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Abstract. RGB-D salient object detection (SOD) has been in the spot-
light recently because it is an important preprocessing operation for vari-
ous vision tasks. However, despite advances in deep learning-based meth-
ods, RGB-D SOD is still challenging due to the large domain gap between
an RGB image and the depth map and low-quality depth maps. To solve
this problem, we propose a novel superpixel prototype sampling network
(SPSN) architecture. The proposed model splits the input RGB image
and depth map into component superpixels to generate component pro-
totypes. We design a prototype sampling network so that the network
only samples prototypes corresponding to salient objects. In addition,
we propose a reliance selection module to recognize the quality of each
RGB and depth feature map and adaptively weight them in proportion
to their reliability. The proposed method makes the model robust to in-
consistencies between RGB images and depth maps and eliminates the
influence of non-salient objects. Our method is evaluated on five popular
datasets, achieving state-of-the-art performance. We prove the effective-
ness of the proposed method through comparative experiments. Code
and models are available at https://github.com/Hydragon516/SPSN.

Keywords: RGB-D salient object detection, Superpixel, Prototype learn-
ing, Reliance selection

1 Introduction

The salient object detection (SOD) task detects and segments objects that vi-
sually attract the most human interest from a single image or video. The SOD
task is a useful preprocessing operation for various computer vision tasks such as
few-shot learning, weakly-supervised semantic segmentation, object recognition,
tracking, and image parsing. However, despite recent advances in deep learning,
it is still challenging due to camouflaged objects, extreme lighting conditions,
and scenes containing multiple objects with complex shapes. To potentially im-
prove performance for such difficult scenes, RGB-D SOD, using an additional
depth map, has recently been in the spotlight.

Recent deep learning-based studies [5,7,6,51,21] achieve significant RGB-D
SOD performance by fusing RGB information and additional depth information.
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Fig. 1. The overall flow of the proposed model. Our model generates and samples com-
ponent prototypes from superpixel maps. It also compares the reliability of correlation
maps created from component prototypes to generate the predicted mask.

However, due to the large domain gap between an RGB image containing rich
detail information and a depth image containing geometric information, previous
works [7,8,39,41,19,36] focus on the process of effectively fusing these two pieces
of information. These methods show that they can effectively extract feature
information about salient objects from RGB images and depth maps, but they
have two major limitations.

First, they perform inconsistently due to mismatches between the RGB image
and the depth map. For example, in the case of a picture hung on the wall,
the depth map lacks saliency information compared to the RGB image due to
the picture’s thinness. Furthermore, the RGB image contains complex texture
information about the background scene despite the particularly monotonous
depth map background. This unnecessary additional information acts as noise
in the network and makes it difficult to generate an accurate saliency mask.
This often causes conventional methods to fail in challenging scenes involving
complex background structures and multiple foreground objects.

Second, the quality of depth maps is inconsistent due to the limitations of
the depth sensor. Some studies [23,42] suggest additional processes for depth
map refinement to solve this problem. Although these methods can improve the
consistency of low-quality depth maps, they are inefficient due to the additional
network or computational costs.

To solve the problems described above, we propose a novel superpixel pro-
totype sampling network (SPSN) architecture. Fig. 1 shows the overall SPSN
process. First, we note that RGB images and depth maps provide different kinds
of information and can complement each other. RGB images have various detail
and texture information in the foreground and background, which provides rich
context information to the network as it passes through the encoder. In compar-
ison, the depth map lacks detailed information, but it is more robust than an
RGB image in extreme lighting conditions. For a preprocessing operation to ef-
fectively fuse and complement the advantages of an RGB image and depth map,
we use the simple linear iterative clustering (SLIC) algorithm [2] to segment the
RGB image and depth map into superpixel components. Moreover, we propose
a prototype sampling network module (PSNM) to solve the inconsistency prob-
lem between RGB images and depth maps and extract salient object features
effectively. We generate component prototypes from superpixel components, in-
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spired by prototype learning, which is used extensively in few-shot segmenta-
tion tasks [43,28,30]. PSNM, composed of transformers and graph convolutional
layers, is trained to selectively sample only prototypes corresponding to salient
objects among component prototypes. Therefore, the proposed method improves
performance by minimizing the influence of the background and extracting con-
sistent salient features from RGB images and depth maps. Furthermore, for the
network to be flexible enough to handle low-quality depth maps, we propose a
reliance selection module (RSM). The RSM is trained to evaluate the quality
of the features generated from the RGB component prototypes and depth com-
ponent prototypes. As a result, the RSM adaptively changes the RGB image
and depth map dependence of the network. In other words, the proposed model
minimizes performance degradation in situations such as low-quality depth maps
and low-light RGB images and effectively creates a saliency mask.

