
Supplementary Material:
Locally Varying Distance Transform

for Unsupervised Visual Anomaly Detection

1 Comparison with Semi-supervised Methods

The main paper focused on unsupervised anomaly detection, where no training
data is available. Many anomaly detection papers focus on a different scenario,
where no example of anomalies are provided a-priori; but a a clean set of normal
data is available for training. This is termed semi-supervised anomaly detection
or one-class learning. To put LVAD’s results into perspective, we compare it
against the current state-of-the-art in sem-supervised anomaly detection.

Following the experimental protocol established in Sec. 4.1 of the main paper,
the definition of normality is rotated through each class of the dataset. When a
class is designated as normal, an anomaly detector is trained on a subset of its
instances. The remaining normal instances are mixed with instances from other
(anomalous) classes to form the test set. The anomaly detector is tasked with
identifying the anomalous instances. Performance is measured in terms of the
Area Under the Receiver Operator Characteristic Curve.

Results are reported in Table 1, where LVAD and OCSVM [2] from the main
paper are compared with state- deep learned techniques like Deep Structured
Energy-based Model (DSEBM) [8], Anomaly Detection with a Generative Ad-
versarial Network (AD-GAN) [3], Deep Anomaly Detection Using Geometric
Transformations (Geo. Transform) [4] and Deep One-Class Classification (Deep
SVDD) [7]. Similar to the main paper, for MNIST and Fashion-MNIST, LVAD
used ratzerized pixels as its image representation; for the remaining datasets,
images were represented using ResNet-50 [5] features. Semi-supervised anomaly
detection were allowed to learn an appropriate representation from the training
data.

Table 1 shows that although LVAD is not designed semi-supervised anomaly
detection, its formulation generalizes well to this scenario. In Table 1, LVAD is
consistently the best or close to the best algorithm. This is even true on MNIST
and Fashion-MNIST, where its performance using raw pixels is respectably close
to the current state-of-the-art.

2 Ablation Study: Effects of Instance Normalization

In the main paper, instance normalization [1] is applied to the data whenever
possible. Table 2 illustrates the performance if normalization is not applied; for
the reader’s convenience, the normalized scores are copied from the main paper.
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Algorithm MNIST
Fashion-
MNIST

STL-10
Internet-
STL-10

MIT-
Places-5

CatVsDog CIFAR-10

LVAD (Ours) 0.948 0.905 0.981 0.976 0.923 0.985 0.905

DSEBM [8] 0.850 0.907 0.637 0.533 0.493 0.522 0.625

AD-GAN [3] 0.799 0.896 0.637 0.474 0.611 0.540 0.605

Geo. Transform [4] 0.980 0.924 0.887 0.829 0.638 0.809 0.885

Deep SVDD [7] 0.948 0.871 0.590 0.519 0.511 0.481 0.498

Table 1. Average AUROC of semi-supervised visual anomaly detectors. Comparing
LVAD with state-of-the-art, deep-learned anomaly detectors.

Instance normalization generally improves the performance of anomaly de-
tectors. In the context of LVAD and OC-SVM, improvements were present in
almost all datasets. For RSRAE, the improvements are not consistent, with per-
formance gains mostly concentrated on the difficult datasets like on MNIST.

3 Qualitative Results

Finally, Fig. 1 and Fig. 2 provide qualitative evaluation of LVAD. Images are
ranked by their normality scores, which increases from left to right, top to bot-
tom. LVAD’s scoring seems intuitive, with anomalous images arranged in the
top rows and the normal ones congregating at the bottom.
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Dataset Algorithm
Anomaly Percentage (%)

Ave. Diff.
0.1 1 10 20 30

STL-10
(ResNet-50)

LVAD (Ours) (Normalized) 0.998 0.993 0.979 0.983 0.977 0.986 0.021

LVAD (Ours) (No norm.) 0.919 0.935 0.921 0.912 0.901 0.917 0.033

RSRAE [6] (Normalized) 0.995 0.992 0.972 0.971 0.944 0.975 0.051

RSRAE [6] (No norm.) 0.991 0.995 0.971 0.969 0.941 0.973 0.054

OC-SVM [2] (Normalized) 0.996 0.995 0.967 0.877 0.777 0.922 0.219

OC-SVM [2] (No norm.) 0.901 0.927 0.861 0.790 0.724 0.841 0.203

Internet STL-10
(ResNet-50)

