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Abstract. In this supplemental material we provide the theorerical background
in algebraic geometry and Christoffel functions that justifies our approach.

1 Algebraic Geometry Background

In this section we briefly cover the theoretical results that allow for segmenting alge-
braic varieties by estimating the polynomials that define each one.

Definition 1 An algebraic variety is the set of solutions of a system of multivariate
polynomial equations over the real or complex numbers.

In this paper we consider second order varieties Vi defined by the real roots of a single
multivariate polynomial p(x1,x2) = x1

T Fx2.

Definition 2 A variety arrangement A in Rd is the union of nv algebraic varieties
Vi ∈ Rd:

A (V )
.
=V1 ∪V2 ∪ . . .∪Vnv (1)

Definition 3 The vanishing ideal I(A ) of a variety arrangement A ⊆ Rd is the set of
all multivariate polynomials in d variables that vanish on all points in A , that is:

I(A )
.
=
{

P ∈ Pd : P(z) = 0 ∀z ∈ A
}

(2)

Note that this vanishing ideal of a variety arrangement is indeed the intersection of the
vanishing ideals of the individual varieties:

I(A ) = I(V1 ∪V2 ∪ . . .∪Vnv) = I(V1)∩ I(V2)∩ . . . I(Vnv) (3)

The homogeneous component of this vanishing ideal of degree r, Ir(A ) ⊆ I(A ), is
formed by homogeneous polynomials of degree r.

Definition 4 Given a set I of polynomials, Z (I), the zero set of I is the set of all com-
mon roots:

Z (I) .
= {x ∈ Rd : P(x) = 0 for all P ∈ I} (4)

Hence the arrangement A is completely characterized by its associated homogeneous
ideal. Using the definitions above, the following result can be easily established:
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Lemma 1. The variety arrangement A is the zero set of Inv×n(A ), the subset of I
formed by homogeneous polynomials of degree nv ×n.

In principle, the results above allow for reducing the algebraic variety segmentation
problem to a polynomial estimation one: given the data points, first estimate In×nv . The
polynomials that generate each variety can then be estimated by factoring the generator
of In×nv

1 into a product of nv homogeneous degree n polynomials. In the case of linear
subspaces, this is precisely the approach used by GPCA. However, as indicated in the
paper, such an approach is fragile to noise and outliers. Thus, in this paper we pursue an
alternative approach, using Christoffel function arguments, that identifies the generator
of each variety “one-at-a-time”.

2 Approximating support sets via Christoffel polynomials

Given a probability measure µ supported on Rd , its associated moments sequence is
given by

mα = Eµ(xα) =
∫
Rd

xα dµ (5)

where x .
=

[
x1 x2 . . . xd

]T , α
.
=

[
α1 α2 . . . αd

]
and xα stands for xα1

1 xα2
2 · · ·xαd

d . Each
sequence m can be associated with a moment matrix Mn of size

(n+d
d

)
, with entries

Mi, j = mα i+α j , containing moments of order up to 2n. In this paper we use the subma-
trix Ln of Mn, of size sn,d

.
=
(n+d−1

d−1

)
containing only moments of order 2n. For instance,

for moments of order 4 in two variables, we have

L2 =

m(4,0) m(3,1) m(2,2)
m(3,1) m(2,2) m(1,3)
m(2,2) m(1,3) m(0,4)


The non-negative function Q−1

n (x) .
=

[
vT

n (x)L−1
n vn(x)

]−1 is known as the Christoffel
function associated with Ln [1]. It is related to the measure µ that induces Ln through
the following optimization problem over homogeneous polynomials of degree n [2,1]:

p∗y(.) = argmin
p∈Pd

n

∫
Rp

p2(ξ )dµ s.t. p(y) = 1 (6)

where y is an arbitrary given data point. An explicit expression for p∗y(.) in terms of the
singular vectors ui and singular values σi of Ln is given by [3]:

p∗y(.) = vn(.)
T c∗y

where c∗y =
1

∑
sn,d
i=1(

1√
σ i

uT
i vn(y))2

sn,d

∑
i=1

1
σi

uT
i vn(y)ui

(7)

1 Under suitable conditions I is a principal ideal and this generator is unique up to a scaling
factor.
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As shown next, Q−1
n (y) = Eµ [(p∗y(.))

2]. From (6) we have

p∗y(x)
2 =

1
D2

sn,d

∑
i, j=1

1
σiσ j

[uT
i vn(y)][uT

j vn(y)][uT
i vn(x)][vT

n (x)u j]

where D .
= ∑

sn,d
i=1(

1√
σ i

uT
i vn(y))2 = vT

n (y)L−1
n vn(y). Hence

Eµ [(p∗y(.))
2] =

1
D2

sn,d

∑
i, j=1

1
σiσ j

[uT
i vn(y)][uT

j vn(y)][uT
i Eµ

{
vn(x)vT

n (x)
}

u j]

=
1

D2

sn,d

∑
i, j=1

1
σiσ j

[uT
i vn(y)][uT

j vn(y)]uT
i Lnu j

=
1

D2

sn,d

∑
i=1

1
σi
[uT

i vn(y)][uT
j vn(y)]uT

i u j =
1

D2

sn,d

∑
i=1

1
σi
[uT

i vn(y)]2 =
1
D

= Q−1
n (y)

where we use the facts that Eµ

{
vn(x)vT

n (x)
}
= Ln, Lnu j = σ ju j and uT

i u j = 0 if i ̸= j.
Direct application of Markov’s inequality yields

prob
{
(p∗y(x))

2 ≥ 1
tQn(y)

}
≤ t (8)

Next, note that

Eµ(Qn) = Eµ

{
vT

n (x)L
−1
n vn(x)

}
= Eµ

{
Trace

(
L−1

n vn(x)vT
n (x

)}
= Trace

(
L−1

n Eµ

{
vn(x)vT

n (x)
})

= Trace
(
L−1

n Ln
)
= sn.d =

(
n+d −1

d −1

)
From Markov’s inequality we have that

prob
{

Qn(y)≥ t.sn,d
}
≤ 1

t
(9)

Thus, values of Qn much higher than sn,d indicate points with a high probability of

μ

p*y 2
p*y 2(y) = 1

y

Fig. 1: (a) The square Christoffel polynomial p∗y
2

for an outlier y is small at inlier points.

being outliers. This property, com-
bined with (8) shows that if y is cho-
sen to be an outlier to the distribution
µ , then the polynomial p∗y

2(.) will ap-
proximate the complement of the sup-
port of µ , in the sense that its value
will be large in places where µ is small
and viceversa (Fig. 1). This follows
from the observation that if y is an out-
lier to the distribution µ , then Qn(y) is
large and, from (8), (p∗y(x))2 is small if x is an inlier. Intuitively, if y is an outlier, a so-
lution to (6) will be a polynomial that is close to one in a neighborhood of y, to satisfy
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the constraint p(y) = 1, and small in regions where µ is large, to minimize the overall
integral (Fig. 1). Since the region around y has low density, it contributes little to the
integral of p2, while setting p2 small in regions where µ is large minimizes their cost.
Thus, as noted in [2], both Qn(.) and p∗y(.) can be used to approximate the support of
the distribution µ and to detect outliers.
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