The experimental results over five benchmark datasets show that our model
significantly outperforms previous state-of-the-art approaches. Finally, we demon-
strate the validity of our method through various ablation studies.

2 Related Work

2.1 RGB-D SOD

Recent RGB-based SOD methods [53,44,52,34,16] have demonstrated outstand-
ing performance. However, they are still challenged by insufficient information
to express the complex characteristics of scenes with multiple objects, trans-
parent objects, ambiguous borders between the foreground and background,
and extreme light conditions. Meanwhile, owing to the development of various
consumer-grade depth cameras, additional depth cues of abundant structural and
geometrical information have been enabled for SOD studies. Therefore, RGB-D
SOD has gained significant attention and has been widely studied to supplement
the limits of RGB-based methods on the scenarios mentioned above.

2.2 Traditional RGB-D Methods

Traditional RGB-D SOD algorithms [15,13,11,12,25,22,27] focused on utilizing
various hand-crafted features, such as contrast, center or boundary prior, and
center-surround difference. Lang et al. [27] introduced the depth prior by mod-
eling the relationship between depth and saliency with a mixture of Gaussians.
Additionally, Cheng et al. [11] grouped the pixels in the input image with k-
means clustering and obtained three saliency cues—color contrast, depth con-
trast and spatial bias—from each cluster to generate saliency maps. Moreover,
Ju et al. [25] proposed an anisotropic center-surround difference based on the
assumption that salient objects tend to stand out from the surroundings. Be-
cause these methods rely heavily on hand-crafted features of relatively limited
information, their performance deteriorates in complex scenes.
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2.3 Deep Learning-Based RGB-D Methods

Existing deep learning-based RGB-D SOD methods focus more on fusing the
complementary features extracted from the RGB and depth channels because
the domain gap represented by each channel is significant. The merging strategies
can be grouped into three categories based on when the fusion takes place: early
fusion [39,41], middle fusion [7,8], and late fusion [19,36]. Early fusion methods
concatenate the RGB image and depth image at the earliest stage and regard
the integrated four-channel matrix as a single input. For example, Qu et al. [39]
introduced this method by generating hand-crafted feature vectors from each
RGB-D pair, which were fed as input to a CNN-based model. Middle fusion
methods fuse the two different feature maps extracted from individual networks.
For example, Chen et al. [7] suggested a two-stream complementary-aware net-
work in which the features from the same stages of each modality are fused
with the help of a complementary-aware fusion block. Finally, late fusion meth-
ods produce individual saliency prediction maps from both the RGB and depth
channels, and the two predicted maps are merged by a post-processing operation
such as pixel-wise summation and multiplication. For example, Piao et al. [36]
proposed a depth-induced multiscale recurrent attention network to extract the
features from an RGB image and depth image individually and designed depth
refinement blocks for integration.

However, these methods neglect the problem of mismatches between the two
modalities. For example, in some scenarios such as a thin calendar hung on
the wall, the RGB image more accurately discriminates the salient object and
the background, whereas all the pixel values are similar to each other in the
depth image. To deal with this problem, several studies have proposed methods
to enhance such unreliable input data by utilizing hand-crafted techniques to
improve the accuracy. Zhao et al. [51] suggested a contrast prior loss to increase
the color difference between the foreground and background of the depth input.
Ji et al. [23] proposed an effective depth calibration strategy that corrects the
latent bias of the raw depth maps. Furthermore, Zhang et al. [48] presented a
depth correction network to decrease the noise in unreliable depth data, assuming
the object boundaries in the depth map align with those in the RGB map.

