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Abstract. Motion segmentation is a challenging problem that seeks to
identify independent motions in two or several input images. This paper
introduces the first algorithm for motion segmentation that relies on
adiabatic quantum optimization of the objective function. The proposed
method achieves on-par performance with the state of the art on problem
instances which can be mapped to modern quantum annealers.
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1 Introduction

Quantum computer vision is an emerging field. Recently, several classical prob-
lems were reformulated to enable quantum optimization, including recognition
[46,15] and matching tasks [54,10]. Promising results were shown so far, thus
encouraging further research. Among the two existing paradigms for quantum
computing, i.e., gate-based and adiabatic quantum computing (AQC), experi-
mental realizations of AQC are already applicable to real-world problems, pro-
vided that the objective is given as a quadratic unconstrained binary optimiza-
tion (QUBO) problem. Thus, quantum annealing (QA)—which refers to not
perfectly adiabatic implementations of AQC [22,27]—is an experimental and
promising technology for finding solutions to combinatorial problems leveraging
quantum mechanics [24,21]. QA optimises objectives without relaxation and ob-
tains globally-optimal or low-energy solutions with high probabilities. Note that
these important properties are hardly present in traditional methods, hence it
is crucial to identify problems benefiting from this new class of machines.

In [10] an AQC algorithm for permutation synchronization is proposed, which
finds cycle-consistent matches across a set of images or shapes, where the matches
are given as permutation matrices. The recent survey [3] discusses many synchro-
nization problems already studied in the literature (e.g., rotation synchronization
for structure from motion [16] or pose synchronization for point-set registration
[26]). Notwithstanding, permutation synchronization [10] is the only one that
has been solved via quantum optimization so far.
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Ground truth Our method Mode [5] Synch [4] Xu et al. [62]

Fig. 1: Qualitative results on sample images from the new Q-MSEG dataset, where
each color (symbol) represents a distinct planar motion. On average, the accuracies of
our QuMoSeg-v1, Mode [5], Synch [4] and Xu et al. [62] are 0.97, 0.93, 0.93 and
0.89, respectively, on problems with 96 qubits. In the shown example, our approach
outperforms the competitors. See Tab. 1 for further details.

This paper advances the state of the art in quantum computer vision by
bringing a new synchronization problem, i.e., motion segmentation, into an
AQC-admissible form; see Fig. 1 for exemplary results. The task of motion seg-
mentation [52] is to classify points in multiple images into different motions,
which is relevant in such applications as dynamic 3D reconstruction [44] or au-
tonomous driving [50]. Observe that quantum formulations do not make sense
for all problems, but for those, e.g., that include combinatorial optimisation ob-
jectives, which are usually NP-hard. Motion segmentation is identified to have
a combinatorial structure, and, hence, is a meaningful candidate to leverage the
advantages of the quantum processor. Bringing motion segmentation into an
AQC is challenging as only problems in a QUBO form are admitted. Thus, we
primarily focus on how to formulate motion segmentation as a QUBO.

Our work adopts the synchronization formulation of motion segmentation
from [4], which we carefully convert to a QUBO problem. This gives rise to the
first variant of our quantum approach, named QuMoSeg-v1 (from “QUantum
MOtion SEGmentation”): it works well in many practical scenarios but it can
not manage large-scale problems since it is based on a dense matrix. For this
reason, we also develop an alternative method based on a sparse matrix which
can solve larger problems, resulting in QuMoSeg-v2: its derivation, however,
requires additional assumptions, i.e., the knowledge of the number of points per
motion. In summary, our primary contributions are:

1) A new approach to motion segmentation that employs AQC (Sec. 3);
2) A new real dataset (Q-MSEG) for motion segmentation (Sec. 5).

In our extensive experiments, our approach achieves competitive accuracy (close
to or higher than competing methods) on problem instances which are mappable
to the AQC of the latest generation, and demonstrates its high robustness to
noise. Due to the limits of current quantum hardware (that improves constantly
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Fig. 2: Matrix representation of motion segmentation.

and is far from maturity), our experiments are limited to small-scale data, as
done also in previous work [10]. However, it is expected that progress in quantum
hardware, alongside with the ability to solve combinatorial problems without
approximation, will give practical advantages for large-scale data in the future.

Our derivations share only a few similarities with Birdal et al. [10]: In fact,
bringing motion segmentation into a QUBO form requires more analytical steps
compared to previous work on quantum synchronization [10] because binary ma-
trices are less constrained than permutation matrices. Moreover, our formula-
tion for synchronization requires linearly-many variables in the number of input
points, hence we can handle more points compared to [10]. Our source code and
data are publicly available6.

