
Supplemental Material for “Unsupervised

Segmentation in Real-World Images via Spelke

Object Inference”

Honglin Chen1, Rahul Venkatesh1, Yoni Friedman4, Jiajun Wu1,
Joshua B. Tenenbaum4, Daniel L. K. Yamins1,2,3**, Daniel M. Bear2,3**

1 Department of Computer Science, Stanford
2 Department of Psychology, Stanford

3 Wu Tsai Neurosciences Institute, Stanford
4 Department of Brain and Cognitive Sciences and CBMM, MIT

A Additional Methods

A.1 Details and Extensions of EISEN

Learning a prior over Spelke objects. Relational supervision is natural for
motion-based learning in part because motion is sparse. But the output segments
of a well-trained EISEN are not sparse, so they can be used for learning non-
relational features of Spelke objects. For instance, an image patch on the nearer
side of a depth edge may “look like” it lies on the interior of an object segment
– a cue known as border ownership. EISEN can take advantage of these non-
relational features by learning a nonrandom, pixelwise initialization for KProp.

Specifically, we let the Q channels of the plateau map code for possible object
centroid locations. Let QH , QW be the encoding resolutions of height and width,
with QH · QW = Q. Then the centroid encoding is constructed by creating the
QH ⇥QW ⇥Q feature tensor q defined by

qijk = 1 if (k == iQW + j) else 0, (1)

then bilinearly upsampling this tensor from size (QH , QW , Q) to the usual plateau
map resolution (H 0

,W
0
, Q) = (H/4,W/4, Q) and `

2 normalizing along the chan-
nel dimension. In this encoding, there is not just a ground truth segmentation
map but also a ground truth plateau map – namely, the one in which each fea-
ture vector has a value equal to the encoded centroid of the true object segment
it belongs to.

We train two modified RAFT networks5 to (1) classify whether each pixel be-
longs in an EISEN-predicted Spelke object or not and, if it belongs to an object,
(2) predict the relative o↵set between that pixel’s location and the centroid of the

1 ⇤⇤ = Equal senior authorship
5 We simply replace the output head that predicts predicts a H ⇥ W ⇥ 2 flow map
with one that predicts the H ⇥ W ⇥ 1 “objectness” logits or H ⇥ W ⇥ 2 centroid
o↵sets.



Unsupervised Segmentation via Spelke Object Inference 19

object segment it belongs to. The plateau map initialization h0 is then given by
the “objectness”-masked, predicted centroid encodings of each pixel. In a loose
analogy between KProp and Ising-like models of magnetic dipole dynamics, this
initialization plays the role of a pulsed external field.

Interestingly, learning a KProp initialization does not improve quantitative
results on the Playroom dataset, though in some cases it appears to help dis-
cover an object that is only partially segmented with random plateau map ini-
tialization (Figure S1.) It may be that the learned initialization is helpful in some
ways but harmful in others, such as by degrading fine details. It is notable that
passing the learned initializations directly through Competition without running
any iterations of KProp (Figure S1, -KProp) performs better than all baselines,
achieving an mIoU of 0.660 on the Playroom val set. This suggests that EISEN
can best take advantage of non-relational cues to segment these scenes, but that
there may be a low upper bound to performance when relational cues are not
used.

Random Init. Learned Init. GT- KProp

Fig. S1: Learning a Spelke object prior for KProp.

Constructing and segmenting a flow plateau map. The procedure for
creating a flow plateau map to explain away background motion (see Figure
S2) is similar to constructing the centroid encoding described above. Given a
H ⇥W ⇥ 2 optical flow map F , we linearly normalize all flow values (Fx,Fy) to
the range [�1, 1] ⇥ [�1, 1]. Then, each pixel’s flow vector Fij is embedded in a
Q-dimensional space by constructing the QH⇥QW ⇥Q centroid encoding tensor
q as above, then bilinearly sampling from this encoding with the normalized flow
values,

F̃ij = q(Fnorm
x

,Fnorm
y

), (2)

where F̃ is theQ-channel “flow plateau map” and q(i0, j0) denotes “soft” indexing
with normalized image coordinates (i.e., bilinear sampling, as opposed to hard
indexing, qi0j0 .)

Competition is run on the flow plateau map with K = 32 maximum segments
and R = 3 rounds to detect the motion segments SM . The largest of these by area
is assumed to be the background; the motion indicator tensor I is created by tak-
ing the complement of this background segment, and its segment identity in SM

is set to 0. Examples of motion segments computed onDAVIS2016 are shown in
Figure S2 (third column.) When these segments are used as self-supervision for



20 Chen et al.

EISEN, the resulting static segments (Figure S2, fourth column) can sometimes
be more accurate than the motion segments, likely because a�nities computed
from single-frame appearance cues (such as color or texture similarity) generalize
better than motion similarity, which varies substantially from one frame pair to
another.

RAFT Flow Motion Segment Static Segment GT

Fig. S2: Explaining away background motion with Competition. RAFT pre-
dictions cannot be threshholded directly. However, applying Competition to the flows,
as though they were plateau maps, isolates the background and yields viable super-
vision targets. Training a static segmentation model with these targets can pick up
details that the motion segments miss.