3 Proposed Method

3.1 Overview

Fig. 2 shows the overall architecture of the proposed SPSN. The proposed model
uses an RGB image IRGB, depth map ID, and their superpixel maps SRGB, SD

as inputs. Our model is composed primarily of four parts: the feature fusion
module (FFM), prototype generating module (PGM), prototype sampling net-
work module (PSNM), and reliance selection module (RSM). The SPSN also has
two encoders for RGB images and depth maps and one decoder.
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Fig. 2. Overall architecture of the superpixel prototype sampling network (SPSN). The
proposed network has one RGB encoder and one depth encoder. Our model consists of
a feature fusion model (FFM) for effective fusion of encoder features, prototype gen-
erating module (PGM) for prototype extraction, prototype sampling network module
(PSNM) for prototype sampling, and reliance selection module (RSM) for reliability
selection of RGB and depth features.

3.2 Feature Fusion Module

As shown in Fig. 3 (a), FFM fuses multiscale features from the encoder. We

extract three features E1 ∈ RC(1/8)×H8 ×
W
8 , E2 ∈ RC(1/16)×H

16×
W
16 , and E3 ∈

RC(1/32)×H
32×

W
32 from the encoder, where H and W are the height and width of

the input image, respectively, and C(1/8), C(1/16) , and C(1/32) are the number
of channels of the multiscale encoder feature. Because the architectures of the
RGB encoder and depth encoder are identical, the size of the extracted features
is the same. The FFM consists of a 1× 1 convolution layer and upsampling lay-
ers, integrating the multiscale features of the encoder and extracting the global
contextual information through atrous spatial pyramid pooling (ASPP) [9] layer.

As a result, The FFM generates RGB fusion feature FRGB ∈ R128×H8 ×
W
8 and

depth fusion feature FD ∈ R128×H8 ×
W
8 , as shown in Fig. 2. In addition, the

channel-reduced encoder feature Ecr after the 1× 1 convolution layer is used as
the input for PSNM.

3.3 Prototype Generating Module

The PGM aims to generate component prototypes from fusion features FRGB

and FD, obtained from the FFM. As shown in Fig. 3 (b), we first create a
superpixel map S from each RGB image IRGB and depth map ID using the SLIC
algorithm [2]. Next, we create a superpixel mask group sm where each channel is
a binary mask for each superpixel. Therefore, if the number of superpixels is NS ,
the size of sm is NS×H×W . sm is down-sampled to the same size as the fusion
feature F (i.e. FRGB or FD) generated by the FFM, so the size of the superpixel
mask smi constituting each channel of sm is 1× H

8 ×
W
8 , where i = 1, 2, ..., NS .
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Fig. 3. Structure of (a) FFM and (b) PGM. The FFM fuses the multiscale features of
the encoder. The PGM generates a prototype block from the superpixel mask sm and
the fusion feature F generated from the FFM.

Like the prototype learning of few-shot segmentation tasks [43,28,30], the PGM
creates a component prototype from each superpixel mask. Thus, the prototype
Pi generated by smi is defined as Pi = MAP (F, smi), where MAP (.) is the
masked average pooling operator. Finally, we define a prototype block PB ∈
RNS×128 as a concatenation of the component prototypes generated. As shown in
Fig. 3 (b), we define prototypes created from superpixel masks on salient objects
as salient component prototypes, and prototypes created from superpixel masks
at other locations as non-salient component prototypes.

3.4 Prototype Sampling Network Module

The PSNM aims to sample only the salient component prototypes from all the
component prototypes Pi created from the RGB images and depth maps. There-
fore, the PSNM should focus on correlations between Pi that contain consistent
characteristics for salient objects, and it must be able to distinguish them from
inconsistent background components. Fig. 4 shows the structure of the proposed
PSNM, which consists of Parts A, B, C, and D.
Part A. Part A is a transformer module with multi-head attention to enhance
the correlation between Pi. Inspired by the previous key, query, and value-
based multi-head attention method [45,20,47], we first generate PBK ∈ RNS×64,
PBQ ∈ RNS×64, and PBV ∈ RNS×64 from the prototype block PB using MLP
blocks MLPK , MLPQ, and MLPV . By the MLP block, the length of prototypes
is reduced by half, with each prototype block defined as PBK = MLPK (PB),
PBQ = MLPQ (PB), and PBV = MLPV (PB). The Part A output PBatt ∈
RNS×128 is defined by the following equation:

PBatt = PB +MLPW

(
ψ

(
PBQ · (PBK)