2 Background

Our work is inspired by Arrigoni and Pajdla [4] (reviewed in Sec. 2.1), where
a convenient matrix representation is introduced for motion segmentation from
pairwise correspondences. In Sec. 3 we will show how to rewrite such framework
in terms of a QUBO, in order to enable adiabatic quantum optimization. In this
respect, we report some preliminary notions on quantum computing in Sec. 2.2.

2.1 Motion Segmentation

The objective of the motion segmentation problem is to group key-points in
multiple images according to a number of motions. We use the following no-
tation: n is the number of images; pi is the number of key-points in image i;
p =

∑n
i=1 pi is the total amount of key-points; d is the number of motions

(known by assumption). We focus here on motion segmentation from pairwise
correspondences [5,4], which can be addressed in two steps: 1) motion segmen-
tation is addressed on different pairs of images independently, which in turn can
be done via multi-model fitting [39,40,6]; 2) the results derived in the first step
are globally combined, thus producing the required multi-frame segmentation.

As shown in [4], motion segmentation can be seen as a “synchronization” of
binary matrices. Indeed, the result of motion segmentation in two images i and
j can be represented as a matrix Zij ∈ {0, 1}pi×pj as follows:

6 See the project page https://4dqv.mpi-inf.mpg.de/QuMoSeg/

https://4dqv.mpi-inf.mpg.de/QuMoSeg/
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– [Zij ]h,k = 1 if point h in image i and point k in image j belong to the same
motion;

– [Zij ]h,k = 0 otherwise.

The (known) binary matrix Zij is referred to as the partial segmentation or rel-
ative segmentation of the pair (i, j). It is a local representation of segmentation,
since it reveals which points in two different images belong to the same motion,
but it does not reveal which motion it is with respect to other pairs. Similarly,
our desired output can be represented as a matrix Xi ∈ {0, 1}pi×d as follows:

– [Xi]h,k = 1 if point h in image i belongs to motion k;
– [Xi]h,k = 0 otherwise.

The binary matrix Xi is called the total segmentation or absolute segmentation
of image i. Observe that the number of rows is equal to the number of points
while the number of columns is equal to the number of motions. Note also that
it is a global representation of segmentation since it reveals the membership of
all points with respect to an absolute order of motions. The notions of absolute
and relative segmentations are illustrated in Fig. 2.

Remark 1. Let mi be a vector of length d such that [mi]h counts how many
points in image i belong to motion h. Then the columns in Xi sum to mi:

1T
pi
Xi = mT

i , (1)

where 1 is a vector of ones (with length given as subscript). Note also that the
product XT

i Xi is a d× d diagonal matrix:

XT
i Xi = diag(mi). (2)

These simple properties will be exploited later.

The connection between relative and absolute segmentations [4] is given by:

Zij = XiX
T
j . (3)

Recall that the left side in the above equation is known whereas the right side is
unknown. In general, there are multiple image pairs giving rise to an equation of
the form (3), which can be conveniently represented as the edge set E of a graph
G = (V, E), where V = {1, . . . , n} denotes the vertex set. In other terms, each
vertex represents an image and an edge is present between two vertices if and
only if the relative segmentation of that image pair is available. Thus motion
segmentation can be cast to the task of recovering X1, . . . , Xn starting from Zij

with (i, j) ∈ E , such that (3) is satisfied. This is also called synchronization [3].

2.2 Adiabatic Quantum Optimization

Modern AQC can solve quadratic unconstrained binary optimization (QUBO)
problems of the form

min
y∈Bk

yTQy + sTy, (4)
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where Bk denotes the set of binary vectors of length k, Q ∈ Rk×k is a real
symmetric matrix and s ∈ Rk. Note that optimization is performed over binary
variables. QUBO problems are NP-hard. An optimization problem with hard
constraints of the form Aiy = bi can be converted to a QUBO with soft con-
straints [10], in which linear terms weighted by multipliers λi rectify Q and s:

min
y∈Bk

yTQy + sTy +
∑
i

λi ||Aiy − bi||2. (5)

As (4) does not easily allow including high-level constraints (e.g., on a matrix
rank), most computer vision problems cannot be easily posed in a QUBO form.
Latest research thus focuses on finding such formulations [55,10].

