simplify the solve implementation. In practice, we use the standard
triangular solver in PyTorch, torch.triangular_solve.

1 def GP(x_q , y_s , x_s , sigma_y , kernel):

2 """ Produces the predictive posterior distribution of the

GP.

3 After each line , we comment the shape of the output , with

sizes

4 defined as:

5 B is the batch -size

6 Q is the number of query feature vectors in the query

image

7 S is the number of support feature vectors across the

support images

8 M is the number of channels in the GP output space

9 D is the number of channels in the feature vectors.

10

11 Args:

12 x_q: deep query features (B,Q,D)

13 y_s: support outputs (B,S,M)

14 x_s: deep support features (B,S,D)

15 sigma_y: mask standard deviation

16 kernel: the kernel function ,

17 """

18 B, S, D = x_s.shape

19 I = torch.eye(S)

20 K_ss = kernel(x_s , x_s) #(B,S,S)

21 K_qq = kernel(x_q , x_q) #(B,Q,Q)

22 K_sq = kernel(x_s , x_q) #(B,Q,S)

23 L_ss = torch.cholesky(K_ss + sigma_y **2 * I) #(B,S,S)

24 mu_q = (K_sq.T @ solve(L_ss.T, solve(L_ss , y_s)) #(B,Q,M

)

25 v = solve(L_ss , K_sq) #(B,S,Q)

26 cov_q = K_qq - v.T @ v #(B,Q,Q)

27 return mu_q , cov_q

Listing 1.1. PyTorch implementation of the Gaussian Process utilized in the proposed
approach. Here, the learning and inference is combined in a single step. The @ operator
denotes matrix multiplication and solve the solving of a linear system of equations.
The .T is the batched matrix transpose.

E.2 Trainable Layer List

In Table 17 we report the trainable neural network layers used in our approach. The
image encoder listed is either a ResNet50 [9] or a ResNet101 [9] with two projection

Dense Gaussian Processes for Few-Shot Segmentation 25

layers. The results of layer3 and layer4 are each fed through a linear projection layer,
layer3 out and layer4 out respectively, to produce feature maps at stride 16 and stride
32. These two feature maps are then fed into one GP each in the GP pyramid. The
support masks is fed through another ResNet [9] in order to produce the support
outputs. The GPs are integrated as neural network layers, but do not contain any
learnable parameters. The decoder is a DFN [43]. We do not adopt the border network
used in their work and we skip the global average pooling. We also feed it shallow
feature maps extracted from the query. The shallow feature maps are the results of
layer1 and layer2 in the image encoder, at stride 4 and 8 respectively.

26 J. Johnander et al.

Table 17. All neural network blocks used by our approach. The rightmost column
shows the dimensions of the output of each block, assuming a 512×512 input resolution.
The image encoder is from He et al . [9] and the decoder from Yu et al . [43]. The
BottleNeck and BasicBlock blocks are from He et al . [9], and the CAB and RRB blocks
from Yu et al . [43]. See their works for additional details.

Image Encoder

conv1 Conv2d 64 × 256 × 256
bn1 BatchNorm2d 64 × 256 × 256
relu1 ReLU 64 × 256 × 256
maxpool MaxPool2d 64 × 128 × 128
layer1 3x BottleNeck 256 × 128 × 128
layer2 4x BottleNeck 512 × 64 × 64
layer3 6x/23x BottleNeck 1024 × 32 × 32
layer4 3x BottleNeck 2048 × 16 × 16

layer3 out Conv2d 512 × 32 × 32
layer4 out Conv2d 512 × 32 × 32

Mask Encoder

conv1 Conv2d 16 × 256 × 256
bn1 BatchNorm2d 16 × 256 × 256
relu1 ReLU 16 × 256 × 256
maxpool MaxPool2d 16 × 128 × 128
layer1 BasicBlock 32 × 64 × 64
layer2 BasicBlock 64 × 32 × 32
layer3 BasicBlock 64 × 16 × 16

layer2 out Conv2d+BatchNorm2d 64 × 32 × 32
layer3 out Conv2d+BatchNorm2d 64 × 16 × 16

