Supplementary Materials

Yuhui Quan ${ }^{1}$, Xinran Qin ${ }^{1}$, Tongyao Pang ${ }^{2}$, and Hui Ji^{2}
${ }^{1}$ School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
${ }^{2}$ Department of Mathematics, National University of Singapore, 119076, Singapore csyhquan@scut.edu.cn, csqinxinran@mail.scut.edu.cn, matpt@nus.edu.sg, matjh@nus.edu.sg

1 Algorithm Description of Test-Time Model Adaption

```
Algorithm 1 Inference with Test-Time Model Adaption
Input: Measurement sample \(\boldsymbol{y}^{\star}\); Sensing matrix \(\boldsymbol{\Phi}^{*}\); Pre-trained parameters \(\widehat{\boldsymbol{\omega}}\)
Parameter: Learning rate \(\tau\); Epoch number \(T\)
Output: Reconstructed image \(\boldsymbol{x}^{\star}\)
    Initialize \(\boldsymbol{\omega}^{\star}\) with \(\widehat{\boldsymbol{\omega}}\).
    for \(i=1, \cdots, T\), update \(\boldsymbol{\omega}^{\star}\) on test sample:
        \(\boldsymbol{\omega}^{\star}:=\boldsymbol{\omega}^{\star}-\tau \nabla_{\boldsymbol{\omega}^{\star}} \mathcal{L}_{\boldsymbol{y}^{\star}}^{\text {Dual }}\left(\boldsymbol{\omega}^{\star}\right)\).
    return \(\boldsymbol{x}^{\star}=f_{\boldsymbol{\Phi}^{*}}\left(\boldsymbol{y}^{\star} ; \boldsymbol{\omega}^{\star}\right)\).
```


2 Proof of Proposition 1

Here we only provide the proof regarding the connection between $\mathcal{L}^{\text {Measure }}$ and $\mathbb{E}_{\boldsymbol{x}, \boldsymbol{\epsilon}, \boldsymbol{\gamma}}\left\|\boldsymbol{\Phi} f_{\boldsymbol{\Phi}}(\boldsymbol{y}+\boldsymbol{\gamma})-\boldsymbol{\Phi} \boldsymbol{x}\right\|_{2}^{2}$. The proof regarding the connection between $\mathcal{L}^{\text {Image }}$ and $\mathbb{E}_{\boldsymbol{x}, \boldsymbol{\epsilon}, \boldsymbol{\gamma}}\left\|f_{\boldsymbol{\Phi}}(\boldsymbol{\Phi}(\boldsymbol{z}+\boldsymbol{r}))-\boldsymbol{x}\right\|_{2}^{2}$ is the same. Firstly, rewrite $\mathcal{L}^{\text {Measure }}$ by

$$
\begin{align*}
\mathcal{L}^{\text {Measure }}= & \mathbb{E}_{\boldsymbol{x}, \boldsymbol{\epsilon}, \boldsymbol{\gamma}}\left[\left\|\boldsymbol{\Phi} f_{\boldsymbol{\Phi}}(\boldsymbol{y}+\boldsymbol{\gamma})-\boldsymbol{\Phi} \boldsymbol{x}\right\|_{2}^{2}\right. \\
& \left.+2 \overline{(\boldsymbol{\gamma}-\boldsymbol{\epsilon})}^{\top} \boldsymbol{\Phi}\left(f_{\boldsymbol{\Phi}}(\boldsymbol{y}+\boldsymbol{\gamma})-\boldsymbol{x}\right)+\overline{(\boldsymbol{\gamma}-\boldsymbol{\epsilon})}^{\top}(\boldsymbol{\gamma}-\boldsymbol{\epsilon})\right] \tag{1}
\end{align*}
$$

where the last term $\mathbb{E}_{\boldsymbol{x}, \boldsymbol{\epsilon}, \boldsymbol{\gamma}} \overline{(\boldsymbol{\gamma}-\boldsymbol{\epsilon})}{ }^{\top}(\boldsymbol{\gamma}-\boldsymbol{\epsilon})$ is a constant irrelevant to the value of the NN parameters $\boldsymbol{\omega}$. Since $\boldsymbol{\gamma}$ and $\boldsymbol{\epsilon}$ conditioned on \boldsymbol{x} are independent and follow the same distribution $P_{1}(\cdot \mid \boldsymbol{x})$, we have