Computing confident segments. To isolate the confident segment pre-
dictions of an EISEN teacher model, we take advantage of the random initial-
ization of the plateau map input to KProp: confident segments are those that
are consistent across inference runs with di↵erent initializations. Specifically, If
{Sl

T | l = 1, 2, ..., L} are the segments output by L = 5 runs of the teacher model,
then we compute a set of “meta-a�nities” based on how often two scene elements
belong to the same segment:

Â(a, b) =
1

L

X

l

(Sl

T (a) == Sl

T (b)). (3)

The meta-a�nities are then converted to confident segments by applying KProp
and Competition, keeping only the largest connected component of each pre-
dicted segment, and removing all segments of area < 10 pixels. This has the
e↵ect of filtering out low-confidence segments because, in practice, KProp only
yields well-formed pixel clusters when the input (meta-)a�nities are highly con-
fident, i.e. close to 0 or 1. In the initial round of training, for which the EISEN
teacher has not been pretrained, there are few if any confident segments, and
the training target mainly reduces to Equation (9). Thus, successive rounds of
bootstrapping tend to have more accurate training targets (such as by separat-
ing Spelke objects from agents and by providing pseudolabels for static objects)



Unsupervised Segmentation via Spelke Object Inference 21

even though all rounds use the same rule for inferring the connectivity target
and loss mask.

A.2 Datasets

Playroom. The Playroom dataset was generated with ThreeDWorld [12] using
custom code, which will be made public. The dataset consists of 40000 videos.
Each video shows four objects placed on an immobile, randomly colored and
textured “rug” in a tiled room. The objects are drawn from a pool of 2000
models and scaled so that they fit within the room. The camera is randomly
positioned and pointed so that at least three of the objects are within view. At
the fifth frame of each video, an invisible force is applied to one of the objects
that pushes it toward another object; the scene ends when the pushed object
comes to rest or leaves the field of view. Within a given video, only the pushed
object is able to move.

Each object model is seen moving in 40000/2000 = 20 videos. We hold out
4000 videos, use 500 of these as the val set, and train on the remaining 36000.
EISEN and all baselines are trained only on the fifth frame of each video, with
the supervising RAFT flow computed between the fifth and sixth frames.

In addition to the Playroom train and val datasets, we also generated a
test dataset of 30 scenes that departs from the model training set in several
ways. Specifically, it contains scenes with multiple copies of a particular object
(e.g. the gira↵es and zebras in the bottom two rows of Figure 5), scenes set
in a di↵erent room (such that the background is di↵erent), and scenes with
simply textured “primitive” objects containing, occluding, and colliding with
each other; these primitive objects are not seen moving in the training set. Thus,
thePlayroom test set measures how well segmentation models generalize to new
object arrangements and contexts. Both the test set and its generation script
will be released along with all code.

Bridge. The Bridge dataset consists of 7200 demonstrations for 71 kitchen-
themed tasks collected in 10 di↵erent environments [9]. Each demonstration
shows a robotic arm executing a semantically meaningful task (e.g. put spoon
into pot) in a household kitchen environment with di↵erent robotic positions,
background, and lighting conditions. Each demonstration is collected with 3-
5 camera viewpoints concurrently. 7 out of 10 environments were collected at
the University of California, Berkeley. The three remaining environments were
collected at the University of Pennsylvania. We train and evaluate models on the
subset of the Bridge dataset collected at the University of California, Berkeley.
In particular, we train on a total of 5881 randomly selected demonstrations.
Since ground-truth segmentation annotations are not provided for the Bridge
dataset, we manually annotate 50 held-out images for evaluating the validation
performance.



22 Chen et al.

A.3 Model Architecture Details

EISEN backbone. EISEN uses the ResNet50-DeepLab convolutional network
as its feature extractor [22]. To ensure that EISEN is trained in an unsupervised
manner, we randomly initialize the backbone parameters using He initialization
[18], instead of using a ImageNet-pretrained backbone. The backbone is trained
end-to-end along with the A�nity Prediction module.

EISEN input and output resolution. We use whole images as inputs
without applying data augmentation. The input resolution is 512⇥512, 270⇥480,
and 480⇥640 for the Playroom, DAVIS, and Bridge datasets respectively.
The backbone outputs feature tensors at 1/4 of the input resolution, and EISEN
predicts the a�nities and segmentation masks at the output resolution of the
backbone. Output segments are upsampled to the original resolution for evalu-
ation.

EISEN hyperparameters. For all experiments onPlayroom andDAVIS,
we set the A�nity Prediction key and query dimension D = 32, the plateau map
dimension Q = 256, and the maximum number of objects detectable by Compe-
tition K = 32. For Bridge, which contains more objects per scene, we increase
to K = 256. By default we run KProp for S = 40 iterations and Competition
for R = 3 rounds.

Baselines. The original baseline models are trained in a category-specific
way with a separate semantic head for predicting object categories. However,
given the absence of semantic supervision in a category-agnostic setting, we
convert the semantic heads to binary objectness classifiers. In particular, we
change the semantic loss function from the multi-class cross entropy to the binary
cross entropy, which encourages the semantic head to predict 1 for Spelke objects
and 0 otherwise. The semantic head architectures are identical to the original
models, except for the output dimension in the final readout layer.