T

√
d

)
·PBV

)
, (1)

where (.)
T

and ψ (.) are the transpose and softmax operators, respectively. Fur-
thermore, d = 64, the length of PBK, PBQ, and PBV. In addition, MLPW is
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Fig. 4. Structure of the PSNM, composed primarily of four subparts. The PSNM se-
lectively samples only prototypes corresponding to salient objects.

an MLP block that increases the length of the reduced prototype to the length
of the original.
Part B. Part B is a network for sampling salient component prototypes from
PBatt with enhanced correlation between component prototypes. Since the com-
ponent prototype is the result of masked average pooling of the encoder features,
it is a one-dimensional vector representing each component feature. These fea-
ture shapes are similar to the embedded point features of 3D point cloud net-
works [37,38,46]. Therefore, we propose a graph convolution network based on
the feature distance between the prototypes, inspired by EdgeConv [46], used in
3D point cloud networks. As shown in Part B of Fig. 4, the proposed module
consists of three EdgeConv layers and one MLP block. First, we define the input
component prototype block of EdgeConv as PBin ∈ RNS×128 containing pro-
totypes Pin

1 ,P
in
2 , ...,P

in
NS

. Then, EdgeConv uses the k-nearest-neighbor (k-NN)

algorithm to create a graph between a target prototype Pin
i and ak prototypes

Pin
j1,P

in
j2, ...,P

in
jak

that are most close to each other in the feature space. Next,
as shown in Fig. 4, EdgeConv extracts edge features χijx between each node
generated in the graph, where x = 1, 2, ..., ak. The edge features χijx are defined
as follows:

χijx = hθ
(
Pin

i ,P
in
jx −Pin

i

)
, (2)

where hθ : Rce×Rce → Rce is a nonlinear function with a set of learnable param-
eters θ, and ce = 128. Therefore, as shown in Fig. 4, a total of ak χijx are gener-
ated, so the size of χij is ak×NS×128. This process is equivalent to generating dy-
namic graphs proposed by [46]. The final output PBout ∈ RNS×128 of the Edge-
Conv layer is defined as PBout = MAX (χij), where MAX (.) is the channel-
wise symmetric aggregation operator max pooling, according to [46]. The sym-
metric aggregation operator makes the network independent of the prototype
order. As a result, Part B generates a prototype sampler vector Spred ∈ RNS ,
defined as follows:

Spred = Sigmoid
(
MLPF

(
PBout

))
, (3)
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Fig. 5. (a) Structure of the RSM and (b) ground truth generating process for the RSM.
The RSM aims to discriminate the reliability of each RGB feature and depth feature
to adaptively balance the contribution of the two when generating the final saliency
map.

where Sigmoid (.) is the sigmoid operator and MLPF is an MLP block that
reduces the length of the prototype block. Therefore, as shown in Fig. 4, Spred

has values between 0 and 1, and we multiply Spred by PBatt to create a PBs,
where only the salient object is sampled.

Part C. Part C is an auxiliary module for training the network of Part B. It is
used only in the training phase and is removed in the testing phase. As shown in
Part C in Fig. 4, we compute the channel-wise sum of the multiplication of SPred

and mS to generate the auxiliary prediction superpixel map AMPred ∈ RH×W .
In other words, AMPred is the set of superpixel masks sampled by SPred. We
also generate an auxiliary ground truth superpixel map AMGT ∈ RH×W from
the sm and the ground truth salient object mask IGT. AMGT is the channel-

wise sum of sm satisfying
∑

(mSk
×IGT)∑

(mSk)
> 0.5, where

∑
(.) is the sum of all pixel

values. Therefore, as shown in Part C of Fig. 4, AMGT is similar to IGT. We
use the binary cross-entropy loss between AMPred and AMGT as an objective
function so that Part B can learn to sample only the salient object prototypes.

Part D. Part D generates correlation features for the salient objects from PBs

and Ecr. We treat each of the prototype blocks PBs
1,PBs

2, ...,PBs
NS

as a 1× 1
convolution kernel and perform convolution with Ecr. As shown in Part D of
Fig. 4, the correlation maps Γ(1/32) ∈ RNS×H

32×
W
32 , Γ(1/16) ∈ RNS×H

16×
W
16 , and

Γ(1/8) ∈ RNS×H8 ×W8 are generated by channel-wise concatenation of convolution
results by multiscale Ecrs and each 1× 1 kernel. This process makes it possible
to exclude non-salient object features and generate correlation maps for salient
objects.

