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1 Algorithm Description of Test-Time Model Adaption

Algorithm 1 Inference with Test-Time Model Adaption

Input: Measurement sample y⋆; Sensing matrix Φ∗; Pre-trained parameters ω̂
Parameter: Learning rate τ ; Epoch number T
Output: Reconstructed image x⋆

1. Initialize ω⋆ with ω̂.
2. for i = 1, · · · , T , update ω⋆ on test sample:
3. ω⋆ := ω⋆ − τ∇ω⋆LDual

y⋆ (ω⋆).
4. return x⋆ = fΦ∗(y⋆;ω⋆).

2 Proof of Proposition 1

Here we only provide the proof regarding the connection between LMeasure and
Ex,ϵ,γ∥ΦfΦ(y+γ)−Φx∥22. The proof regarding the connection between LImage

and Ex,ϵ,γ∥fΦ(Φ(z + r))− x∥22 is the same. Firstly, rewrite LMeasure by

LMeasure =Ex,ϵ,γ

[
∥ΦfΦ(y + γ)−Φx∥22

+ 2(γ − ϵ)
⊤
Φ(fΦ(y + γ)− x) + (γ − ϵ)

⊤
(γ − ϵ)

]
,

(1)

where the last term Ex,ϵ,γ(γ − ϵ)
⊤
(γ − ϵ) is a constant irrelevant to the value

of the NN parameters ω. Since γ and ϵ conditioned on x are independent and
follow the same distribution P1(·|x), we have

Ex,ϵ,γϵ
⊤Φ(fΦ(y + γ)− x)

=ExEϵ|xEγ|xϵ
⊤Φ(fΦ(Φx+ ϵ+ γ)− x)

=

∫
x

∫
ϵ|x

∫
γ|x

px(x)P1(γ|x)P1(ϵ|x)ϵ⊤Φ(fΦ(Φx+ ϵ+ γ)− x)

=

∫
x

∫
ϵ|x

∫
γ|x

px(x)P1(ϵ|x)P1(γ|x)γ⊤Φ(fΦ(Φx+ γ + ϵ)− x)

=Ex,ϵ,γγ
⊤(fΦ(Φx+ ϵ+ γ)− x).

(2)
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Thus the second term on the right hand side of Eqn. (1) is zero, which leads to

LMeasure = Ex,ϵ,γ∥ΦfΦ(y + γ)−Φx∥22 + const.

The proof is done.

3 Proof of E(r⊤e) = 0

As Esi = 0 and s is independent from e and e′, we can obtain

E(r⊤e) = E(e′ ⊙ s)⊤e =
∑
i

Esie′iei =
∑
i

(Esi)(Ee′iei) = 0. (3)

4 Proof of Proposition 2

Since ϵ and ϵ′ are i.i.d. Gaussian noise of zero mean and independent from x,
we have

Ey,ϵ′(ϵ
′)⊤y = Ex,ϵ,ϵ′(ϵ

′)⊤(Φx+ ϵ) = 0.

It yields that

Ey,ϵ′(LSURE+(ω)− LMeasure)

=Ey,ϵ′

{
2σ2tr

(
ΦH ∂fΦ(y + ϵ′;ω)

∂y

)
− 2(ϵ′)⊤

(
ΦfΦ(y + ϵ′;ω)

)
+ 2(ϵ′)⊤y − (ϵ′)⊤ϵ′

}
=Ey,ϵ′

{
2σ2tr

(
ΦH ∂fΦ(y + ϵ′;ω)

∂y

)
− 2(ϵ′)⊤

(
ΦfΦ(y + ϵ′;ω)

)}
−Mσ2.

(4)
Thus, we only need to prove that

Ey,ϵ′σ
2tr

(
ΦH ∂fΦ(y + ϵ′;ω)

∂y

)
= Ey,ϵ′(ϵ

′)⊤
(
ΦfΦ(y + ϵ′;ω)

)
. (5)

For ease of notation, we denote g(y + ϵ′) = ΦfΦ(y + ϵ′;ω), and we have

divϵ′g = divyg = tr
(
ΦH ∂fΦ(y + ϵ′;ω)

∂y

)
.

Then we can rewrite (5) as

Ey,ϵ′σ
2divϵ′g = Ey,ϵ′(ϵ

′)⊤g. (6)

It is enough to prove that

Eϵ′i
σ2∇ϵ′i

gi = Eϵ′i
ϵ′igi, ∀i ∈ {1, 2, . . . ,M}. (7)

Let ψσ(·) : R → R denote the probability distribution function of univariate
normal distribution of variance σ2. It is known that

∇ψσ(x) = − 1

σ2
xψσ(x). (8)
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By integration by parts, we can obtain

Eϵ′i
σ2∇ϵ′i

gi =

∫
σ2∇ϵ′i

giψσ(ϵ
′
i)dϵ

′
i = σ2giψσ(ϵ

′
i)|+∞

−∞ −
∫
σ2gi∇ψσ(ϵ

′
i)dϵ

′
i

= σ2giψσ(ϵ
′
i)|+∞

−∞ +

∫
giϵ

′
iψσ(ϵ

′
i)dϵ

′
i =

∫
giϵ

′
iψσ(ϵ

′
i)dϵi = Eϵ′i

giϵ
′
i.

(9)
Note that σ2giψσ(ϵ

′
i)|

+∞
−∞ = 0, as the exponential decay of ψσ is faster than the

polynomial growth of gi. The proof is done.

5 Visual Comparison on More Samples

FISTA BCNN EI Our-NA Our-TA GT

Fig. 1. Results of CT reconstruction.

MACNet EI BCNN Ours-NA Ours-TA GT

Fig. 2. Results of noisy MRI reconstruction with the radial mask of CS ratio 25%.
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MACNet EI BCNN Ours-NA Ours-TA GT

Fig. 3. Results of noiseless MRI reconstruction with the radial mask of CS ratio 25%.

COAST SSLIP REI BCNN Ours-NA Ours-TA GT

Fig. 4. Results of noisy NIR from Gaussian measurements of CS ratio 40%.

COAST SSLIP EI BCNN Ours-NA Ours-TA GT

COAST SSLIP REI BCNN Ours-NA Ours-TA GT

Fig. 5. Results of NIR from Gaussian measurements of CS ratio 25%. The upper row
is for the noiseless setting and the bottom row for the noisy setting.

COAST SSLIP EI BCNN Ours-NA Ours-TA GT

COAST SSLIP REI BCNN Ours-NA Ours-TA GT

Fig. 6. Results of NIR from Gaussian measurements of CS ratio 10%. The upper row
is for the noiseless setting and the bottom row for the noisy setting.