$$
\begin{align*}
& \mathbb{E}_{\boldsymbol{x}, \boldsymbol{\epsilon}, \gamma} \overline{\boldsymbol{\epsilon}}^{\top} \boldsymbol{\Phi}\left(f_{\boldsymbol{\Phi}}(\boldsymbol{y}+\boldsymbol{\gamma})-\boldsymbol{x}\right) \\
= & \mathbb{E}_{\boldsymbol{x}} \mathbb{E}_{\boldsymbol{\epsilon} \mid \boldsymbol{x}} \mathbb{E}_{\boldsymbol{\gamma} \mid \boldsymbol{x}} \overline{\boldsymbol{\epsilon}}^{\top} \boldsymbol{\Phi}\left(f_{\boldsymbol{\Phi}}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{\epsilon}+\gamma)-\boldsymbol{x}\right) \\
= & \int_{\boldsymbol{x}} \int_{\boldsymbol{\epsilon} \mid \boldsymbol{x}} \int_{\boldsymbol{\gamma} \mid \boldsymbol{x}} p_{\boldsymbol{x}}(\boldsymbol{x}) P_{1}(\gamma \mid \boldsymbol{x}) P_{1}(\boldsymbol{\epsilon} \mid \boldsymbol{x}) \overline{\boldsymbol{\epsilon}}^{\top} \boldsymbol{\Phi}\left(f_{\boldsymbol{\Phi}}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{\epsilon}+\gamma)-\boldsymbol{x}\right) \tag{2}\\
= & \int_{\boldsymbol{x}} \int_{\boldsymbol{\epsilon} \mid \boldsymbol{x}} \int_{\boldsymbol{\gamma} \mid \boldsymbol{x}} p_{\boldsymbol{x}}(\boldsymbol{x}) P_{1}(\boldsymbol{\epsilon} \mid \boldsymbol{x}) P_{1}(\gamma \mid \boldsymbol{x}) \bar{\gamma}^{\top} \boldsymbol{\Phi}\left(f_{\boldsymbol{\Phi}}(\boldsymbol{\Phi} \boldsymbol{x}+\gamma+\boldsymbol{\epsilon})-\boldsymbol{x}\right) \\
= & \mathbb{E}_{\boldsymbol{x}, \boldsymbol{\epsilon}, \gamma} \bar{\gamma}^{\top}\left(f_{\boldsymbol{\Phi}}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{\epsilon}+\gamma)-\boldsymbol{x}\right) .
\end{align*}
$$

Thus the second term on the right hand side of Eqn. (1) is zero, which leads to

$$
\mathcal{L}^{\text {Measure }}=\mathbb{E}_{\boldsymbol{x}, \boldsymbol{\epsilon}, \boldsymbol{\gamma}}\left\|\boldsymbol{\Phi} f_{\boldsymbol{\Phi}}(\boldsymbol{y}+\boldsymbol{\gamma})-\boldsymbol{\Phi} \boldsymbol{x}\right\|_{2}^{2}+\text { const } .
$$

The proof is done.

3 Proof of $\mathbb{E}\left(r^{\top} e\right)=0$

As $\mathbb{E} \boldsymbol{s}_{i}=0$ and \boldsymbol{s} is independent from \boldsymbol{e} and \boldsymbol{e}^{\prime}, we can obtain

$$
\begin{equation*}
\mathbb{E}\left(\boldsymbol{r}^{\top} \boldsymbol{e}\right)=\mathbb{E}\left(\boldsymbol{e}^{\prime} \odot \boldsymbol{s}\right)^{\top} \boldsymbol{e}=\sum_{i} \mathbb{E} \boldsymbol{s}_{i} \boldsymbol{e}_{i}^{\prime} \boldsymbol{e}_{i}=\sum_{i}\left(\mathbb{E} \boldsymbol{s}_{i}\right)\left(\mathbb{E} \boldsymbol{e}_{i}^{\prime} \boldsymbol{e}_{i}\right)=0 \tag{3}
\end{equation*}
$$

4 Proof of Proposition 2

Since $\boldsymbol{\epsilon}$ and $\boldsymbol{\epsilon}^{\prime}$ are i.i.d. Gaussian noise of zero mean and independent from \boldsymbol{x}, we have

$$
\mathbb{E}_{\boldsymbol{y}, \boldsymbol{\epsilon}^{\prime}}\left(\boldsymbol{\epsilon}^{\prime}\right)^{\top} \boldsymbol{y}=\mathbb{E}_{\boldsymbol{x}, \boldsymbol{\epsilon}, \boldsymbol{\epsilon}^{\prime}}\left(\boldsymbol{\epsilon}^{\prime}\right)^{\top}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{\epsilon})=0 .
$$

