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In the supplementary material, we begin with an alternate implementation of
the naive method in Sec. 6. In Sec. 7, we provide illustrations of the connectivity
kernel in both 2D and 3D settings. In Sec. 8-11, we provide detailed descrip-
tions of the experiments, namely the datasets, architectures, implementations,
additional ablation studies and qualitative and quantitative results.

6 Alternate Implementation of Naive Solution

In Sec. 3.1, we discussed the naive solution which involved simply looping over
all the pixels and scanning all its neighbors. The obvious issue with loops is
that though it takes O(1) time to access the neighborhoods of any single pixel,
it takes polynomial time to access the neighborhoods of all the pixels together.
Here we discuss an alternate implementation of the same idea. Although it is
more efficient than the naive method discussed in Sec. 3.1, it is still inferior to
the convolution-based method in terms of speed and complexity. We provide
details of the alternate naive method here in the supplementary due to space
constraints in the main paper.

We continue to use the same terminology for terms A, B, C, P , d, k etc. as
used in Sec. 3.1. We assume 2D 4-connectivity scenario.

Since the connectivity defined is constant for every pixel, we can translate
the idea of looping over every pixel to that of shifted maps instead. A map Pr

is obtained by shifting every pixel in P to the right by one pixel. Similarly we
can obtain maps Pl, Pu and Pd, which are obtained from P by shifting one pixel
to the left, up, and down, respectively. Thus for i, we have the 4-connectivity
neighbors of the pixel P [i], that is, Pr[i], Pl[i], Pu[i], and Pd[i]. And with the help
of these maps, we have access to the neighborhoods of every pixel simultaneously
without loops. We can now use algebraic manipulation to determine whether
pixel P [i] ∈ A has a C neighbor(s) or not.

We need to prune the neighborhood maps so that we are left with only the
critical pixel feature map. Let MA be a mask obtained from P such that it
contains a 1 at locations where the pixels are in A. Similarly, let MC be a mask
⋆ Equal contribution.
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Fig. 8: 2D illustration of the alternate naive algorithm to detect the set of
critical pixels. The figure demonstrates the logic to obtain the critical pixels in
the right direction using Pr. The same logic needs to be extended to Pl, Pu, Pd

to obtain the entire critical pixel set for the 4-connectivity case. Topologically
critical pixels are marked with (*).

obtained from P for C. We similarly obtain masks MA,w and MC,w from each
shifted map Pw. These masks reduce the context to classes A and C alone while
discarding others. Note that here subscript w is used as a generic subscript to
denote any of r, l, u, and d.

Now for each neighborhood map Pw, the term (MA⊙MC,w)∪ (MC ⊙MA,w)
gives the critical pixel map in that direction. Intuitively, it captures all the pixels
of A that fall in the neighborhood of C and vice-versa. If we take the union of
all these terms constructed from every direction, we obtain all the pixels in A
and C which appear in each other’s neighborhood. Fig. 8 gives an overview of
the algorithm by obtaining the critical pixel map using only Pr. We can extend
the same logic for other Pw. While intuitive, the disadvantage of this approach
is in its scalablility with respect to d.

Computational Efficiency. We analyze the computational efficiency by de-
termining complexity as a function of the input and neighborhood size. Let the
image size be N × N and we enforce a separation of d pixels. In the alternate
naive solution, we require d shifted maps along each direction, or k = 2d maps
along an axis. The time complexity is therefore in the order of O(N2k2). The
memory requirement will be O(N2) to store masks MC,w and MA,w, and we can
optimize this by using an allocated buffer into which we can keep over-writing
the masks generated for each direction. As discussed in Sec. 3.1, the proposed
solution has a time complexity of O(N2 logN). Thus, the alternate naive so-
lution is not scalable with respect to d (or k), whereas our proposed method
has a running time independent of the specified neighborhood size. The memory
requirements of both methods are similar. In practice, deep learning frameworks
are highly optimized for convolution operations, and so they are much cheaper
than computing shifts along axes.
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Running Times. For the same network architecture, the inference time re-
mains the same irrespective of the loss functions; the difference is in the training
times. We further compare the training times of using the naive method, the
alternate naive method and the convolution-based method in the topological
interaction module. We report the average time for training one epoch on the
IVUS dataset, having a batch size of 5, input size of 384 × 384, and d = 1. For
the naive solution, it takes 69.4s to compute the Lti for each epoch. With the
alternate naive solution, it takes 5.9s to compute the Lti for each epoch, while it
takes only 0.8s for the proposed convolution-based method. The significant dif-
ference between the naive and convolution-based methods boils down to the fact
that convolutions are highly optimized for GPUs, whereas looping across each
pixel in CPU-space incurs huge time. We thus conclude that the convolution-
based method is highly efficient compared to both the naive and alternate naive
methods, and has negligible timing overhead.

