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1 Additional Qualitative Results

We provide in this section visualizations to get insights into the benefits of our
method BiB.

1.1 Prediction Examples

We show in Figure 5 predictions obtained with the weakly-supervised detector
MIST (top row) and the detector after the first cycle of BiB (bottom row) with
B = 50 on VOC07 and B = 160 on COCO. We observe that the failures modes
of MIST are corrected by our BiB detector: objects and parts are not confused
(3rd and 4th images), objects are covered (1st) and better separated (2nd).
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Fig. 5: Examples of predictions on the VOC07 and COCO test sets, by MIST [4] (first
row) and BiB after the first cycle (second row). Fine-tuning MIST with images selected
by BiB significantly remedies its limitations.

Table 4: Comparison of active learning strategies on VOC07. For each experiment, we
conducted 5 cycles with a budget of 50 images per cycle. We repeated the experiment
six times for each strategy and report the average and standard deviation of their
performance. BiB yields significantly better performance than the others. loss performs
well in the first cycle but fares worse than BiB in subsequent cycles. Additionally, it
performs much worse, even than random, on COCO (see Table 5).

Method
Number of fully-annotated images

50 100 150 200 250

u-random 56.5 ± 0.4 58.4 ± 0.4 59.3 ± 0.7 60.2 ± 0.4 61.1 ± 0.5

b-random 56.7 ± 0.7 58.4 ± 0.7 59.7 ± 0.8 60.4 ± 0.5 61.2 ± 0.4

core-set 55.5 ± 0.6 57.7 ± 0.6 58.7 ± 0.5 59.5 ± 0.4 60.1 ± 0.2

core-set-ent 55.5 ± 0.4 57.6 ± 0.4 59.0 ± 0.4 60.0 ± 0.2 60.5 ± 0.2

entropy-max 57.0 ± 0.4 58.7 ± 0.2 59.6 ± 0.4 60.6 ± 0.2 60.9 ± 0.2

entropy-sum 56.5 ± 1.0 58.6 ± 0.4 59.8 ± 0.3 60.5 ± 0.5 61.2 ± 0.8

loss 59.7 ± 0.2 60.5 ± 0.5 61.3 ± 0.7 62.0 ± 0.5 62.5 ± 0.3

BiB 58.5 ± 0.8 60.8 ± 0.5 61.9 ± 0.4 62.9 ± 0.5 63.5 ± 0.4

1.2 More Visualization of BiB Pairs

Our selection method relies on the discovery of box-in-box patterns. We provide
in Figure 6 more visualization of BiB pairs on images of VOC07 and COCO.

2 Additional Quantitative Results

2.1 Detailed Results of Active Learning Strategies

For experiments with active learning strategies, we have run each strategy six
times on VOC07 and three times on COCO and reported the average perfor-
mance in the main paper. For completeness, we provide in Table 4 and Table 5
both the average and the standard deviation of the detector’s performance in
these experiments.
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Fig. 6: Examples of box-in-box (BiB) pairs on VOC07 (first two rows) and COCO (last
two rows) extracted using the MIST [4] detector.

2.2 Different Variants of loss

MIST [4] is trained with a combination of losses coming from different heads. The
Multiple Instance Learner produces LMIL using the ground-truth class informa-

tion while each refinement head k ∈ {1, 2, 3} produces the refinement loss L(k)
w

using pseudo objects generated from the previous head. We have tested each of

these losses and the combination of the three refinement losses
∑3

k=1 L
(k)
w in our

experiments with loss strategy. We present a summary of the results in Table 6.
For each experiment, we have conducted 5 cycles with a budget of 50 images per

cycle on VOC07. On average, L(3)
w yields the best results on this dataset and we

use it for all experiments with the loss strategy in our submission.
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Table 5: Comparison of active learning strategies on COCO. For each experiment, we
conducted 5 cycles with a budget of 160 images per cycle. We repeated the experiment
three times for each strategy and report the average and standard deviation of their
performance. BiB significantly outperforms all other methods.