It yields that

$$
\begin{align*}
& \mathbb{E}_{\boldsymbol{y}, \boldsymbol{\epsilon}^{\prime}}\left(\mathcal{L}^{\text {SURE }+}(\boldsymbol{\omega})-\mathcal{L}^{\text {Measure }}\right) \\
= & \mathbb{E}_{\boldsymbol{y}, \boldsymbol{\epsilon}^{\prime}}\left\{2 \sigma^{2} \operatorname{tr}\left(\boldsymbol{\Phi}^{\mathrm{H}} \frac{\partial f_{\boldsymbol{\Phi}}\left(\boldsymbol{y}+\boldsymbol{\epsilon}^{\prime} ; \boldsymbol{\omega}\right)}{\partial \boldsymbol{y}}\right)-2\left(\boldsymbol{\epsilon}^{\prime}\right)^{\top}\left(\boldsymbol{\Phi} f_{\boldsymbol{\Phi}}\left(\boldsymbol{y}+\boldsymbol{\epsilon}^{\prime} ; \boldsymbol{\omega}\right)\right)+2\left(\boldsymbol{\epsilon}^{\prime}\right)^{\top} \boldsymbol{y}-\left(\boldsymbol{\epsilon}^{\prime}\right)^{\top} \boldsymbol{\epsilon}^{\prime}\right\} \\
= & \mathbb{E}_{\boldsymbol{y}, \boldsymbol{\epsilon}^{\prime}}\left\{2 \sigma^{2} \operatorname{tr}\left(\boldsymbol{\Phi}^{\mathrm{H}} \frac{\partial f_{\boldsymbol{\Phi}}\left(\boldsymbol{y}+\boldsymbol{\epsilon}^{\prime} ; \boldsymbol{\omega}\right)}{\partial \boldsymbol{y}}\right)-2\left(\boldsymbol{\epsilon}^{\prime}\right)^{\top}\left(\boldsymbol{\Phi} f_{\boldsymbol{\Phi}}\left(\boldsymbol{y}+\boldsymbol{\epsilon}^{\prime} ; \boldsymbol{\omega}\right)\right)\right\}-M \sigma^{2} . \tag{4}
\end{align*}
$$

Thus, we only need to prove that

$$
\begin{equation*}
\mathbb{E}_{\boldsymbol{y}, \boldsymbol{\epsilon}^{\prime}} \sigma^{2} \operatorname{tr}\left(\boldsymbol{\Phi}^{\mathrm{H}} \frac{\partial f_{\boldsymbol{\Phi}}\left(\boldsymbol{y}+\boldsymbol{\epsilon}^{\prime} ; \boldsymbol{\omega}\right)}{\partial \boldsymbol{y}}\right)=\mathbb{E}_{\boldsymbol{y}, \boldsymbol{\epsilon}^{\prime}}\left(\boldsymbol{\epsilon}^{\prime}\right)^{\top}\left(\boldsymbol{\Phi} f_{\boldsymbol{\Phi}}\left(\boldsymbol{y}+\boldsymbol{\epsilon}^{\prime} ; \boldsymbol{\omega}\right)\right) \tag{5}
\end{equation*}
$$

For ease of notation, we denote $\boldsymbol{g}\left(\boldsymbol{y}+\boldsymbol{\epsilon}^{\prime}\right)=\boldsymbol{\Phi} f_{\boldsymbol{\Phi}}\left(\boldsymbol{y}+\boldsymbol{\epsilon}^{\prime} ; \boldsymbol{\omega}\right)$, and we have

$$
\operatorname{div}_{\boldsymbol{\epsilon}^{\prime}} \boldsymbol{g}=\operatorname{div}_{\boldsymbol{y}} \boldsymbol{g}=\operatorname{tr}\left(\boldsymbol{\Phi}^{\mathrm{H}} \frac{\partial f_{\boldsymbol{\Phi}}\left(\boldsymbol{y}+\boldsymbol{\epsilon}^{\prime} ; \boldsymbol{\omega}\right)}{\partial \boldsymbol{y}}\right)
$$