3.5 Reliance Selection Module

As previously mentioned, reliable modality varies depending on the characteris-
tics of the input image. Therefore, we propose the RSM to evaluate the quality
of each RGB and the depth features generated from the component prototypes
and adaptively weight them in proportion to their reliability. As shown in Fig. 5
(a), the outputs of PSNM ΓRGB and ΓD processed in each encoder level are
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concatenated in the channel dimension for each level. These multiscale concate-
nated features ΓRGBD(1/8) ∈ R(2×Ns)×H8 ×

W
8 , ΓRGBD(1/16) ∈ R(2×Ns)×H

16×
W
16 ,

and ΓRGBD(1/32) ∈ R(2×Ns)×H
32×

W
32 are then fused by applying 1 × 1 convolu-

tion, upsampling, and element-wise summation. This fusion technique is mostly
similar to FFM. The fused feature FRSM ∈ R(2×Ns)×H8 ×

W
8 is then fed as input

to RSM. The RSM network consists of three convolutional layers. Each layer is
composed of convolution, batch normalization, and ReLU [3] activation. After
extracting the features, we flatten the output of the last layer and apply linear
function and sigmoid function. In this way, we obtain a vector RelyW ∈ R2 of
two reliance values RelyWR and RelyWD, lying between 0 and 1, which represent
the reliability of each ΓRGB and ΓD respectively. The more reliable the feature
is, the higher the reliance value. Finally, we obtain a reliance-weighted RGB-D
feature matrix Γ′RGBD by multiplying RelyWR and RelyWD with ΓRGBD. The
equations are as follows:

Γ′RGBD =

{
RelyWR × Γk

RGBD , 0 ≤ k < Ns

RelyWD × Γk
RGBD , Ns ≤ k < 2×Ns

, (4)

where k indicates the channel dimension.
Ground truth for RSM. To optimize RSM, we generate a ground truth vector
RSMgt. The process is demonstrated in Fig. 5 (b). First, we process the channel-
wise summation of FRSM and apply min-max normalization. Thereby, we obtain
a one-channel matrix PseudoGT ∈ R1×H8 ×

W
8 which contains the channel-wise

statistics for width× height dimensions in FRSM. Because each channel of FRSM

represents a candidate for the correlation map compressed to a small size, the
bigger the pixel value is, the more likely that pixel belongs to the salient object.
Next, we calculate the L1 distance between PseudoGT and each channel of
FRSM to obtain a distance matrix DRSM ∈ R(2×Ns)×H8 ×

W
8 . From DRSM, we

obtain the mean distance values DR and DD by averaging the values where the
channel index k is 0 ≤ k < Ns and Ns ≤ k < 2 × Ns, respectively. Finally, we
acquire the two elements of RSMgt by the following equations:

RSMgtR = DD/(DR +DD) (5)

RSMgtD = DR/(DR +DD) (6)

Therefore, RSMgtR and RSMgtD represent the similarity between the RGB cor-
relation maps and PseudoGT, and the similarity between the depth correlation
maps and PseudoGT, respectively, which are in other words, the reliability.
With the generated RSMgt, RSM is optimized by minimizing the L1 distance
between RelyW and RSMgt.

3.6 Model Optimization

We optimize the model with three object functions Lmask, LPSNM and LRSM .
First, Lmask is the intersection over union (IOU) loss between the predicted
saliency map Ipred and the ground truth mask IGT , expressed as:
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Lmask (Ipred, IGT ) = 1−
∑
x,ymin

(
Ipred(x,y), IGT (x,y)

)∑
x,ymax

(
Ipred(x,y), IGT (x,y)

) , (7)

where (x, y) are the pixel coordinates. Next, as described in section 3.4, LPSNM
is the binary cross entropy loss between AMPred and AMGT. Finally, the
loss function LRSM for RSM is defined by measuring the L1 distance between
RelyW and RSMgt. LRSM is expressed as:

LRSM (RelyW,RSMgt) = |RelyW,RSMgt| (8)

As a result, we combine all these constraints regarding PSNM, RSM, and Ipred,
and obtain the following objective function L:

Ltotal = λmLmask + λpLPSNM + λrLRSM , (9)

where λm, λp, and λr denote the weights controlling the contribution of each
multiplied loss function.