Decoder

rrb in 1 RRB 256 × 16 × 16
cab 1 CAB 256 × 16 × 16
rrb up 1 RRB 256 × 16 × 16
upsample1 Upsample 256 × 32 × 32
rrb in 2 RRB 256 × 32 × 32
cab 2 CAB 256 × 32 × 32
rrb up 2 RRB 256 × 32 × 32
upsample2 Upsample 256 × 64 × 64
rrb in 3 RRB 256 × 64 × 64
cab 3 CAB 256 × 64 × 64
rrb up 3 RRB 256 × 64 × 64
upsample3 Upsample 256 × 128 × 128
rrb in 4 RRB 256 × 128 × 128
cab 4 CAB 256 × 128 × 128
rrb up 4 RRB 256 × 128 × 128
conv out Conv2d 2 × 128 × 128
upsample4 Upsample 2 × 512 × 512

Dense Gaussian Processes for Few-Shot Segmentation 27

E.3 Final Mask Prediction Details

In 3.5 we transformed the output of the GP, restoring spatial structure, before feeding
it into the decoder. Here, we supply additional details. Let (·)· denote tensor indexing.
The mean representation that is fed to the decoder is found as

(zµ)h,w = (µQ|S)hW+w, zµ ∈ R
H×W×E . (10)

That is, the mean vector is unflattened. For the covariance, we encode the covariance
between each point and its neighbours in an N × N window. First, the covariance
output from the GP is unflattened,

ΣQ|S = Unflatten(ΣQ|S) ∈ R
H×W×H×W . (11)

For each spatial location (k, l), we find the posterior covariance to the neighbouring
location (k + i, l + j),

(zΣ)k,l,iN+j = (Σ̃Q|S)k,l,k+i,l+j , (12)

where (i, j) ∈ {−(N − 1)/2, . . . , (N − 1)/2}2 . (13)

That is, the channels of zΣ contains the covariance with respect to all neighboring
locations in an N ×N window.

F Qualitative Results

We provide qualitative results on PASCAL-5i and COCO-20i. First, we compare the
our final approach to a baseline on the COCO-20i benchmark. The baseline also relies
on dense GPs – but uses a linear kernel, does not utilize the predictive covariance
or learn the GP output space, and uses a single feature level (stride 32). Our final
approach instead adopts the SE kernel, adds the predictive covariance in a local 5 × 5
region, learns the output space, and employs dense GPs at two feature levels (stride
16 and stride 32). The results are shown in Fig. 4. Our final approach significantly
outperforms the baseline in these examples, making only minor mistakes.

In Fig. 5 we show qualitative results of our final approach on the PASCAL-5i

dataset. Our approach accurately segments the class of interested, even details such as
sheep legs. In Fig. 6, we show results on COCO-20i.

28 J. Johnander et al.

Support Query Baseline Ours

Fig. 4. Qualitative comparison between our final model and baseline in the 1-shot
setting from the COCO-20i benchmark. Human faces have been pixelized in the visu-
alization, but the model makes predictions on the non-pixelized images.

Dense Gaussian Processes for Few-Shot Segmentation 29

Support Set Query Ours

Fig. 5. Qualitative results on challenging episodes in the 1-shot setting from the
PASCAL-5i benchmark.

30 J. Johnander et al.

Support Set Query Ours

Fig. 6. Qualitative results on challenging episodes in the 1-shot setting from the
COCO-20i benchmark. Human faces have been pixelized in the visualization, but the
model makes predictions on the non-pixelized images.

Dense Gaussian Processes for Few-Shot Segmentation 15

References

1. Allen, K., Shelhamer, E., Shin, H., Tenenbaum, J.: Infinite mixture prototypes for
few-shot learning. In: International Conference on Machine Learning. pp. 232–241.
PMLR (2019)

2. Azad, R., Fayjie, A.R., Kauffmann, C., Ben Ayed, I., Pedersoli, M., Dolz, J.: On
the texture bias for few-shot CNN segmentation. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. pp. 2674–2683 (2021)

3. Bhat, G., Johnander, J., Danelljan, M., Khan, F.S., Felsberg, M.: Unveiling the
power of deep tracking. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 483–498 (2018)

4. Boudiaf, M., Kervadec, H., Masud, Z.I., Piantanida, P., Ben Ayed, I., Dolz, J.:
Few-shot segmentation without meta-learning: A good transductive inference is all
you need? In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 13979–13988 (2021)

5. Calandra, R., Peters, J., Rasmussen, C.E., Deisenroth, M.P.: Manifold Gaussian
Processes for regression. In: Proceedings of the International Joint Conference on
Neural Networks (2016). https://doi.org/10.1109/IJCNN.2016.7727626

6. Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In:
British Machine Vision Conference 2018, BMVC 2018 (2019)

7. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (VOC) challenge. International Journal of Computer Vision
(2010). https://doi.org/10.1007/s11263-009-0275-4

8. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours
from inverse detectors. In: Proceedings of the IEEE International Conference on
Computer Vision (2011). https://doi.org/10.1109/ICCV.2011.6126343

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

10. Hu, T., Yang, P., Zhang, C., Yu, G., Mu, Y., Snoek, C.G.: Attention-based multi-
context guiding for few-shot semantic segmentation. In: Proceedings of the AAAI
conference on artificial intelligence. vol. 33, pp. 8441–8448 (2019)

11. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. In: 3rd
International Conference on Learning Representations, ICLR 2015 - Conference
Track Proceedings (2015)

12. Li, G., Jampani, V., Sevilla-Lara, L., Sun, D., Kim, J., Kim, J.: Adaptive pro-
totype learning and allocation for few-shot segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8334–
8343 (2021)

13. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2117–2125 (2017)

14. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In:
European Conference on Computer Vision. pp. 740–755. Springer (2014).
https://doi.org/10.1007/978-3-319-10602-1 48

15. Liu, L., Cao, J., Liu, M., Guo, Y., Chen, Q., Tan, M.: Dynamic extension nets for
few-shot semantic segmentation. In: Proceedings of the 28th ACM international
conference on multimedia. pp. 1441–1449 (2020)

https://doi.org/10.1109/IJCNN.2016.7727626
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/ICCV.2011.6126343
https://doi.org/10.1007/978-3-319-10602-1_48

16 J. Johnander et al.

16. Liu, W., Zhang, C., Lin, G., Liu, F.: CRNet: Cross-Reference Networks for
Few-Shot Segmentation. In: Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition. pp. 4164–4172 (2020).
https://doi.org/10.1109/CVPR42600.2020.00422

17. Liu, Y., Zhang, X., Zhang, S., He, X.: Part-Aware Prototype Network for Few-
Shot Semantic Segmentation. In: European Conference on Computer Vision. pp.
142—-158 (2020). https://doi.org/10.1007/978-3-030-58545-7 9

18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3431–3440 (2015)

19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations (2019), https://openreview.net/forum?
id=Bkg6RiCqY7

20. Lu, Z., He, S., Zhu, X., Zhang, L., Song, Y.Z., Xiang, T.: Simpler is better: Few-shot
semantic segmentation with classifier weight transformer. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 8741–8750 (2021)

21. Min, J., Kang, D., Cho, M.: Hypercorrelation squeeze for few-shot segmentation.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 6941–6952 (2021)

22. Nguyen, K., Todorovic, S.: Feature weighting and boosting for few-shot segmenta-
tion. In: Proceedings of the IEEE International Conference on Computer Vision.
vol. 2019-Octob, pp. 622–631 (2019). https://doi.org/10.1109/ICCV.2019.00071

23. Patacchiola, M., Turner, J., Crowley, E.J., Storkey, A.: Bayesian meta-learning for
the few-shot setting via deep kernels. In: Advances in Neural Information Process-
ing Systems (2020)

24. Rakelly, K., Shelhamer, E., Darrell, T., Efros, A., Levine, S.: Conditional networks
for few-shot semantic segmentation. In: 6th International Conference on Learning
Representations, ICLR 2018 - Workshop Track Proceedings (2018)

25. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(2006). https://doi.org/10.7551/mitpress/3206.001.0001

26. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Ima-
geNet Large Scale Visual Recognition Challenge. IJCV pp. 1–42 (April 2015).
https://doi.org/10.1007/s11263-015-0816-y

27. Salakhutdinov, R., Hinton, G.: Using deep belief nets to learn covariance kernels
for Gaussian processes. In: Advances in Neural Information Processing Systems 20
- Proceedings of the 2007 Conference (2009)

28. Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic
segmentation. In: British Machine Vision Conference 2017, BMVC 2017 (2017).
https://doi.org/10.5244/c.31.167

29. Siam, M., Oreshkin, B., Jagersand, M.: AMP: Adaptive masked prox-
ies for few-shot segmentation. In: Proceedings of the IEEE International
Conference on Computer Vision. vol. 2019-Octob, pp. 5248–5257 (2019).
https://doi.org/10.1109/ICCV.2019.00535