Method
AP AP50

160 320 480 640 800 160 320 480 640 800

u-random 14.1 ± 0.1 15.1 ± 0.2 15.7 ± 0.2 16.1 ± 0.4 16.5 ± 0.3 29.1 ± 0.4 30.8 ± 0.3 31.7 ± 0.4 32.4 ± 0.4 33.0 ± 0.3

b-random 14.4 ± 0.4 15.2 ± 0.3 15.9 ± 0.1 16.2 ± 0.2 16.8 ± 0.2 29.5 ± 0.6 30.8 ± 0.4 31.8 ± 0.2 32.3 ± 0.1 33.3 ± 0.2

entropy-sum 12.3 ± 0.3 12.8 ± 0.2 13.3 ± 0.3 13.6 ± 0.4 13.7 ± 0.3 25.6 ± 0.4 26.5 ± 0.1 27.2 ± 0.2 27.7 ± 0.5 27.8 ± 0.1

entropy-max 12.7 ± 0.2 13.9 ± 0.1 14.5 ± 0.5 14.9 ± 0.3 15.2 ± 0.2 26.9 ± 0.2 28.9 ± 0.1 29.7 ± 0.5 30.4 ± 0.3 30.8 ± 0.3

loss 13.5 ± 0.1 14.1 ± 0.2 14.5 ± 0.2 14.7 ± 0.3 14.9 ± 0.3 27.8 ± 0.1 29.1 ± 0.1 29.7 ± 0.1 30.1 ± 0.3 30.4 ± 0.3

core-set 12.9 ± 0.2 14.5 ± 0.3 15.3 ± 0.2 15.9 ± 0.1 16.4 ± 0.3 26.9 ± 0.3 29.6 ± 0.5 30.9 ± 0.2 31.7 ± 0.2 32.5 ± 0.4

core-set-ent 13.1 ± 0.0 14.2 ± 0.1 15.1 ± 0.2 15.5 ± 0.3 16.0 ± 0.2 27.3 ± 0.2 29.2 ± 0.1 30.7 ± 0.2 31.3 ± 0.4 32.1 ± 0.2

BiB 14.8 ± 0.315.9 ± 0.216.5 ± 0.116.9 ± 0.217.2 ± 0.2 30.6 ± 0.132.4 ± 0.333.1 ± 0.233.8 ± 0.134.1 ± 0.1

Table 6: Performance of the loss strategy with different choices of the detector’s loss
on VOC07. For each experiment, we perform 5 cycles with a budget of 50 images per
cycle. We have repeated the experiment six times for each strategy and report the
average and standard deviation of their performance.

Number of fully-annotated images
AL method 50 100 150 200 250

LMIL 57.1 ± 0.3 57.9 ± 0.2 58.4 ± 0.5 59.4 ± 0.2 60.0 ± 0.3

L(1)
w 58.2 ± 0.4 58.5 ± 0.4 59.6 ± 0.7 60.3 ± 0.8 61.1 ± 0.5

L(2)
w 59.4 ± 0.3 60.7 ± 0.2 61.4 ± 0.3 61.8 ± 0.3 62.4 ± 0.1

L(3)
w 59.7 ± 0.2 60.5 ± 0.5 61.3 ± 0.7 62.0 ± 0.5 62.5 ± 0.3∑
k=1,2,3 L

(k)
w 59.9 ± 0.4 60.6 ± 0.5 60.9 ± 0.5 61.6 ± 0.3 62.2 ± 0.6

2.3 Ablation study on COCO.

We have provided an ablation study on different components of BiB on VOC07
dataset in the main paper. For completeness, we report in Table 7 the averaged
AP50 scores (over 3 repetitions) of the ablation study on COCO. The results
are similar to those obtained on VOC, except for the difficulty-aware sampling,
which helps with the u-random strategy but not always with BiB.

2.4 Are diverse samples important?

We propose in BiB to find diverse images on which the weakly-supervised detec-
tor fails. We investigate the importance of sample diversity in BiB by comparing
it to two variants. In the first variant, we randomly select images containing BiB
pairs (‘U(BiB)’), and in the second variant, we use a mix, with half selected with
BiB and the other half with randomly uniform sampling (‘U+BiB’), to be fully
annotated. We show the results in Table 8. The fact that U(BiB) is worse than
BiB and U+BiB outperforms U(BiB) in general shows that diversity sampling
is important once BiB patterns have been discovered.
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Table 7: Ablation study on COCO. Results in AP50 on COCO with 5 cycles and
a budget B = 160. We provide averages and standard deviation results over several
runs. DifS stands for the difficulty-aware region sampling module. Images are selected
by applying k-means++ init. (K selection) on image-level features (im.), confident
predictions’ features (reg.) or BiB pairs.