Then we can rewrite (5) as

$$
\begin{equation*}
\mathbb{E}_{\boldsymbol{y}, \boldsymbol{\epsilon}^{\prime}} \sigma^{2} \operatorname{div}_{\boldsymbol{\epsilon}^{\prime}} \boldsymbol{g}=\mathbb{E}_{\boldsymbol{y}, \boldsymbol{\epsilon}^{\prime}}\left(\boldsymbol{\epsilon}^{\prime}\right)^{\top} \boldsymbol{g} \tag{6}
\end{equation*}
$$

It is enough to prove that

$$
\begin{equation*}
\mathbb{E}_{\boldsymbol{\epsilon}_{i}^{\prime}} \sigma^{2} \nabla_{\boldsymbol{\epsilon}_{i}^{\prime}} \boldsymbol{g}_{i}=\mathbb{E}_{\boldsymbol{\epsilon}_{i}^{\prime}} \boldsymbol{\epsilon}_{i}^{\prime} \boldsymbol{g}_{i}, \forall i \in\{1,2, \ldots, M\} . \tag{7}
\end{equation*}
$$

Let $\psi_{\sigma}(\cdot): \mathbb{R} \rightarrow \mathbb{R}$ denote the probability distribution function of univariate normal distribution of variance σ^{2}. It is known that

$$
\begin{equation*}
\nabla \psi_{\sigma}(x)=-\frac{1}{\sigma^{2}} x \psi_{\sigma}(x) \tag{8}
\end{equation*}
$$

By integration by parts, we can obtain

$$
\begin{align*}
\mathbb{E}_{\boldsymbol{\epsilon}_{i}^{\prime}} \sigma^{2} \nabla_{\boldsymbol{\epsilon}_{i}^{\prime}} \boldsymbol{g}_{i} & =\int \sigma^{2} \nabla_{\boldsymbol{\epsilon}_{i}^{\prime}} \boldsymbol{g}_{i} \psi_{\sigma}\left(\boldsymbol{\epsilon}_{i}^{\prime}\right) d \boldsymbol{\epsilon}_{i}^{\prime}=\left.\sigma^{2} \boldsymbol{g}_{i} \psi_{\sigma}\left(\boldsymbol{\epsilon}_{i}^{\prime}\right)\right|_{-\infty} ^{+\infty}-\int \sigma^{2} \boldsymbol{g}_{i} \nabla \psi_{\sigma}\left(\boldsymbol{\epsilon}_{i}^{\prime}\right) d \boldsymbol{\epsilon}_{i}^{\prime} \\
& =\left.\sigma^{2} \boldsymbol{g}_{i} \psi_{\sigma}\left(\boldsymbol{\epsilon}_{i}^{\prime}\right)\right|_{-\infty} ^{+\infty}+\int \boldsymbol{g}_{i} \boldsymbol{\epsilon}_{i}^{\prime} \psi_{\sigma}\left(\boldsymbol{\epsilon}_{i}^{\prime}\right) d \boldsymbol{\epsilon}_{i}^{\prime}=\int \boldsymbol{g}_{i} \boldsymbol{\epsilon}_{i}^{\prime} \psi_{\sigma}\left(\boldsymbol{\epsilon}_{i}^{\prime}\right) d \boldsymbol{\epsilon}_{i}=\mathbb{E}_{\boldsymbol{\epsilon}_{i}^{\prime}} \boldsymbol{g}_{i} \boldsymbol{\epsilon}_{i}^{\prime} \tag{9}
\end{align*}
$$

Note that $\left.\sigma^{2} \boldsymbol{g}_{i} \psi_{\sigma}\left(\boldsymbol{\epsilon}_{i}^{\prime}\right)\right|_{-\infty} ^{+\infty}=0$, as the exponential decay of ψ_{σ} is faster than the polynomial growth of \boldsymbol{g}_{i}. The proof is done.

5 Visual Comparison on More Samples

Fig. 1. Results of CT reconstruction.

Fig. 2. Results of noisy MRI reconstruction with the radial mask of CS ratio 25%.

Fig. 3. Results of noiseless MRI reconstruction with the radial mask of CS ratio 25%.

COAST

SSLIP

REI

BCNN

Ours-NA

Ours-TA

Fig. 4. Results of noisy NIR from Gaussian measurements of CS ratio 40%.

Fig. 5. Results of NIR from Gaussian measurements of CS ratio 25\%. The upper row is for the noiseless setting and the bottom row for the noisy setting.

Fig. 6. Results of NIR from Gaussian measurements of CS ratio 10\%. The upper row is for the noiseless setting and the bottom row for the noisy setting.