30. Snell, J., Zemel, R.: Bayesian few-shot classification with one-vs-each pólya-gamma
augmented gaussian processes. In: International Conference on Learning Represen-
tations (2021), https://openreview.net/forum?id=lgNx56yZh8a

31. Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior Guided Feature Enrich-
ment Network for few-shot segmentation. IEEE Transactions on Pattern Analysis
& Machine Intelligence (2020). https://doi.org/10.1109/tpami.2020.3013717

https://doi.org/10.1109/CVPR42600.2020.00422
https://doi.org/10.1007/978-3-030-58545-7_9
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1109/ICCV.2019.00071
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.5244/c.31.167
https://doi.org/10.1109/ICCV.2019.00535
https://openreview.net/forum?id=lgNx56yZh8a
https://doi.org/10.1109/tpami.2020.3013717

Dense Gaussian Processes for Few-Shot Segmentation 17

32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

33. Wang, H., Yang, Y., Cao, X., Zhen, X., Snoek, C., Shao, L.: Variational prototype
inference for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. pp. 525–534 (2021)

34. Wang, H., Zhang, X., Hu, Y., Yang, Y., Cao, X., Zhen, X.: Few-Shot Semantic
Segmentation with Democratic Attention Networks. In: European Conference on
Computer Vision. pp. 730–746 (2020). https://doi.org/10.1007/978-3-030-58601-
0 43

35. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: Few-shot image seman-
tic segmentation with prototype alignment. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. vol. 2019-Octob, pp. 9196–9205 (2019).
https://doi.org/10.1109/ICCV.2019.00929

36. Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep kernel learning. In:
Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics, AISTATS 2016 (2016)

37. Wu, Z., Shi, X., Lin, G., Cai, J.: Learning meta-class memory for few-shot seman-
tic segmentation. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 517–526 (2021)

38. Xie, G.S., Liu, J., Xiong, H., Shao, L.: Scale-aware graph neural network for few-
shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 5475–5484 (2021)

39. Xie, G.S., Xiong, H., Liu, J., Yao, Y., Shao, L.: Few-shot semantic segmentation
with cyclic memory network. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. pp. 7293–7302 (2021)

40. Yang, B., Liu, C., Li, B., Jiao, J., Ye, Q.: Prototype Mixture Models for Few-
Shot Semantic Segmentation. In: European Conference on Computer Vision. pp.
763–778. Springer (2020)

41. Yang, L., Zhuo, W., Qi, L., Shi, Y., Gao, Y.: Mining latent classes for few-shot
segmentation. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 8721–8730 (2021)

42. Yang, Y., Meng, F., Li, H., Wu, Q., Xu, X., Chen, S.: A new local transformation
module for few-shot segmentation. In: International Conference on Multimedia
Modeling. pp. 76–87. Springer (2020)

43. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Learning a Discriminative
Feature Network for Semantic Segmentation. In: Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (2018).
https://doi.org/10.1109/CVPR.2018.00199

44. Zhang, B., Xiao, J., Qin, T.: Self-guided and cross-guided learning for few-shot
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 8312–8321 (2021)

45. Zhang, C., Lin, G., Liu, F., Guo, J., Wu, Q., Yao, R.: Pyramid graph networks
with connection attentions for region-based one-shot semantic segmentation. In:
Proceedings of the IEEE International Conference on Computer Vision. vol. 2019-
Octob, pp. 9586–9594 (2019). https://doi.org/10.1109/ICCV.2019.00968

46. Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: CANET: Class-agnostic segmenta-
tion networks with iterative refinement and attentive few-shot learning. In: Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (2019). https://doi.org/10.1109/CVPR.2019.00536

https://doi.org/10.1007/978-3-030-58601-0_43
https://doi.org/10.1007/978-3-030-58601-0_43
https://doi.org/10.1109/ICCV.2019.00929
https://doi.org/10.1109/CVPR.2018.00199
https://doi.org/10.1109/ICCV.2019.00968
https://doi.org/10.1109/CVPR.2019.00536

18 J. Johnander et al.

47. Zhang, G., Kang, G., Yang, Y., Wei, Y.: Few-shot segmentation via cycle-consistent
transformer. Advances in Neural Information Processing Systems 34 (2021)

48. Zhang, X., Wei, Y., Yang, Y., Huang, T.S.: Sg-one: Similarity guidance network for
one-shot semantic segmentation. IEEE Transactions on Cybernetics 50(9), 3855–
3865 (2020)