DifS
K selection AP50

im. reg. BiB 160 320 480 640 800

29.0 30.6 31.4 32.3 32.8
✓ 29.1 30.8 31.7 32.4 33.0
✓ ✓ 29.2 30.7 31.6 32.3 32.9
✓ ✓ 30.5 31.6 32.6 33.5 34.1

✓ 30.7 32.3 33.2 33.7 34.2
✓ ✓ 30.6 32.4 33.1 33.8 34.1

Table 8: A comparison between BiB, u-rand and two other variants that combine
them. BiB outperforms the variants, showing that diversity sampling is important to
the effectiveness of BiB.

Method Dataset
AL cycles

1 2 3 4 5

u-rand.

VOC

56.5 58.4 59.3 60.2 61.1
U(BiB) 57.6 59.2 60.1 61.2 61.8
U+BiB 57.9 59.4 60.7 61.6 62.4
BiB 58.5 60.8 61.9 62.9 63.5

u-rand

COCO

29.1 30.8 31.7 32.4 33.0
U(BiB) 30.0 31.4 32.3 33.1 33.5
U+BiB 29.7 31.4 32.4 33.2 33.7
BiB 30.6 32.4 33.1 33.8 34.1

2.5 Verification of BiB pairs

We propose in our paper the use of BiB pairs as an indicator of a detector’s
confusion on images. With its design, we argue that at least one box in the pair
is likely a wrong prediction. We verify this assumption on MIST’s predictions
on VOC07 and COCO. Among 8,758 BiB pairs on VOC, there are 8,633 pairs
(98.6%) with at least one wrong prediction while 99.6% of the 854,004 BiB pairs
have at least one wrong box on COCO.

2.6 Number of BiB examples reduced with active learning cycles.

We use BiB pairs as an indicator of the model’s confusion on images. Intuitively,
as the model becomes more accurate with more active learning cycles, fewer BiB
pairs will be found. We computed the number of BiB pairs during active learning
cycles on VOC07 and COCO datasets to verify this assumption. As expected,
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our results show that it decreases with iterations. On VOC, it drops from 8801
in cycle 1 to 5170 in cycle 5 with budget B = 50. On COCO, it decreases from
854k in cycle 1 to 152k in cycle 5 with budget B = 160.

2.7 Influence of Hyper-Parameters

We use two intuitive hyper-parameters in BiB design: the area ratio µ between
two boxes in a BiB pair and the ratio δ of the overlap over the smallest box. By
design, the latter should be close to 1 so that the small box is “contained” in
the large box and it is set to 0.8 in our experiments. For the former, we test BiB
on VOC07 when its value varies in {2, 3, 4} and report results in Table 9. It can
be seen that the performance is relatively insensitive to µ. We use µ = 3 in our
experiments.

Table 9: Performance of BiB on VOC07 with different values of the area ratio µ in
BiB design. We conducted 5 cycles with a budget of 50 images per cycle, repeated the
experiment six times for each value of µ and report the average and standard deviation
of their performance.

Number of fully-annotated images
µ 50 100 150 200 250

µ = 2 58.5 ± 0.5 60.4 ± 0.3 61.6 ± 0.4 62.4 ± 0.3 63.1 ± 0.2

µ = 3 58.5 ± 0.8 60.8 ± 0.5 61.9 ± 0.4 62.9 ± 0.5 63.5 ± 0.4

µ = 4 58.3 ± 0.5 60.6 ± 0.3 61.7 ± 0.3 62.5 ± 0.4 63.3 ± 0.2

3 More Details

3.1 MIST Architecture

We use MIST [4] as our base weakly-supervised object detector and briefly
describe it in the main submission. MIST follows OICR [6] and consists of a
Multiple Instance Learner (MIL) trained to produce coarse detections which
are then refined with several refinement heads using automatically-generated
pseudo-boxes. We have given details about the refinement heads in the main pa-
per and provide here a description of the MIL head as well as the procedure to
generate the pseudo-boxes. We consider an image I, its class labels q ∈ {0, 1}C
and the set of pre-computed region proposals R = {r1, r2, . . . , rR}. Please note
that we drop here the image index in order to ease understanding.