4 Experiments

4.1 Datasets

We perform our experiments on the following five popular RGB-D SOD bench-
marks to validate the effectiveness of our proposed method: NJU2K [25], NLPR
[35], STERE [33], DES [11] and SIP [19]. NJU2K [25] and NLPR [35] con-
sists of 1985 and 1000 paired stereoscopic images, respectively. STERE [33] con-
sists of 1000 stereo images collected from the Internet. DES [11], which is also
called RGBD135 in some other papers captures seven indoor scenes and con-
tains 135 indoor images acquired by Microsoft Kinect. SIP [19] is a high-quality
dataset with 929 images. To make a fair comparison with previous works, we
conduct experiments with two different training setups. First, we use 1485 sam-
ples from NJU2K [25] and 700 samples from NLPR [35] following the same
setup as [51,29,32]. Second, we follow the same training settings as existing
works [36,50,24,10,49,42,23], using 800 samples from DUT-RGBD [36], 1485 sam-
ples from NJU2K [25] and 700 samples from NLPR [35].

4.2 Evaluation Metrics

We evaluate the performance of our method and other methods using five widely
used evaluation metrics: the mean F-measure (Fβ) [1], mean absolute error
(MAE, M) [4], S-measure (Sα) [17], E-measure (Eξ) [18], and precision-recall
(PR) curve.
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Table 1. Quantitative comparison on five representative large-scale benchmark
datasets. ↑ indicates that higher is better and ↓ indicates that lower is better. ∗ denotes
the models are trained on NJU2K [25] and NLPR [35]; the rest are trained on DUT-
RGBD [36], NJU2K [25], and NLPR [35]. The best and second best are highlighted in
red and blue, respectively.

Metric
DMRA CPFP CIM CoN CMWN PGAR CasG ATS D2F DCF Ours Ours
[36] [51] ∗ [50] [24] [29] ∗ [10] [32] ∗ [49] [42] [23] ∗

Years
ICCV CVPR CVPRECCV ECCV ECCV ECCV ECCV CVPR CVPR
2019 2019 2020 2020 2020 2020 2020 2020 2021 2021

N
J
U
2
K

[2
5
]

Eξ ↑ .908 .895 - .912 .936 .916 .877 .921 .923 .922 .943 .950
Sα ↑ .886 .878 .899 .894 .903 .909 .849 .901 .903 - .912 .918
Fβ ↑ .872 .837 .886 .872 .902 .893 .864 .893 .901 .897 .912 .920
M ↓ .051 .053 .043 .047 .046 .042 .073 .040 .039 .038 .033 .032

N
L
P
R

[3
5
]

Eξ ↑ .941 .924 - .936 .951 .955 .952 .945 .950 .956 .962 .958
Sα ↑ .899 .888 .914 .907 .917 .930 .919 .907 .918 - .926 .923
Fβ ↑ .854 .822 .875 .848 .903 .885 .904 .876 .897 .893 .914 .910
M ↓ .031 .036 .026 .031 .029 .024 .025 .028 .024 .023 .022 .023

S
T
E
R
E

[3
3
]

Eξ ↑ .920 .903 - .923 .944 .919 .930 .921 .933 .931 .942 .943
Sα ↑ .886 .879 .893 .908 .905 .913 .899 .897 .904 - .906 .907
Fβ ↑ .867 .830 .880 .885 .901 .880 .901 .884 .898 .890 .898 .900
M ↓ .047 .051 .044 .041 .043 .041 .039 .039 .036 .037 .035 .035

D
E
S

[1
1
]

Eξ ↑ .944 .927 - .945 .969 .939 .947 .952 .962 - .976 .974
Sα ↑ .900 .872 .905 .910 .934 .913 .905 .907 .920 - .938 .937
Fβ ↑ .866 .829 .876 .861 .930 .880 .906 .885 .896 - .943 .936
M ↓ .030 .038 .025 .027 .022 .026 .028 .024 .021 - .016 .016

S
IP [1
9
]

Eξ ↑ .863 .899 - .909 .913 .908 - - - .920 .936 .934
Sα ↑ .806 .850 - .858 .867 .876 - - - - .890 .892
Fβ ↑ .819 .819 - .842 .874 .854 - - - .877 .896 .899
M ↓ .085 .064 - .063 .062 .055 - - - .051 .042 .042
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Fig. 6. Precision-recall curve comparison on five datasets.