7 Remark on the Connectivity Kernel K

In Fig. 9, we provide illustrations on how (for the same input) the critical pixels
map (V ) changes based on the connectivity kernel (K) used. We provide illus-
trations for the 2D case using 4-connectivity and 8-connectivity kernels, and, for
the 3D case using 6-connectivity and 26-connectivity kernels.

8 Details of the Datasets

Fig. 3 in the main text gives an overview of the classes in each dataset and the
topological interactions among them. The datasets are described in more detail
as follows.
Aorta. The aorta dataset is a proprietary dataset. 3D CT scans were ob-
tained from 28 randomly selected patients from an institutional database of
patients with thoracic and/or abdominal aortic aneurysm. Inclusion criteria for
patients included known aneurysmal disease of the aorta and history of undergo-
ing contrast-enhanced CT with arterial-phase contrast injection. Ground truth
annotations of the aortic lumen and wall were obtained by four expert readers,
working in consensus. Unlike existing aorta datasets1, our dataset contains ac-
curate aortic wall annotations, which have significant clinical implications. The
containment constraint holds as the lumen is completely surrounded by the wall.
IVUS Challenge [1]. The IVUS (IntraVascular UltraSound) challenge is a
MICCAI 2011 dataset; we use dataset B in this work. This is a 2D dataset, with
each image of dimension 384 × 384. It has been created from in-vivo pullbacks
of human coronary arteries and contains lumen and media-adventitia labels.
There is a predetermined split of 109 training images and 326 test images. The
containment constraints holds as the lumen is completely surrounded by the

1 https://competitions.codalab.org/competitions/21145
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(c) 3D 6-connectivity
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(d) 3D 26-connectivity

Fig. 9: Illustration of the proposed strategy to detect the set V of topological
critical pixels using different connectivity kernels. The entire critical pixel map
V is highlighted with ∗’s.
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Table 4: Training Configuration.
Dataset Model Patch Size Batch Size LR Optimizer

Aorta
FCN [9] 512 × 512 8 0.01 SGD
UNet [3] 112 × 112 × 80 2 0.01 momentum 0.99

nnUNet [6] 160 × 160 × 80 2 0.01 weight decay 3e-5

IVUS
FCN [9] 128 × 128 8 0.01 SGD

UNet [11] 128 × 128 8 0.01 momentum 0.99
nnUNet [6] 384 × 384 5 0.01 weight decay 3e-5

Multi-Atlas
FCN [9] 256 × 256 4 0.01 SGD
UNet [3] 64 × 64 × 32 4 0.01 momentum 0.99

nnUNet [6] 192 × 192 × 48 2 0.01 weight decay 3e-5

SegTHOR
FCN [9] 256 × 256 4 0.01 SGD
UNet [3] 64 × 64 × 32 4 0.01 momentum 0.99

nnUNet [6] 160 × 192 × 64 2 0.01 weight decay 3e-5

media. The difficulty of this dataset arises due to the imbalanced train-test split,
as well as several artifacts (e.g. shadow) in the test set, which causes standard
deep neural networks to misclassify the lumen class beyond the media.
Multi-Atlas Labeling Beyond the Cranial Vault [8]. The MICCAI 2015
challenge ‘Multi-Atlas Labeling Beyond the Cranial Vault’ is a multi-organ seg-
mentation challenge, containing 3D CT scans of the cervix and abdomen. We
use the abdomen dataset, which contains thirteen abdominal organ labels. To
validate our method, we chose organs that are in close proximity yet exclude
each other. We segment four out of the thirteen classes, namely, spleen, left kid-
ney, liver, and stomach. We have clinically verified that the exclusion constraint
holds among these four classes, that is, each of these four classes exclude each
other. There are 30 volumes available for training, and 20 volumes for testing.
The ground truth for the test dataset is available at [5]. We note that while
anatomically, the organs follow the exclusion constraint, the available GT did
not adhere to it. With the help of clinicians, we have corrected the GT to follow
the exclusion constraint. Thus all the baselines were trained on the corrected
GT.
SegTHOR [7]. The SegTHOR 2019 challenge dataset contains 3D CT scans
of thoracic organs at risk (OAR). In this dataset, the OARs are the heart, the
trachea, the aorta and the esophagus, which have varying spatial and appear-
ance characteristics. The dataset contains 40 training volumes and 20 testing
volumes. The exclusion constraint holds among three classes, that is, the tra-
chea, the aorta, and the esophagus do not touch each other. We note that while
anatomically, the organs follow the exclusion constraint, the available GT did
not adhere to it. With the help of clinicians, we have corrected the GT to follow
the exclusion constraint. Thus all the baselines were trained on the corrected
GT.