LVAD (Ours) (Normalized) 0.997 0.997 0.996 0.985 0.981 0.991 0.016

LVAD (Ours) (No norm.) 0.906 0.950 0.943 0.922 0.899 0.924 0.051

RSRAE [6] (Normalized) 0.998 0.997 0.979 0.993 0.973 0.988 0.025

RSRAE [6] (No norm.) 0.998 0.997 0.992 0.985 0.977 0.990 0.021

OC-SVM [2] (Normalized) 0.999 0.997 0.985 0.908 0.817 0.941 0.182

OC-SVM [2] (No norm.) 0.919 0.949 0.891 0.818 0.761 0.868 0.188

MIT-Places-5
(RestNet-50)

LVAD (Ours) (Normalized) 0.955 0.941 0.922 0.891 0.867 0.915 0.088

LVAD (Ours) (No norm.) 0.728 0.679 0.630 0.570 0.536 0.628 0.191

RSRAE [6] (Normalized) 0.965 0.928 0.893 0.686 0.605 0.815 0.360

RSRAE [6] (No norm.) 0.967 0.916 0.903 0.814 0.663 0.853 0.304

OC-SVM [2] (Normalized) 0.966 0.908 0.834 0.727 0.683 0.824 0.283

OC-SVM [2] (No norm.) 0.620 0.727 0.617 0.571 0.563 0.620 0.164

CIFAR-10
(RestNet-50)

LVAD (Ours) (Normalized) 0.930 0.940 0.903 0.854 0.816 0.889 0.124

LVAD (Ours) (No norm.) 0.781 0.853 0.810 0.756 0.714 0.783 0.139

RSRAE [6] (Normalized) 0.901 0.911 0.800 0.814 0.739 0.833 0.172

RSRAE [6] (No norm.) 0.919 0.912 0.796 0.787 0.755 0.834 0.164

OC-SVM [2] (Normalized) 0.913 0.922 0.869 0.801 0.742 0.849 0.180

OC-SVM [2] (No norm.) 0.749 0.829 0.787 0.728 0.678 0.754 0.152

CatVsDog
(RestNet-50)

LVAD (Ours) (Normalized) 0.981 0.978 0.927 0.851 0.780 0.903 0.201

LVAD (Ours) (No norm.) 0.827 0.801 0.739 0.685 0.651 0.741 0.175

RSRAE [6] (Normalized) 0.982 0.981 0.961 0.917 0.835 0.935 0.147

RSRAE [6] (No norm.) 0.981 0.959 0.923 0.889 0.797 0.910 0.184

OC-SVM [2] (Normalized) 0.989 0.982 0.892 0.799 0.737 0.880 0.252

OC-SVM [2] (No norm.) 0.794 0.810 0.743 0.682 0.642 0.734 0.168

MNIST
(Rasterized Pixels)

LVAD (Ours) (Normalized) 0.974 0.948 0.938 0.923 0.904 0.937 0.070

LVAD (Ours) (No norm.) 0.956 0.905 0.892 0.873 0.846 0.894 0.110

RSRAE [6] (Normalized) 0.966 0.948 0.851 0.794 0.763 0.864 0.203

RSRAE [6] (No norm.) 0.882 0.851 0.788 0.795 0.774 0.818 0.108

OC-SVM [2] (Normalized) 0.937 0.901 0.885 0.856 0.824 0.881 0.113

OC-SVM [2] (No norm.) 0.099 0.260 0.334 0.436 0.509 0.328 0.410

Fashion-MNIST
(Rasterized Pixels)

LVAD (Ours) (Normalized) 0.896 0.909 0.899 0.884 0.868 0.891 0.041

LVAD (Ours) (No norm.) 0.946 0.904 0.895 0.874 0.830 0.890 0.116

RSRAE [6] (Normalized) 0.900 0.854 0.748 0.711 0.689 0.780 0.211

RSRAE [6] (No norm.) 0.897 0.882 0.872 0.814 0.768 0.847 0.129

OC-SVM [2] (Normalized) 0.875 0.898 0.889 0.867 0.843 0.874 0.055

OC-SVM [2] (No norm.) 0.142 0.286 0.637 0.589 0.490 0.429 0.496

Table 2. Average AUROC of unsupervised visual anomaly detectors, with and without
instance normalization. Ave. is the average score on a dataset; a high Ave. indicates
accuracy. Diff. is the difference between the highest and lowest scores on a dataset; a
small Diff. indicates stability.
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LVAD’s ranking of images crawled from the internet with search keyword “airplane”.

LVAD’s ranking of images crawled from the internet with search keyword “ship”.

Fig. 1. Normality scores increase from left to right, top to bottom.
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LVAD’s ranking of images crawled from the internet with search keyword “bird”.

LVAD’s ranking of images crawled from the internet with search keyword “truck”.

Fig. 2. Normality scores increase from left to right, top to bottom.
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