4.3 Implementation Details

We set the number of superpixels NS to 100 and ak of EdgeConv to 10. We
also set λm, λp, and λr in Equation 9 to 1, 1, and 10, respectively, for bal-
anced training. We implement the proposed method using the open deep learn-
ing framework PyTorch. The backbone network is equipped with VGG-16 [40],
with initial parameters pre-trained in ImageNet [14]. All images are uniformly
resized to 352 × 352 pixels for training and inferring. For network training, we
used the Adam optimizer [26] with β1 = 0.9, β2 = 0.999, and ε = 10−8. The
learning rate decayed from 8×10−5 to 8×10−6 with the cosine annealing sched-
uler [31]. The total number of epochs was set to 200 with batch size 16 with two
NVIDIA RTX 3090 GPUs for all experiments in this study.
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DMRAPGAROurs D2F CoN CIMCasG CMWMGT DCFRGB Depth

Fig. 7. Qualitative comparison with eight state-of-the-art methods.

4.4 Comparison with State-of-the-Art Methods

Quantitative comparison. Table 1 shows our quantitative performance com-
pared with 10 recently published state-of-the-art RGB-D SOD methods, DMRA
[36], CPFP [51], CIM [50], CoN [24], CMWN [29], GAR [10], CasG [32], ATS [49],
D2F [42], DCF [23], on five popular benchmark datasets. Because the training
data in these comparative studies differ slightly, as some used NJU2K [25] and
NLPR [35] whereas others also used DUT-RGBD [36], we show the performance
on both settings for a fair comparison. It is observed that our model notably
outperforms the other methods. In particular, our model exceeds the counter-
part methods by a dramatic margin in terms of all four evaluation metrics on
NJU2K [25] and DES [11], which are considered more challenging than to the
others due to the low contrast and objects cluttering the background. This result
further indicates that our network can perform well on various complex scenes.
Moreover, we plotted the PR curves in Fig. 6 for a better comparison. The results
show that ours lies above most of the methods compared.
Qualitative comparison. In Fig. 7, we compare our qualitative results to those
of eight top-ranking RGB-D SOD approaches on several challenging scenarios, in-
cluding low contrast, reflection, thin objects, multiple objects, and long distance.
Particularly for scenes with complex RGB maps caused by cluttered objects and
patterns in the background (e.g., the second, third, and fourth row), our model
utilized more information from the reliable depth maps to generate an accurate
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Table 2. Performance with different combinations of our contributions. RE and DE
represent the encoders for the RGB and depth, respectively. RS and DS are the set of
FFM, PGM, and PSNM in the RGB and depth streams, respectively.

Index
Method NJU2K [25] NLPR [35] STERE [33] DES [11] SIP [19]

RE DE RS DS RSM Eξ ↑ Sα ↑ Fβ ↑ M ↓ Eξ ↑ Sα ↑ Fβ ↑ M ↓ Eξ ↑ Sα ↑ Fβ ↑ M ↓ Eξ ↑ Sα ↑ Fβ ↑ M ↓ Eξ ↑ Sα ↑ Fβ ↑ M ↓
(a) 3 .872 .836 .848 .058 .871 .852 .793 .044 .883 .852 .843 .061 .843 .775 .764 .048 .825 .738 .734 .069
(b) 3 3 .904 .863 .869 .051 .912 .877 .842 .037 .908 .870 .864 .052 .888 .831 .820 .038 .868 .796 .793 .062
(c) 3 3 3 .934 .888 .887 .044 .952 .905 .888 .028 .934 .889 .883 .042 .932 .887 .877 .031 .913 .855 .853 .057
(d) 3 3 .937 .903 .901 .039 .950 .915 .896 .026 .938 .902 .894 .037 .950 .905 .900 .027 .918 .870 .878 .051
(e) 3 3 3 3 .944 .912 .910 .035 .954 .919 .902 .025 .940 .905 .898 .036 .963 .922 .917 .022 .926 .881 .887 .047
(f) 3 3 3 3 3 .950 .918 .920 .032 .958 .923 .910 .023 .943 .907 .900 .035 .974 .937 .936 .016 .934 .892 .899 .042
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Fig. 8. Comparison of performance characteristics with respect to NS for the
NJU2K [25], STERE [33], and DES [11] datasets.

saliency map. Furthermore, the accuracy of such scenes is boosted by the PSNM,
which effectively discriminates the foreground from the background. Similarly,
our model can handle samples with depth maps that are ambiguous because of
light reflection and long distance (e.g., the sixth and eighth rows) because our
model adaptively decides to rely on the more accurate RGB maps. Furthermore,
it is observed that our model is robust to scenes with multiple objects (e.g., the
fifth and ninth rows).