AQC interprets y as a measurement result of k qubits, and optimization
of (4) is performed on AQC not in the binary vector space but a “lifted”, 2k-
dimensional space of k qubits, taking advantage of quantum-mechanical effects
like superposition and entanglement. In contrast to a classical bit which can be
either in state 0 or 1 at a time, a qubit |q⟩ = α |0⟩ + β |1⟩ can take any state
fulfilling α, β ∈ C and |α|2 + |β|2 = 1. Once a QUBO form is known, it is first
passed to a minor embedding algorithm such as Cai et al. [13]. Its purpose it to
find a mapping of a QUBO problem (4) defined in terms of qubits—which in the
following we call logical (i.e., mathematical models)—to an AQC with physical
qubits (i.e., hardware realizations of the mathematical models). This step is
necessary for most problems except the smallest ones, as the qubit connectivity
pattern encoded in Q is not natively supported by the hardware [20] and several
repeated physical qubits, building a chain, are required to represent a single
logical qubit during quantum annealing.

After the initialisation in a problem-independent state, AQC is transitioning
from the initial solution to the solution of the target problem in the QUBO form,
i.e., one says that the system evolves its state (or an annealing is taking place)
according to the rules of quantum mechanics [24,42]. The notion adiabatic refers
to how this transition happens in the ideal case, namely obeying the adiabatic
theorem of quantum mechanics [12]. The remaining steps of an AQC algorithm
are: 1) Sampling; 2) Unembedding; 3) Bitstring selection and 4) Solution inter-
pretation [55]. QA is probabilistic in nature, and a globally-optimal measurement
can be obtained with specific success probabilities. Thus, multiple annealings are
required to reach a satisfactory result (QUBO sampling). The number of repeti-
tions can vary by orders of magnitude depending on the probability to measure
an optimal solution, the problem size and the minor embedding. Each sample is
measured and unembedded, i.e., returned in terms of the logical qubit measure-
ments. Next, one or several samples are chosen as the final solution(s), and the
most common criterion is the lowest energy (i.e., minimal cost) over all samples.
An interested reader can further refer to McGeoch [42].
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3 Our Quantum Approach

At the core of our approach is a QUBO formulation of motion segmentation. This
permits—for the first time in the literature—to solve the segmentation task via
quantum optimization. Bringing it into a QUBO form is not straightforward and
requires more analytical steps compared to previous work on quantum synchro-
nization [10], as will be clarified later. We propose two methods: the first one is
based on a dense matrix, and, hence, can require an increased embedding size
(Sec. 3.1); the second one, instead, is based on a sparse matrix but relies on ad-
ditional assumptions (Sec. 3.2). Both variants are principled (i.e., are equivalent
to synchronization) and can solve real-world problems (see Sec. 5).

3.1 QuMoSeg-v1

As explained in Sec. 2.1, motion segmentation can be posed as computing abso-
lute segmentations (i.e., X1, . . . , Xn) starting from pairwise segmentations Zij

with (i, j) ∈ E such that Zij = XiX
T
j . In the presence of noise, the task is to

solve the following optimization problem:

min
X1,...Xn

∑
(i,j)∈E

||Zij −XiX
T
j ||2F ,

s.t. vec(Xi) ∈ Bpi , Xi1d = 1pi ∀i = 1, . . . , n,

(6)

where Bk denotes the set of binary vectors of length k, and vec(·) denotes the
vectorization operator that transforms a matrix into a vector by stacking the
columns one under the other. Recall that Xi has size pi×d, so vec(Xi) has length
dpi and should be a binary vector. The constraint Xi1d = 1pi means that each
row sums to 1. Indeed, each row in Xi has exactly one entry equal to 1 (whereas
all other entries are zero), meaning that each point should belong to exactly one
motion. The cost in (6) measures, for each image pair, the discrepancy (in the
Frobenius norm sense) between the input relative segmentation (i.e., Zij) and
the relative segmentation derived from the sought absolute segmentations (i.e.,
XiX

T
j ). It is also known as the consistency error [3].

Proposition 1. Problem (6) is equivalent to

max
X1,...Xn

∑
(i,j)∈E

trace(XT
i (2Zij − 1pi×pj

)Xj)

s.t. vec(Xi) ∈ Bpi , Xi1d = 1pi ∀i = 1, . . . , n

(7)

where 1pi×pj denotes a pi × pj matrix of ones.

Proof. For simplicity of exposition, we drop constraints and focus on the cost
function itself. By computation and exploiting (2), we obtain:

||Zij −XiX
T
j ||2F = trace(ZT

ijZij) + trace(XjX
T
i XiX

T
j )− 2 trace(ZT

ijXiX
T
j ) =

trace(ZT
ijZij) + trace(diag(mi) diag(mj))− 2 trace(XT

i ZijXj) =

= trace(ZT
ijZij) +mT

i mj − 2 trace(XT
i ZijXj).