Table S1: Comparison of backbones and parameter count

Model Backbone Parameters

SSAP [13] ResNet34-FPN 48M
DETR [4] ResNet50 41M
MaskRCNN [17] ResNet50-FPN 43M
Panoptic-Deeplab [6] ResNet50-DeepLab 30M

EISEN ResNet50-DeepLab 40M

A.4 Model Training

EISEN training protocol. We adopt a similar training protocol in Panoptic-
Deeplab[6]. In particular, we use the ‘poly’ learning rate policy [23] with an initial
learning rate of 0.005, and optimize with Adam [25] without weight decay. On the



Unsupervised Segmentation via Spelke Object Inference 23

Playroom and DAVIS2016 datasets, we train EISEN with a batch size of 8 for
200k iterations. On theBridge dataset, we train EISEN with a batch size of 8 for
60k, 20k, 20k iterations for three rounds of bootstrapping, respectively. Training
EISEN for 100k iterations on 8 GPUs takes 20 hours. Because DAVIS2016

is not typically used to evaluate static segmentation (rather than video object
segmentation and tracking), we developed a protocol in which 45 out of 50 scenes
are used for (motion-based) training and 5 out of 50 are held-out and shown as
static images only to the pretrained EISEN model for testing.

Baseline training protocol. For a fair comparison with EISEN, we train
baselines with whole images as inputs and without applying data augmentation.
The baseline models are trained from scratch without using ImageNet-pretrained
weights. Other settings are the same as the original MaskRCNN[17], Panoptic-
Deeplab[6], DETR[4] and SSAP [13] models. For evaluating the baseline mod-
els at inference time, we perform a grid search to find thresholds for pixelwise
“objectness” classification that maximize mIoU on 500 images from the train-
ing set. Note that because of how object segment proposals are scored against
ground truth segments, DETR and Mask-RCNN are not penalized for using a
low objectness threshold to make many proposals. For running multiple rounds
of bootstrapping with Mask-RCNN and Panoptic DeepLab, we apply the same
teacher-student setup as with EISEN. Confident segments from baseline models
are determined by taking all object proposals above their optimal cross-validated
confidence thresholds (see Model Evaluation below.)

A.5 Model Evaluation

EISEN inference time. Although EISEN contains two RNNs (KProp and
Competition) that may be unrolled for many iterations, its inference time is not
substantially longer than that of baselines: EISEN takes 155ms to perform infer-
ence on a single 512 x 512 image with 30 iterations of KProp and 3 iterations of
Competition, compared to 65 ms for Mask-RCNN. Because KProp iterations are
implemented as sparse matrix multiplications, unrolling this RNN for many iter-
ations is not particularly slow. Note also that during training, LEISEN is applied
directly to the a�nities A

ij

i0j0 , such that it is not necessary to perform expensive
backpropagation-through-time on the KProp RNN. (KProp and Competition do
need to be run to compute teacher object segments for bootstrapping, but no
gradients need to be computed from the teacher model.)

Matched mIoU. Our metric for how well a model segments a scene’s Spelke
objects is the intersection over union (IoU) between predicted and ground truth
segments, averaged over ground truth segments in each image, and then averaged
across images in the evaluation dataset.

The mIoU for a given image is computed by finding the best one-to-one match
between predicted and ground truth segments using linear sum assignment; a
single predicted segment therefore cannot match to multiple ground truth seg-
ments. Because EISEN outputs a “panoptic” instance segmentation map (i.e.
every pixel is assigned to exactly one segment), there is no ambiguity about



24 Chen et al.

which predicted segment should be matched with the ground truth. For base-
lines that output overlapping object segment proposals (in this work, DETR [42]
and Mask-RCNN [17]), we compute a pseudo-panoptic segmentation map by as-
signing each pixel that falls into any predicted segment to the highest confidence
prediction. This ensures fair comparison to EISEN and other panoptic segmen-
tation models (like SSAP [13] and Panoptic DeepLab [6]) that cannot benefit
from making multiple segment proposals at each spatial location. We think that
this segmentation metric is the one most appropriate to our goal of parsing
scenes into Spelke objects, since an agent that wanted to use an object-centric
scene representation would ultimately need to choose which single segmentation
proposal to act on at any given time.

Computing an a�nity map from Vision Transformers. To convert
DINO [5] or other Vision Transformer attention maps to an a�nity-like output,
we use the vit small architecture with a patch size of 8x8. We compute the at-
tention map using the final self-attention layer. The a�nity between two patches
p1 and p2 is obtained by computing the normalized dot product between their
respective query vectors, qh1 and q

h

2 for a given head h. Since Vision Transform-
ers outputs have multiple attention heads, we use the average of the attention
values computed across di↵erent heads,

A�nity (p1, p2) =

 
X

h

q
h

1 · qh2
|qh1 ||qh2 |

!
/Nheads, (4)

where Nheads is the number of attention heads.