4.5 Ablation Analysis

We verify the performance of our model through various ablation studies. Table 2
shows the effects of the proposed modules in various combinations. RE and DE
in Table 2 represent the VGG-16 [40] encoders for the RGB images and depth
maps, respectively. In addition, RS and DS are the set of FFM, PGM, and PSNM
in the RGB and depth streams, respectively. The proposed RSM only applies
when both RE and DE are used. Fig 8 also shows the performance of our model
according to the number of superpixels.
Impact of prototype sampling. As shown in Table 2, (d) and (e), to which the
prototype sampling method is applied, our method achieves better performance
than (a) and (b) on all datasets. This is because the encoder-decoder-based net-
work delivers not only the features for the salient object but also the background
and non-salient object feature information extracted from the encoder to the de-
coder, preventing accurate mask generation. In contrast, the proposed SPSN
model performs well because the network can selectively extract only the impor-
tant salient object feature information by PSNM. Furthermore, Fig. 9 shows the
salient prototype sampling results of the proposed method.
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Pred GTRGB Depth AM𝑃𝑟𝑒𝑑 (RGB) AM𝐺𝑇(RGB) AM𝑃𝑟𝑒𝑑 (Depth) AM𝐺𝑇 (Depth)
𝑅𝑒𝑙𝑦𝑊𝑅 : 0.45
𝑅𝑒𝑙𝑦𝑊𝐷 : 0.87

𝑅𝑒𝑙𝑦𝑊𝑅 : 0.92
𝑅𝑒𝑙𝑦𝑊𝐷 : 0.24

Fig. 9. Visualization of our results in several challenging situations. AMpred and AMGT

are described in Section 3.4, and RelyWR and RelyWD are described in Section 3.5

Impact of RSM. When the proposed RSM module is applied, as shown in
Table 2 (c) and (f), it shows significant performance improvement when the RGB
image and depth map are used together. The performance improves because
RSM selects feature maps generated from RGB and depth streams based on
their reliability. Therefore, as shown in Fig. 9, RelyWR is small for RGB images
with camouflaged objects, and RelyWD is small for low-quality depth maps.
This structure shows that the model reduces the biased dependence and makes
it robust to low-quality depth maps.
Number of superpixels. We conduct ablation studies to observe how the MAE
and Fβ values change according to the number of superpixels NS . Fig. 8 shows
the changes in performance using the NJU2K [25], STERE [33], and DES [11]
datasets according to the number of superpixels. As shown in Fig. 8, the proposed
model performs best near NS = 100. Additionally, if NS is too small or too large,
the performance will decrease. This degraded performance results because if NS
is too small, the superpixel masks cannot effectively separate salient and non-
salient objects and cannot provide a sufficient number of component prototypes.
Conversely, if NS is too large, it is difficult to create coherent features for the
salient object by creating too small superpixel masks that are too small.

5 Conclusion

In this paper, we aim to segment salient objects by designing an SPSN, which
suppresses the effects of background objects and effectively takes advantage of
RGB and depth maps. Specifically, our network is composed of four novel mod-
ules—the FFM, which fuses the multiscale features extracted from the encoder;
the PGM, which renders the fused feature maps to component prototypes; the
PSNM, which discriminates the prototype that belongs to the salient object; and
the RSM, which adaptively selects the contribution of RGB and depth features.
The results demonstrate the outstanding improvement of our method over the
previous studies, indicating that our model can capture salient objects in various
challenging scenes. Furthermore, extensive ablation studies show the contribu-
tion and effectiveness of each of the proposed modules.
Acknowledgement. This work was supported by the Institute of Information & com-
munications Technology Planning & Evaluation(IITP) grant funded by the Korea gov-
ernment(MSIT) (No. 2021-0-00172, The development of human Re-identification and
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