(8)
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Note that the first term is constant, for it depends on the input Zij only, hence
it can be ignored in the optimization. As for the second term, using (1), we get:

mT
i mj = trace(mim

T
j ) = trace(XT

i 1pi
1T
pj
Xj) = trace(XT

i 1pi×pj
Xj). (9)

Hence, the optimization in (6) is equivalent to (7). ⊓⊔

We now rewrite (7) in a compact form via the following notation, where all the
measures/unknowns are grouped into block-matrices X ∈ Rp×d and Z ∈ Rp×p:

X =


X1

X2

. . .
Xn

 , Z =


0 Z12 . . . Z1n

Z21 0 . . . Z2n

. . . . . .
Zn1 Zn2 . . . 0

 . (10)

Proposition 2. Problem (6) is equivalent to

max
X

vec(X)T(Id×d ⊗ (2Z − 1p×p)) vec(X),

s.t. vec(X) ∈ Bdp, X1d = 1p.
(11)

Proof. Let us define W = 2Z − 1p×p. Using (10), we get:∑
(i,j)∈E

trace(XT
i (2Zij − 1pi×pj )Xj) = trace(XTWX). (12)

The above equation can be further simplified by exploiting properties of the
trace operator7 and the Kronecker product8 denoted by ⊗, resulting in:

trace(XTWX) = vec(X)T vec(WX) = vec(X)T(Id×d ⊗W ) vec(X), (13)

where Id×d denotes the d×d identity matrix. Hence, the objective function (11)
is the same as (7), which in turn is equivalent to (6), as shown in Prop. 1. As for
constraints, it is easy to see that vec(Xi) ∈ Bpi and Xi1d = 1pi translate into
vec(X) ∈ Bdp and X1d = 1p, when considering all the unknowns simultaneously
as stored in the block-matrix X. Hence we get the thesis. ⊓⊔

Corollary 1. Problem (6) can be mapped into a QUBO problem (5)

min
y∈Bk

yTQy + λ1||Ay − b||2, (14)

where Q = −Id×d ⊗ (2Z − 1p×p), y = vec(X), A = (1T
d ⊗ Ip×p), b = 1p.

Proof. Problem (11) is the maximization of a quadratic cost function with binary
variables and linear constraints, hence definitions of Q and y are immediate.
The linear constraints X1d = 1p can be easily mapped into the canonical form
Ay = b via properties of Kronecker product8 and vectorization. ⊓⊔
7 For any matrices A, B of proper dimensions we have: trace(ATB) = vec(A)T vec(B).
8 For any matrices A,B, Y of proper dimensions, the Kronecker product [38] satisfies:
vec(AY B) = (BT ⊗A) vec(Y ).
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Remark 2. Q = −Id×d⊗(2Z−1p×p) is symmetric and its size is dp×dp, where d
is the number of motions and p is the total amount of points over all images. Note
also that the size of the optimization variable y is dp, so it scales linearly with
the number of points (assuming d ≪ p, which is usually the case in practice).

To summarize, the synchronization formulation for motion segmentation can
be cast to a QUBO, thus enabling adiabatic quantum optimization. This gives
rise to the first variant of our approach, which is called QuMoSeg-v1.

3.2 QuMoSeg-v2

Note that the block-matrix Z storing all partial segmentations is sparse, i.e.,
most of its entries are zero (see Fig. 2 for an example of a partial segmentation).
However, the matrix 2Z − 1p×p (which appears in the definition of Q in (14))
is dense (it has only -1 or +1 as possible entries). This may result in increased
embedding size, which is undesirable in practice. This observation motivates the
need for an alternative method based on a sparse matrix, which is explored here.
This comes at the price of having additional assumptions, as shown below.

Proposition 3. Let us assume that the amount of points per motion is known
in each image, namely mi is known ∀i = 1, . . . , n, where the d-length vector mi

is defined in Remark 1. Then, Problem (6) is equivalent to

max
X1,...Xn

∑
(i,j)∈E

trace(XT
i ZijXj),

s.t. vec(Xi) ∈ Bpi , Xi1d = 1pi, 1T
pi
Xi = mT

i ∀i = 1, . . . , n.

(15)

Proof. The starting point is Eq. (8), which is copied here as a reference:

||Zij −XiX
T
j ||2F = trace(ZT

ijZij) +mT
i mj − 2 trace(XT

i ZijXj). (16)

As already observed, the first term is constant, for it depends on Zij only; hence,
it can be ignored in the optimization. Also the second term is constant, since
mi is known for each image i by assumption. Thus, the objective function (6)
is equivalent to (15). Observe that we should add extra constraints to take into
account our additional assumptions, which force the amount of points per motion
to be equal to some predefined values in every image, namely 1T

pi
Xi = mT

i (see
also Remark 1). Hence we get the thesis. ⊓⊔

Remark 3. Note that the knowledge of the number of points per motion was
indeed essential in the proof of Prop. 3. In other terms, the synchronization
problem (6) is not equivalent to (15) without such an assumption.