9 Implementation Details

We use the PyTorch framework, a single NVIDIA Tesla V100-SXM2 GPU (32G
Memory) and a Dual Intel Xeon Silver 4216 CPU@2.1Ghz (16 cores) for all the
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Fig. 10: Baseline network architectures.

experiments. We use the publicly available codes for UNet 2, FCN 3, nnUNet
4, and NonAdj 5. The architecture diagrams for the UNet and FCN networks
used are shown in Fig. 10. The architecture diagram for nnUNet is not shown
as nnUNet uses its planning strategy to generate the best architecture for each
dataset.

For the proposed method, the weight term λdice in the loss function is set to
1.0 by default from nnUNet’s planning strategy. We obtain the best results with
Lpixel set to the cross-entropy loss, λti = 1e-4 in the 2D setting, and λti = 1e-6
in the 3D settings.

The training hyperparameters for each network on each dataset is as tabu-
lated in Tab. 4. The loss function used for UNet and FCN is same as that used
in vanilla nnUNet, i.e., Lce + Ldice.

2 https://github.com/johschmidt42/PyTorch-2D-3D-UNet-Tutorial
3 https://github.com/pochih/FCN-pytorch
4 https://github.com/MIC-DKFZ/nnUNet
5 https://github.com/trypag/NonAdjLoss
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Table 5: Ablation study for Lpixel (Multi-Atlas)
Class Lpixel Dice↑ HD↓ ASSD↓ % Violations↓

S
p
le

e
n

None 0.950 ± 0.041 6.084 ± 1.078 0.573 ± 0.131 0.819 ± 0.064
MSE 0.952 ± 0.025 5.402 ± 1.041 0.492 ± 0.118 0.552 ± 0.071
DICE 0.957 ± 0.013 5.368 ± 1.042 0.488 ± 0.124 0.493 ± 0.058
CE 0.960 ± 0.009 5.340 ± 1.049 0.484 ± 0.109 0.464 ± 0.043

K
id

n
e
y None 0.931 ± 0.018 27.252 ± 5.406 5.352 ± 0.199 /

MSE 0.934 ± 0.019 22.808 ± 3.186 5.089 ± 0.368 /
DICE 0.935 ± 0.028 21.935 ± 2.772 4.610 ± 0.465 /
CE 0.936 ± 0.026 20.013 ± 2.785 4.298 ± 0.798 /

L
iv

e
r

None 0.951 ± 0.008 38.931 ± 12.161 1.922 ± 0.506 /
MSE 0.958 ± 0.009 31.672 ± 10.112 1.542 ± 0.628 /
DICE 0.961 ± 0.009 30.941 ± 9.668 1.195 ± 4.80 /
CE 0.962 ± 0.005 30.341 ± 9.111 0.985 ± 0.386 /

S
to

m
a
ch

None 0.895 ± 0.015 45.767 ± 7.960 2.720 ± 0.430 /
MSE 0.905 ± 0.014 39.608 ± 9.717 2.264 ± 0.418 /
DICE 0.908 ± 0.016 37.763 ± 9.854 1.831 ± 0.402 /
CE 0.910 ± 0.018 35.514 ± 10.295 1.644 ± 0.311 /

Table 6: Ablation study for λti (Multi-Atlas)
Class λti Dice↑ HD↓ ASSD↓ % Violations↓

S
p
le

e
n

0 0.950 ± 0.041 6.084 ± 1.078 0.573 ± 0.131 0.819 ± 0.064
5.0e-7 0.954 ± 0.029 5.399 ± 1.034 0.491 ± 0.112 0.541 ± 0.049
1.0e-6 0.960 ± 0.009 5.340 ± 1.049 0.484 ± 0.109 0.464 ± 0.043
1.5e-6 0.958 ± 0.016 5.361 ± 1.025 0.487 ± 0.122 0.475 ± 0.046

K
id

n
e
y 0 0.931 ± 0.018 27.252 ± 5.406 5.352 ± 0.199 /

5.0e-7 0.934 ± 0.022 22.459 ± 3.625 4.936 ± 0.513 /
1.0e-6 0.936 ± 0.026 20.013 ± 2.785 4.298 ± 0.798 /
1.5e-6 0.935 ± 0.031 21.360 ± 2.909 4.380 ± 0.687 /