Multiple Instance Learner. MIL receives I and R as input and yields a class
probability vector ϕ ∈ RC . It is trained to classify the image with the Binary
Cross Entropy (BCE) loss LMIL on ϕ:

LMIL = − 1

C

C∑
c=1

q(c) log(ϕ(c)) + (1− q(c)) log(1− ϕ(c)). (5)
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In MIST, class probabilities ϕ are obtained by aggregating scores in a region
score matrix s ∈ RR×C with c ∈ {1, .., C}:

ϕ(c) =

R∑
i=1

s(i, c), (6)

where s = sc ⊙ sd is the point-wise product of a classification score matrix
sc ∈ RR×C and a detection score matrix sd ∈ RR×C . Matrices sc and sd are built
by concatenating projected regions features extracted with the backbone network
for each of the regions in R. Matrix sc is normalized row-wise with the softmax
operation and models the class probabilities of the region proposals. Matrix
sd, which is normalized column-wise, represents the relative objectness of the
proposals with respect to the corresponding classes. Given those interpretations,
s(i, c) expresses the likelihood that region i is an object of class c.

Pseudo-boxes generation. MIST [4] introduces a heuristic to generate the
pseudo-boxes D(k−1) that are used to train the refinement heads k. Such boxes
are generated either from the region score matrix s of the MIL (giving D(0))
or the region classification score matrices s(k) (k = 1, 2, 3) of the refinement
heads (giving D(k)). In particular, for each ground-truth class c in image I,
the corresponding column scores [s(1, c), . . . , s(R, c)] in s (or s(k)) are sorted in
descending order. Then, given the top-15% region proposals with the highest
scores, we select all boxes that do not have an IoU≥ 0.3 with a higher-ranked
region. Selected boxes for all classes are aggregated to construct the final set of
pseudo-boxes.

3.2 Active Learning Strategies

We compare in the main text our proposed BiB to different active learning strate-
gies. We detail here all considered methods. As described in the Algorithm 1 of
the submission, a set of images At of B images is selected at each cycle t. The
selection is performed with an active learning method within the set of images
W t−1, possibly using the detector M t−1 trained at the end of the previous cycle
and the set of selected images St−1.

Random. We implement two variants of a random sampling: u-random and b-
random. In u-random, B images are selected uniformly at random from W t−1;
b-random seeks to have a balance sampling among the classes. Images are iter-
atively selected until the budget B is reached. At each iteration, an image con-
taining at least an object of the class that is the least represented1 in St−1 ∪At

is randomly chosen and added to At.

1 In case of draw, a class is randomly selected.
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Diversity-based strategies. The core-set [5] approach attempts to select a repre-
sentative subset of a dataset. We employ the greedy version of core-set in our
experiments. In particular, at cycle t, let ψt−1(Ii) be the features of image Ii ex-
tracted from detector M t−1, core-set iteratively selects the image i∗ to be added
in At by solving the optimization problem:

i∗ = argmax
i∈W t−1\At

min
j∈S∪At

∥ψt−1(Ii)− ψt−1(Ij)∥. (7)

In the first cycle, the very first image is randomly selected.

Selection using model uncertainty. The concept of informativeness has been
widely exploited in the literature [8,7,1,2]. For a classification task, the uncer-
tainty can be computed by measuring the entropy over the class predictions of
an image. Here, we first compute the entropy over the class predictions of each
predicted box in an image, and then the box entropy-scores of an image are
aggregated using the sum and max pooling, resulting in two strategies, entropy-
sum and entropy-max. Concretely, let pi,j ∈ RC+1 be the predicted class scores
of the predicted box j for image Ii given by M t−1, and Di be the set of all
predictions in Ii, we compute the uncertainty score ui of image Ii as

max
1≤j≤|Di|

C+1∑
c=1

−pci,j log(pci,j) (8)

for entropy-max and ∑
1≤j≤|Di|

C+1∑
c=1

−pci,j log(pci,j) (9)

for entropy-sum. Then, the B images with the highest scores in u are selected.

Combining diversity and uncertainty. Following [3], we consider a selection strat-
egy function that incorporates the uncertainty information into core-set by mul-
tiplying the distances between image features with the uncertainty score u de-
fined above. Specifically we combine core-set and entropy-max, in a new active
learning method core-set-ent which iteratively selects an image i∗ following:

i∗ = argmax
i∈W t−1\At

min
j∈S∪At

ui × ∥ψt−1(Ii)− ψt−1(Ij)∥. (10)

Selection using losses. In [7], the authors propose to learn – through an auxiliary
module – an object detection loss predictor which later allows choosing samples
that produce the highest losses. Conveniently, the refinement heads of MIST

produce refinement losses (L(k)
w with k ∈ {1, 2, 3}) that are detection losses

computed using pseudo-boxes. We therefore propose the active learning method

loss which selects the B images with the highest loss L(3)
w . We have discussed in

Section 2.2 results obtained when considering different losses of MIST.
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