Proposition 4. If the amount of points per motion is known for each image,
then Problem (6) is equivalent to

max
X

vec(X)T(Id×d ⊗ Z) vec(X),

s.t. vec(X) ∈ Bdp, X1d = 1p, KX = M,
(17)
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where K and M are defined as follows:

K = diag(1T
p1
,1T

p2
, . . . ,1T

pn
), M =

[
mT

1 mT
2 . . . mT

n

]T
. (18)

Proof. Problem (15) can be easily turned into the form (17) following the same
reasoning as in the proof of Prop. 2. Concerning the additional constraints, it is
easy to see that KX = M is just a compact way of storing all the equations of
the form 1T

pi
Xi = mT

i simultaneously. ⊓⊔

Corollary 2. If the amount of points per motion is known for each image, then
Problem (6) can be mapped into a QUBO problem of the form (5), namely:

min
y∈Bdp

yTPy + λ2||Ay − b||2 + λ3||Ey − f ||2, (19)

where P = −Id×d⊗Z, y = vec(X), A = (1T
d ⊗ Ip×p), b = 1p, f = vec(M), and

E = (Id×d ⊗K).

Proof. Problem (17) is the maximization of a quadratic cost with binary vari-
ables and linear constraints, hence definitions of P and y are immediate. The
linear constraints X1d = 1p and KX = M can be mapped into the forms
Ay = b and Ey = f via properties of Kronecker product8 and vectorization. ⊓⊔

In summary, we derived an alternative QUBO formulation for motion seg-
mentation with a sparse matrix: P matrix defined in (19) is sparse as it inherits
the same sparsity pattern as Z. This was possible under simplified assump-
tions, i.e., the knowledge of the amount of points per motion in all images. This
gives rise to the second variant of our approach, which is called QuMoSeg-v2.

Execution on AQC. Once the QUBO for the target data is known, namely (14)
forQuMoSeg-v1 or (19) forQuMoSeg-v2, motion segmentation can be solved
via adiabatic quantum optimization, as described in Sec. 2.2.

4 Related Work

After having introduced QuMoSeg, we next review the most related methods.
Synchronization refers to recovering elements of a group (associated to

vertices in a graph) starting from a (redundant) set of pairwise ratios (associated
to edges in the graph). Popular synchronization problems involve rotations and
rigid motions [56,7,16,58,9,23,49,57,36], which are at the core of tasks such as
camera motion estimation in SfM [45], point cloud registration [26] and SLAM
[14]. Other synchronization problems concern homographies (which are related
to image mosaicking [53]) and affine transformations (which were used to solve
for global color correction [51]). Although synchronization has a well-established
theory for the case where unknowns/measures belong to a group, specific routines
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can be possibly developed when the variables do not belong to a group and have
a poorer structure. A notable example are partial permutations, which appear in
the context of multi-view matching [47,17,64,41,8]. Another example are binary
matrices, which are related to part segmentation in point clouds [29] and motion
segmentation in images [4] (the basis of our method).

Motion Segmentation aims at detecting moving objects in a scene given
multiple images by grouping all the key-points moving in the same way [52].
Existing techniques fall into three main categories, depending on the assump-
tions made on the inputs. Some methods assume extracted key-points and work
with unknown correspondences [30,61]. Other algorithms assume some local in-
formation about correspondences in addition to the key-points, namely matches
between image pairs [5,4]. The third category assumes known global information
about the correspondences, namely multi-frame trajectories [63,48,37,31,34,62].
Our method belongs to the second category [5,4]. Accordingly, our technique
splits motion segmentation into multiple two-frame sub-problems and then finds
a global consistency among the partial results. Our method is related to Arrigoni
and Pajdla [4], as we adapt their model and the data structures. Their approach
relies on a similar formulation as (17) but solves the problem over real variables
instead of binary ones, ending up with an approximate solution based on a spec-
tral decomposition. In this paper, instead, we derive a QUBO formulation from
scratch and solve it without relaxation on an AQC.