L
iv

e
r

0 0.951 ± 0.008 38.931 ± 12.161 1.922 ± 0.506 /
5.0e-7 0.959 ± 0.010 31.390 ± 10.571 1.429 ± 0.421 /
1.0e-6 0.962 ± 0.005 30.341 ± 9.111 0.985 ± 0.386 /
1.5e-6 0.961 ± 0.007 30.586 ± 9.313 0.966 ± 0.405 /

S
to

m
a
ch

0 0.895 ± 0.015 45.767 ± 7.960 2.720 ± 0.430 /
5.0e-7 0.904 ± 0.013 38.984 ± 9.351 2.014 ± 0.477 /
1.0e-6 0.910 ± 0.018 35.514 ± 10.295 1.644 ± 0.311 /
1.5e-6 0.908 ± 0.019 36.151 ± 10.192 1.721 ± 0.336 /

10 Additional Ablation Studies

In this section we conduct identical ablation studies as Tab. 3 in the main paper.
Here, we conduct this on the Multi-Atlas (exclusion dataset). We report the
results in Tab. 5 and Tab. 6. The observation is consistent with the ablation
studies on IVUS in the main paper. Using cross-entropy as the surrogate loss
function for our topological loss gives the best performance. The method is robust
to the choice of the loss weight λti. Within a reasonable range, λti does impact
the performance positively.

11 Additional Results

In all the tables of the main paper, the statistically significant better perfor-
mances are highlighted with bold. In the supplementary, we highlight in bold the
statistically significant better performances within each backbone class (UNet,
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FCN, nnUNet). The t-test [12] used to determine the statistical significance of
the improvement has a confidence interval of 95%. The best, while not statisti-
cally significant, performances within each backbone class are highlighted with
italics.

We provide comprehensive quantitative results for all the datasets in Tab. 7,
8, 9, and 10. In the tables, ‘UNet+Ours’ denotes our method trained on the
UNet backbone. Similarly, ‘FCN+Ours’ denotes our method trained on the FCN
backbone. We observe that the proposed method improves the quality of seg-
mentations by improving all the metrics significantly compared to the backbone.
This supports our claim that our method can be incorporated into any backbone.

We also provide results of our method by changing the connectivity kernel.
The default connectivity kernel K, in 2D, is a 3 × 3 kernel filled with 1’s to
enforce 8-connectivity. Similarly in 3D, K is a 3 × 3 × 3 kernel filled with 1’s
to enforce 26-connectivity. For the 2D setting, we also provide results on using
the 4-connectivity kernel, which we denote by ‘Ours (4conn)’ in Tab. 8. For the
3D setting, we also provide results on using the 6-connectivity kernel, which we
denote by ‘Ours (6conn)’ in Tab. 7, 9, and 10. We observe that while using a
smaller connectivity kernel does not seem as good as using the default, it is still
stronger than other baselines.

We provide additional qualitative results in Fig. 11, 12, 13, 14, 15, 16,
17, 18, and 19. In the figure sub-captions, ‘UNet+O’ denotes our method
trained on the UNet backbone. Similarly, ‘FCN+O’ denotes our method trained
on the FCN backbone. ‘Ours’ denotes our method trained on nnUNet with the
default connectivity kernel. ‘Ours4C’ and ‘Ours6C’ denotes our method trained
on nnUNet with the 4-connectivity and 6-connectivity kernel respectively.

Table 7: Quantitative comparison for Aorta dataset (containment constraint)
Class Model Dice↑ HD↓ ASSD↓ % Violations↓

L
u
m

en

UNet [3] 0.900 ± 0.016 64.392 ± 16.874 9.315 ± 1.749 13.994 ± 1.809
UNet [3] + Ours 0.918 ± 0.012 41.039 ± 10.952 6.415 ± 1.403 7.734 ± 2.174

FCN [9] 0.894 ± 0.013 57.974 ± 19.756 9.77 ± 1.421 15.675 ± 2.409
FCN [9] + Ours 0.892 ± 0.031 47.772 ± 14.571 7.741 ± 1.385 9.797 ± 1.707

nnUNet [6] 0.906 ± 0.020 36.368 ± 12.559 4.563 ± 0.675 5.424 ± 2.461
Topo-CRF [2] 0.897 ± 0.057 40.162 ± 18.687 5.952 ± 0.999 8.358 ± 2.151

MIDL [10] 0.912 ± 0.008 32.157 ± 16.270 6.405 ± 0.524 6.377 ± 1.661
NonAdj [4] 0.916 ± 0.030 32.465 ± 18.848 4.771 ± 1.129 4.932 ± 1.479

Ours (6conn) 0.920 ± 0.006 29.693 ± 15.746 4.269 ± 0.995 3.706 ± 1.274
Ours (26conn) 0.922 ± 0.009 25.959 ± 13.574 3.920 ± 0.765 3.526 ± 1.244

W
al

l

UNet [3] 0.677 ± 0.015 71.109 ± 24.653 12.497 ± 1.372 /
UNet [3] + Ours 0.737 ± 0.024 44.372 ± 11.702 7.289 ± 0.792 /

FCN [9] 0.651 ± 0.015 66.059 ± 17.188 12.339 ± 0.959 /
FCN [9] + Ours 0.681 ± 0.023 50.068 ± 4.469 9.530 ± 1.275 /

nnUNet [6] 0.741 ± 0.026 42.486 ± 15.139 8.005 ± 0.811 /
Topo-CRF [2] 0.739 ± 0.010 46.873 ± 17.636 7.914 ± 0.877 /

MIDL [10] 0.742 ± 0.028 43.132 ± 15.624 6.420 ± 1.242 /
NonAdj [4] 0.748 ± 0.017 38.197 ± 19.598 4.887 ± 0.702 /

Ours (6conn) 0.753 ± 0.015 35.977 ± 17.358 4.200 ± 0.738 /
Ours (26conn) 0.758 ± 0.017 31.137 ± 17.772 5.799 ± 0.737 /
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Table 8: Quantitative comparison for IVUS dataset (containment constraint)
Class Model Dice↑ HD↓ ASSD↓ % Violations↓

L
u
m

en
UNet [11] 0.786 ± 0.144 6.643 ± 1.936 30.944 ± 11.631 5.970 ± 2.141

UNet [11] + Ours 0.843 ± 0.128 4.258 ± 1.612 21.597 ± 9.138 2.042 ± 1.320
FCN [9] 0.824 ± 0.071 5.319 ± 1.519 22.551 ± 7.882 3.766 ± 1.444

FCN [9] + Ours 0.871 ± 0.082 3.976 ± 1.207 11.531 ± 4.736 1.752 ± 1.105
nnUNet [6] 0.893 ± 0.066 3.464 ± 0.917 11.152 ± 3.954 2.708 ± 1.032

Topo-CRF [2] 0.887 ± 0.096 4.138 ± 1.454 10.497 ± 2.487 2.371 ± 0.960
MIDL [10] 0.891 ± 0.073 4.226 ± 1.390 10.641 ± 2.322 2.394 ± 0.918
NonAdj [4] 0.897 ± 0.081 3.140 ± 1.154 9.628 ± 3.221 2.173 ± 0.994

Ours (4conn) 0.912 ± 0.087 2.857 ± 0.949 6.710 ± 3.186 0.311 ± 0.927
Ours (8conn) 0.949 ± 0.070 2.046 ± 1.079 6.057 ± 2.746 0.157 ± 0.808

M
ed

ia

UNet [11] 0.651 ± 0.130 7.391 ± 1.072 21.984 ± 6.634 /
UNet [11] + Ours 0.688 ± 0.115 7.012 ± 0.983 18.651 ± 5.776 /

FCN [9] 0.782 ± 0.144 6.806 ± 1.147 13.863 ± 4.511 /
FCN [9] + Ours 0.809 ± 0.127 6.137 ± 1.093 9.115 ± 3.689 /

nnUNet [6] 0.856 ± 0.090 5.646 ± 1.228 6.491 ± 2.314 /
Topo-CRF [2] 0.843 ± 0.106 5.409 ± 1.166 5.929 ± 1.785 /

MIDL [10] 0.841 ± 0.121 5.461 ± 1.214 6.071 ± 1.837 /
NonAdj [4] 0.848± 0.117 5.983 ± 1.342 6.615 ± 1.937 /

Ours (4conn) 0.884 ± 0.094 4.188 ± 1.156 3.622 ± 2.008 /
Ours (8conn) 0.910 ± 0.089 3.873 ± 0.933 3.171 ± 1.871 /

(a) Input (b) UNet (c) Unet+O (d) FCN (e) FCN+O (f) nnUNet

(g) CRF (h) MIDL (i) NonAdj (j) Ours6C (k) Ours (l) GT

(m) UNet (n) UNet+O (o) FCN (p) FCN+O (q) nnUNet

(r) CRF (s) MIDL (t) NonAdj (u) Ours6C (v) Ours (w) GT

Fig. 11: Qualitative Aorta results compared with the baselines. Rows 3-4 are
corresponding 3D renderings. It is hard to visualize the input 3D volumetric
image and so we leave it blank in the third row. Colors for the classes correspond
to the ones used in Fig. 3.
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Table 9: Quantitative comparison for Multi-Atlas dataset (exclusion constraint)
Class Model Dice↑ HD↓ ASSD↓ % Violations↓