Quantum Computer Vision. Several quantum techniques are available for
computer vision tasks, such as recognition and classification [46,15], object track-
ing [35], transformation estimation [25], point set and shape alignment [43,55],
graph matching [54] and permutation synchronization [10]. Most of these meth-
ods are designed for an AQC. In [46], a binary matrix factorization is applied
to feature extraction from facial images, while in [35] redundant detections are
removed in multi-object detection with the help of an AQC. Another method
classifies multi-spectral images with quantum SVM [15]. A quantum approach
for correspondence problems on point sets [25] recovers rotations between pairs
of point sets, which are approximated as sums of basis matrix elements. The
qKC method described in [43] employs both classical and quantum kernel-based
losses for point set matching. In contrast to [25], qKC is designed for a circuit-
based quantum computer. QGM is the first approach for matching small graphs
using AQC [54]. Q-Match [55] can non-rigidly match 3D shapes with up to 500
points and it overcomes the hardware limitations of the modern AQC (e.g., the
qubit connectivity pattern) by an iterative optimization scheme.

The quantum method most closely related to ours is QSync [10], as it also
uses the framework of synchronization but solves a different problem. There are
substantial differences between our task and permutation synchronization [10]:
QSync operates on permutation matrices (i.e., both rows and columns sum to 1),
whereas the binary matrices in our case are less constrained (only rows sum up
to 1). Although this might seem a minor difference, the term trace(XjX

T
i XiX

T
j )

in QSync is constant and can be ignored in (8); the absence of “columns sum to 1”
constraint means that we either i) require additional assumptions (QuMoSeg-
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v2) or ii) resort to different computations resulting in a new (dense) matrix
(QuMoSeg-v1). In QSync, the number of variables scales quadratically with
the number of points, whereas our method is more efficient per construction
(e.g., it uses matrices with 2k entries if there are two motions, see Remark 2).
Hence, we can handle larger problems: five images of two motions with ten points
each, i.e., 100 points (see Sec. 5) vs five points in four images [10].

5 Experiments

In this section, we report experimental results on synthetic scenarios, a small
dataset derived from the Hopkins benchmark [59] and a new real dataset. We
evaluate our method on D-Wave’s AQC of the latest generation, i.e., D-Wave
Advantage4.1 (Adv4.1), which is an AQC of the Pegasus architecture. It contains
≈5k physical qubits organized in cells of 24 qubits; each qubit is coupled to 15
other qubits; the total number of couplers is ≈40k [11]. Adv4.1 operates at
temperatures below 17mK and is accessed remotely via Ocean [18]. We run all
experiments with 20µs annealing time (no pause). The total QPU runtime of our
experiments including overheads amounts to over 15 minutes (over 106 obtained
samples). We sample 1k times and take the lowest-energy sample as the result.

Evaluation Methodology. Since our method is the first quantum approach
to segmentation with two-frame correspondences, we compare it with traditional
approaches (i.e., not operating on AQC), namely Mode [5] and Synch [4],
whose code is available online [2]. Both our approach and the competitors take
the same input, namely a set of pairwise segmentations represented as a dp×dp
block-matrix Z – see (10) – and they compute the absolute segmentations either
in the form of a p×d matrix X or a vector y = vec(X) of length dp. In order
to compare a given solution y ∈ Bdp with the ground-truth solution named
ygt ∈ Bdp, we use the accuracy µ9, as done also in [10]. It is defined as the
number of correct entries over the total amount of entries, namely

µ = 1−H(ygt,y)/dp, (20)

where H denotes the Hamming distance.
Experiment with Synthetic Noise. We consider 20 synthetic configura-

tions with 3 or 4 images, 2 motions and 16 points per image, resulting in 96 or
128 qubits. In order to create the ground-truth segmentation X, each point is
assigned to a motion which is randomly chosen among the two available ones. All
the analyzed methods can solve these problems with accuracy µ = 1. Next, we
derive pairwise segmentations from (3) and we systematically inject into them
increasing amounts of noise: in each pairwise segmentation we switch the mo-
tion of a percentage of points ranging from 0% to 50% (meaning that half of
the points are corrupted). The results of this experiment are shown in Fig. 3a,
which reports the accuracy (averaged over 20 problem instances) for the analyzed

9 Other measures can be considered with similar results, such as the misclassification
error, which is widely adopted in motion segmentation.



12 F. Arrigoni et al.

(a) Accuracy (max value 1) for
several methods on synthetic data
versus input noise.

(b) Average maximum chain length (left), average
number of physical qubits (middle) and probabil-
ity of finding a solution (right) versus number of
logical qubits in Q-MSEG dataset.

Fig. 3: Results of synthetic experiments (a) and of real experiments on Q-MSEG (b).

methods. QuMoSeg-v1 is certainly on par with the best traditional approach
(namely Mode [4]). Concerning QuMoSeg-v2, it is worth noting that is starts
from a similar formulation to Synch [4], but it solves the problem without re-
laxation: working over binary variables without relaxation in combination with
AQC significantly improves the results. There are no significative differences
between the two variants of our method on the smallest scenario with 96 qubits.

Experiments on Q-MSEG Dataset.Due to the lack of small-scale datasets
usable for our scenario (i.e., whose size is manageable by current AQC), we gen-
erate a new dataset for motion segmentation with ground-truth annotations,
which comprises six images depicting three planar objects captured from di-
verse viewpoints. We focus on planar motions (where the underlying model is
the homography) since they can be recovered from a lower amount of points
than general motions10 (where the corresponding model is the fundamental ma-
trix), hence allowing more flexibility in the experimental setting. Each object
is manually annotated with respectively 10, 11 and 12 keypoints, selected on
highly-textured locations. Following [10,60], we extract features corresponding
to each keypoint using an AlexNet model [33] pretrained on ImageNet. Sev-
eral motion segmentation problems are derived from the dataset: we consider
14 different choices for the number of points/images/motions (see supplemen-
tary), and we sample 20 problem instances for each configuration, resulting in
280 problem instances in total. For each problem instance, we perform feature
matching on every image pair via nearest neighbor search, where the cosine
distance is used as the distance metric. Then, different motions are identified
in each image pair by fitting multiple homographies to correspondences [40].
This defines a set of pairwise segmentations which represent the input Mode
[5], Synch [4] and our quantum methods. In order to enrich the evaluation, we
evaluate here also the method by Xu et al. [62] (with public code [1]), although
it makes different assumptions on the input (i.e., it requires multi-frame trajec-
tories, which were computed by us following the same procedure as in [5,4]).
For completeness, we also optimize the objective functions of our approach with
a simulated annealing (SA) solver [32,19]: while in general it performs on par

10 At least four points are needed to estimate a homography, whereas at least seven
points are required for the fundamental matrix [28].
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Table 1: Average accuracy (1 is the best) for several methods on our Q-MSEG dataset.
The highest accuracy is in boldface.

# Qubits/Bin. Var.: 96 102 120 126 128 136 160 168 180 190 200 216 220 243

Xu et al. [62] 0.89 0.89 0.94 0.75 0.96 0.97 0.86 0.86 0.97 0.88 0.96 0.77 0.83 0.74
Mode [5] 0.93 0.93 0.96 0.93 0.97 0.97 0.98 0.99 0.98 0.99 0.99 0.93 1 0.94
Synch [4] 0.93 0.94 0.95 0.95 0.84 0.92 0.97 1 0.89 0.95 0.90 0.94 0.99 0.92
QuMoSeg-v1 0.97 0.97 0.97 0.96 0.95 0.98 0.98 0.99 0.98 0.99 0.99 0.64 – –
QuMoSeg-v2 0.96 0.97 0.95 0.94 0.89 0.89 0.88 0.85 0.74 0.75 0.79 0.59 0.75 0.58
QuMoSeg-v1, SA 0.97 0.97 0.97 0.96 0.95 0.98 0.98 1 0.98 0.99 0.99 0.68 0.98 0.72
QuMoSeg-v2, SA 0.98 0.99 0.99 1 0.96 0.98 0.98 1 0.94 0.97 0.99 0.80 1 0.59

with QA for smaller problems, it provides an indication on the QPU’s solution
accuracy for the largest problems we test, which future QPU generations can
potentially reach and outperform.

Results are given in Tab. 1 which reports, for each configuration, the mean
accuracy µ (over 20 problem instances) for all the analyzed methods. Results
show that there is no clear winner, since none of the methods outperforms all
others in all cases. In particular,QuMoSeg-v1 is better than the state of the art
on small-scale problems (i.e., 96-126 qubits) and comparable or better than the
best traditional method (i.e.,Mode [5]) on medium-scale problems (i.e., 136-200
qubits). On the largest cases, instead, either the performances of QuMoSeg-
v1 significantly drop (i.e., 216 qubits) or it was unable to find a minor embed-
ding and, hence, a solution (i.e., 220-243 qubits). Concerning QuMoSeg-v2, we
can observe that—although working under easier assumptions—it is, in general,
worse than QuMoSeg-v1. This might be caused by the difficulty of satisfying
the additional (simplified) constraints in practice (as they are treated as soft
instead of hard). Note that the performances of our approaches are largely af-
fected by the limitation of current QPU. In this respect, the on-par or higher
performance of SA (see Tab. 1) suggests that our QUBO approach to motion
segmentation is sound and that future QPU generations are expected to reach
or surpass that result. Qualitative results from an example with 96 qubits are
shown in Fig. 1: in this case, QuMoSeg-v1 outperforms existing methods.