S
p
le

en

UNet [3] 0.919 ± 0.041 47.037 ± 17.365 4.323 ± 0.367 1.857 ± 0.123
UNet [3] + Ours 0.932 ± 0.059 34.445 ± 10.684 2.020 ± 0.218 1.256 ± 0.153

FCN [9] 0.909 ± 0.037 134.915 ± 65.623 17.646 ± 10.604 3.041 ± 0.181
FCN [9] + Ours 0.927 ± 0.011 66.407 ± 9.946 9.038 ± 2.146 2.680 ± 0.128

nnUNet [6] 0.950 ± 0.041 6.084 ± 1.078 0.573 ± 0.131 0.819 ± 0.064
Topo-CRF [2] 0.947 ± 0.028 6.403 ± 1.039 1.844 ± 0.517 0.934 ± 0.032

MIDL [10] 0.944 ± 0.015 5.597 ± 1.374 0.565 ± 0.124 0.725 ± 0.151
NonAdj [4] 0.952 ± 0.058 5.621 ± 1.065 0.513 ± 0.175 0.521 ± 0.082

Ours (6conn) 0.957 ± 0.023 5.395 ± 1.057 0.498 ± 0.127 0.486 ± 0.075
Ours (26conn) 0.960 ± 0.009 5.340 ± 1.049 0.484 ± 0.109 0.464 ± 0.043

K
id

n
ey

UNet [3] 0.908 ± 0.079 61.602 ± 13.168 9.992 ± 2.461 /
UNet [3] + Ours 0.921 ± 0.023 42.525 ± 10.103 6.446 ± 1.404 /

FCN [9] 0.892 ± 0.018 187.472 ± 36.096 11.583 ± 2.396 /
FCN [9] + Ours 0.916 ± 0.014 93.283 ± 10.293 8.675 ± 1.129 /

nnUNet [6] 0.931 ± 0.018 27.252 ± 5.406 5.352 ± 0.199 /
Topo-CRF [2] 0.928 ± 0.059 30.209 ± 5.317 6.308 ± 0.905 /

MIDL [10] 0.935 ± 0.071 25.208 ± 5.440 4.885 ± 0.421 /
NonAdj [4] 0.934 ± 0.012 24.182 ± 5.561 4.692 ± 0.657 /

Ours (6conn) 0.932 ± 0.013 23.176 ± 3.593 4.540 ± 0.883 /
Ours (26conn) 0.936 ± 0.026 20.013 ± 2.785 4.298 ± 0.798 /

L
iv

er

UNet [3] 0.912 ± 0.016 64.556 ± 13.894 2.324 ± 0.513 /
UNet [3] + Ours 0.941 ± 0.038 46.174 ± 11.744 1.452 ± 0.717 /

FCN [9] 0.885 ± 0.034 183.870 ± 49.796 29.061 ± 13.484 /
FCN [9] + Ours 0.937 ± 0.013 117.200 ± 16.663 7.324 ± 5.201 /

nnUNet [6] 0.951 ± 0.008 38.931 ± 12.161 1.922 ± 0.506 /
Topo-CRF [2] 0.949 ± 0.006 46.449 ± 14.188 2.072 ± 0.313 /

MIDL [10] 0.955 ± 0.005 34.276 ± 11.253 1.344 ± 0.431 /
NonAdj [4] 0.957 ± 0.003 33.671 ± 13.543 1.185 ± 0.372 /

Ours (6conn) 0.958 ± 0.006 32.674 ± 12.566 1.098 ± 0.405 /
Ours (26conn) 0.962 ± 0.005 30.341 ± 9.111 0.985 ± 0.386 /

S
to

m
ac

h

UNet [3] 0.846 ± 0.084 76.000 ± 24.352 5.023 ± 1.508 /
UNet [3] + Ours 0.872 ± 0.074 54.039 ± 19.131 3.611 ± 1.301 /

FCN [9] 0.708 ± 0.156 172.855 ± 43.735 11.328 ± 3.178 /
FCN [9] + Ours 0.799 ± 0.127 104.331 ± 10.276 6.892 ± 1.905 /

nnUNet [6] 0.895 ± 0.015 45.767 ± 7.960 2.720 ± 0.430 /
Topo-CRF [2] 0.888 ± 0.015 46.877 ± 9.861 3.675 ± 0.358 /

MIDL [10] 0.899 ± 0.012 40.282 ± 6.437 2.567 ± 0.431 /
NonAdj [4] 0.907 ± 0.028 41.749 ± 8.630 2.184 ± 0.325 /

Ours (6conn) 0.908 ± 0.017 39.853 ± 9.544 1.879 ± 0.587 /
Ours (26conn) 0.910 ± 0.018 35.514 ± 10.295 1.644 ± 0.311 /
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Table 10: Quantitative comparison for SegTHOR dataset (exclusion constraint)
Class Model Dice↑ HD↓ ASSD↓ % Violations↓

E
so

p
h
ag

u
s

UNet [3] 0.827 ± 0.038 11.357 ± 2.709 1.186 ± 0.113 3.212 ± 0.720
UNet [3] + Ours 0.841 ± 0.026 8.916 ± 2.437 0.970 ± 0.124 2.559 ± 0.412

FCN [9] 0.800 ± 0.031 10.770 ± 2.085 1.303 ± 0.128 3.616 ± 0.709
FCN [9] + Ours 0.839 ± 0.027 9.055 ± 2.681 0.986 ± 0.108 2.889 ± 0.618

nnUNet [6] 0.841 ± 0.014 8.018 ± 2.085 0.950 ± 0.070 1.947 ± 0.525
Topo-CRF [2] 0.839 ± 0.029 8.602 ± 2.363 0.991 ± 0.081 2.070 ± 0.687

MIDL [10] 0.840 ± 0.020 7.266 ± 2.132 0.921 ± 0.136 1.271 ± 0.912
NonAdj [4] 0.843 ± 0.020 6.293 ± 2.703 0.897 ± 0.078 1.215 ± 0.211

Ours (6conn) 0.849 ± 0.014 5.774 ± 2.371 0.832 ± 0.074 0.911 ± 0.565
Ours (26conn) 0.858 ± 0.019 5.582 ± 2.250 0.798 ± 0.042 0.749 ± 0.428

T
ra

ch
ea

UNet [3] 0.897 ± 0.027 10.656 ± 4.047 0.728 ± 0.146 /
UNet [3] + Ours 0.908 ± 0.041 8.957 ± 3.338 0.592 ± 0.167 /

FCN [9] 0.891 ± 0.031 11.789 ± 5.291 0.953 ± 0.221 /
FCN [9] + Ours 0.896 ± 0.035 9.620 ± 2.805 0.683 ± 0.245 /

nnUNet [6] 0.910 ± 0.018 9.423 ± 2.393 0.478 ± 0.152 /
Topo-CRF [2] 0.909 ± 0.022 10.435 ± 2.334 0.473 ± 0.167 /

MIDL [10] 0.914 ± 0.027 7.929 ± 2.305 0.456 ± 0.144 /
NonAdj [4] 0.913 ± 0.028 7.866 ± 2.343 0.440 ± 0.113 /

Ours (6conn) 0.922 ± 0.031 7.851 ± 2.846 0.417 ± 0.157 /
Ours (26conn) 0.929 ± 0.020 7.280 ± 2.109 0.316 ± 0.186 /

A
or

ta

UNet [3] 0.929 ± 0.020 9.716 ± 4.032 0.714 ± 0.293 /
UNet [3] + Ours 0.932 ± 0.029 6.553 ± 3.932 0.697 ± 0.218 /

FCN [9] 0.924 ± 0.021 9.869 ± 4.739 0.726 ± 0.424 /
FCN [9] + Ours 0.929 ± 0.025 6.751 ± 3.810 0.705 ± 0.263 /

nnUNet [6] 0.935 ± 0.017 5.353 ± 2.698 0.658 ± 0.177 /
Topo-CRF [2] 0.932 ± 0.018 5.361 ± 2.763 0.690 ± 0.225 /

MIDL [10] 0.937 ± 0.016 5.349 ± 2.458 0.668 ± 0.128 /
NonAdj [4] 0.939 ± 0.021 5.060 ± 2.345 0.638 ± 0.192 /

Ours (6conn) 0.940 ± 0.017 4.840 ± 2.859 0.621 ± 0.175 /
Ours (26conn) 0.942 ± 0.018 4.758 ± 2.127 0.606 ± 0.214 /

H
ea

rt

UNet [3] 0.948 ± 0.012 8.235 ± 4.382 1.158 ± 0.571 /
UNet [3] + Ours 0.953 ± 0.013 7.454 ± 4.602 1.022 ± 0.633 /