Fig. 3b visualises how the expected number of physical qubits and the maxi-
mum chain length are increasing with the increasing problem size. It also reports
the probability of finding a solution in a sampling, which is calculated as the
portion of optimal solutions (as lowest energy solutions) among all solutions.
Note that QuMoSeg-v1 has a non-zero probability to find an optimal solution
for all problems except the largest embeddable one with 216 qubits, whereas
QuMoSeg-v2 has a non-zero probability only on the two smallest cases.

Experiments on Hopkins Benchmark. Starting from the popular Hop-
kins155 dataset [59], we created small problems (with 120-240 qubits) by sam-
pling a subset of images/points from the cars2 06 g23 sequence (see our supple-
ment for details). For each configuration, 20 instances were created, resulting in
400 examples in total. We used the fundamental matrix model to produce the
pairwise segmentations which are given as input to Mode [5], Synch [4] and
our quantum methods. We also consider the method by Xu et al. [62] and the
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Table 2: Accuracy (1.0 is the best) for several methods on sub-problems sampled from
the Hopkins dataset [59]. The highest accuracy is in boldface.
# Qubits/Bin. Var. : 120 126 132 138 144 156 162 168 174 180 186 192 198 204 210 216 222 228 234 240

Xu et al. [62] 0.80 0.78 0.81 0.79 0.83 0.81 0.84 0.81 0.85 0.89 0.88 0.94 0.96 0.96 0.97 1 0.98 1 0.99 1
Mode [5] 0.89 0.91 0.90 0.93 0.92 0.94 0.95 0.95 0.96 0.95 0.97 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.99 0.99
Synch [4] 0.87 0.93 0.95 0.96 0.99 0.96 0.99 0.99 0.96 0.99 1 1 0.99 1 1 0.70 0.97 1 0.99 0.65
QuMoSeg-v1 0.92 0.89 0.93 0.93 0.93 0.93 0.95 0.94 0.96 0.95 0.96 0.97 0.96 - - - - - - -
QuMoSeg-v2 0.91 0.92 0.91 0.92 0.94 0.89 0.91 0.89 0.90 0.88 0.88 0.89 0.88 0.89 0.88 - - - - -
QuMoSeg-v1, SA 0.93 0.90 0.92 0.94 0.93 0.94 0.95 0.96 0.96 0.96 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.99 0.99
QuMoSeg-v2, SA 0.96 0.97 0.98 0.98 0.99 0.99 0.99 0.97 0.99 1 1 1 1 1 1 1 0.99 1 0.99 1

simulated annealing (SA) solver [32,19], as done previously. Results are given in
Tab. 2, showing that we outperform Xu et al. [62] (for number of qubits <198)
and obtain comparable performance to classic methods [5,4] in several cases.
Results for SA show that the global optima of our QUBOs match expected so-
lutions (and that the obtained energy landscapes are as expected), even though
the solutions cannot be recovered by QA in all cases due to hardware limitations.
In particular, for small problems, the simulated annealing performs on par with
QA (as expected), whereas large problems can be solved with the SA only.

Discussion. In our experiments, QuMoSeg achieves on-par performance11

with non-quantum state of the art, showing the viability of a quantum approach
for segmentation. Among the two proposed variants, QuMoSeg-v1 is the most
accurate and QuMoSeg-v2 can solve larger problems. Moreover, our approach
in a combination with SA shows highly promising results on both Q-MSEG and
the data we generated from Hopkins. The characteristics of the current quan-
tum hardware starkly influence the performance of QuMoSeg: Problems with
>120 points cannot be minor-embedded, and the largest mappable problems re-
quire maintaining too long qubit chains, which impedes the optimum search. As
many other quantum algorithms, QuMoSeg will benefit from improved quan-
tum hardware, both in terms of accuracy and solvable problem sizes. Indeed, it
is expected that the possibility to solve combinatorial problems without approx-
imation will give practical advantages for large-scale problems in the future.

6 Conclusion

We propose the first motion segmentation approach for an adiabatic quantum
computer, which shows highly promising results and reaches state-of-the-art ac-
curacy on a wide range of problems. We hope that the demonstrated progress
encourages more work on quantum computer vision in the future.

Acknowledgements. This work was partially supported by the PRIN project
LEGO-AI (Prot. 2020TA3K9N).

11 Note that this reflects the current situation in the field: indeed, other quantum
methods [10,55] do not outperform classical methods in all scenarios too.
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