FCN [9] 0.948 ± 0.014 8.556 ± 4.302 2.206 ± 0.905 /
FCN [9] + Ours 0.950 ± 0.018 8.085 ± 4.637 1.543 ± 0.596 /

nnUNet [6] 0.956 ± 0.014 7.732 ± 4.327 0.895 ± 0.328 /
Topo-CRF [2] 0.954 ± 0.016 7.936 ± 4.665 1.022 ± 0.434 /

MIDL [10] 0.952 ± 0.014 7.615 ± 4.991 0.889 ± 0.371 /
NonAdj [4] 0.956 ± 0.016 7.363 ± 4.609 0.895 ± 0.382 /

Ours (6conn) 0.958 ± 0.013 7.316 ± 4.129 0.874 ± 0.372 /
Ours (26conn) 0.959 ± 0.012 7.158 ± 4.355 0.871 ± 0.363 /
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(a) Input (b) UNet (c) UNet+O (d) FCN (e) FCN+O (f) nnUNet

(g) CRF (h) MIDL (i) NonAdj (j) Ours6C (k) Ours (l) GT

(m) UNet (n) UNet+O (o) FCN (p) FCN+O (q) nnUNet

(r) CRF (s) MIDL (t) NonAdj (u) Ours6C (v) Ours (w) GT

Fig. 12: Additional qualitative Aorta results compared with the baselines. Rows
3-4 are corresponding 3D renderings. It is hard to visualize the input 3D volu-
metric image and so we leave it blank in the third row. Colors for the classes
correspond to the ones used in Fig. 3.

(a) Input (b) UNet (c) UNet+O (d) FCN (e) FCN+O (f) nnUNet

(g) CRF (h) MIDL (i) NonAdj (j) Ours4C (k) Ours (l) GT

Fig. 13: Qualitative IVUS results compared with the baselines. Colors for the
classes correspond to the ones used in Fig. 3.
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(a) Input (b) UNet (c) UNet+O (d) FCN (e) FCN+O (f) nnUNet

(g) CRF (h) MIDL (i) NonAdj (j) Ours4C (k) Ours (l) GT

Fig. 14: Additional qualitative IVUS results compared with the baselines. Colors
for the classes correspond to the ones used in Fig. 3.

(a) Input (b) UNet (c) UNet+O (d) FCN (e) FCN+O (f) nnUNet

(g) CRF (h) MIDL (i) NonAdj (j) Ous4C (k) Ours (l) GT

Fig. 15: Additional qualitative IVUS results compared with the baselines. Colors
for the classes correspond to the ones used in Fig. 3.

(a) Input (b) UNet (c) UNet+O (d) FCN (e) FCN+O (f) nnUNet

(g) CRF (h) MIDL (i) NonAdj (j) Ours6C (k) Ours (l) GT

Fig. 16: Qualitative Multi-Atlas results compared with the baselines. Colors for
the classes correspond to the ones used in Fig. 3.
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(a) Input (b) UNet (c) UNet+O (d) FCN (e) FCN+O (f) nnUNet

(g) CRF (h) MIDL (i) NonAdj (j) Ours6C (k) Ours (l) GT

(m) UNet (n) UNet+O (o) FCN (p) FCN+O (q) nnUNet

(r) CRF (s) MIDL (t) NonAdj (u) Ours6C (v) Ours (w) GT

Fig. 17: Additional qualitative Multi-Atlas results compared with the baselines.
Rows 3-4 are corresponding 3D renderings. It is hard to visualize the input 3D
volumetric image and so we leave it blank in the third row. Colors for the classes
correspond to the ones used in Fig. 3.

(a) Input (b) UNet (c) UNet+O (d) FCN (e) FCN+O (f) nnUNet

(g) CRF (h) MIDL (i) NonAdj (j) Ours6C (k) Ours (l) GT

Fig. 18: Qualitative SegTHOR results compared with the baselines. Colors for
the classes correspond to the ones used in Fig. 3.



Topological Interactions for Image Segmentation - Supplementary 15

(a) Input (b) UNet (c) UNet+O (d) FCN (e) FCN+O (f) nnUNet

(g) CRF (h) MIDL (i) NonAdj (j) Ours6C (k) Ours (l) GT

(m) UNet (n) UNet+O (o) FCN (p) FCN+O (q) nnUNet

(r) CRF (s) MIDL (t) NonAdj (u) Ours6C (v) Ours (w) GT

Fig. 19: Additional qualitative SegTHOR results compared with the baselines.
Rows 3-4 are corresponding 3D renderings. It is hard to visualize the input 3D
volumetric image and so we leave it blank in the third row. Colors for the classes
correspond to the ones used in Fig. 3.
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