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Abstract. Sample selection is an effective strategy to mitigate the effect
of label noise in robust learning. Typical strategies commonly apply the
small-loss criterion to identify clean samples. However, those samples
lying around the decision boundary with large losses usually entangle
with noisy examples, which would be discarded with this criterion, lead-
ing to the heavy degeneration of the generalization performance. In this
paper, we propose a novel selection strategy, Self-Filtering (SFT), that
utilizes the fluctuation of noisy examples in historical predictions to filter
them, which can avoid the selection bias of the small-loss criterion for the
boundary examples. Specifically, we introduce a memory bank module
that stores the historical predictions of each example and dynamically
updates to support the selection for the subsequent learning iteration.
Besides, to reduce the accumulated error of the sample selection bias of
SFT, we devise a regularization term to penalize the confident output
distribution. By increasing the weight of the misclassified categories with
this term, the loss function is robust to label noise in mild conditions. We
conduct extensive experiments on three benchmarks with variant noise
types and achieve the new state-of-the-art. Ablation studies and further
analysis verify the virtue of SFT for sample selection in robust learning.
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1 Introduction

Neural networks exhibit notorious vulnerability to low-quality annotation. Es-
pecially, the generalization performance would heavily degrade when label noise
arises. However, most existing datasets[18,19] are commonly collected by Web
crawlers, which inevitably contains label noise. Therefore, learning with noisy
labels (LNL) poses great challenges for modern deep models [28].

Sample selection [32,23,14,44,3] is an effective strategy to mitigate the effect
of label noise in LNL. The main idea is to select the clean instances from the cor-
rupted dataset by using a certain criterion and reduce the bias of the training set.
Inspired by the memorization effect that DNNs learn simple patterns shared by
majority examples before fitting the noise [9], existing works [12,9,41,32,23,14,44,3]
commonly apply the small-loss criterion that selects samples with loss value
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Fig. 1. Illustration of fluctuation during model
learning. Given a sample (x, y), the fluctuation event
is correlated with predicted results and can
be defined as the prediction pt−1 = y at t − 1
moment while pt∗ ̸= y (t∗ > t − 1) at subse-
quent moments. The line with the arrow indicates
the fluctuation arises.
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Fig. 2. Distributions of fluc-
tuations number across syn-
thetic CIFAR-10 with 40%
symmetric label noise after
100 epochs.

lower than a pre-defined threshold and treats them as clean instances. Although
these methods exhibit favorable properties for LNL, selecting samples with small
losses would discard those boundary examples, since they are with large losses
and usually entangled with noisy instances. However, those boundary examples
are essential for learning a good decision boundary. Moreover, the selection bias
would be accumulated and further degenerate the generalization performance as
the learning proceeds [9,32]. Besides, the loss threshold in this strategy is a cru-
cial hyper-parameter that is usually carefully tuned by cross-validation, suffering
from the issue of scalability and sensitivity.

In this paper, we have an interesting observation of the fluctuation in LNL,
which has the potential for identifying noisy samples and retaining boundary
samples. As shown in Fig. 1, a fluctuation event occurs when a sample classified
correctly at the current moment is misclassified in the following learning step.
Intuitively, as the learning proceeds, the discriminability of the classifier will be
enhanced gradually, leading to a more accurate prediction for boundary exam-
ples rather than the noisy ones. Thus, the fluctuation would frequently occur
for noisy samples but gradually disappear for boundary examples. On the other
hand, more and more boundary samples are added to the training set via the
fluctuation criterion, which can subsequently promote the learning of the classi-
fier. To show the disparity between clean examples and noisy examples, we plot
the distribution of the number of the fluctuation event in Fig. 2. The clean and
noisy sample can be essentially separated by the proposed fluctuation criterion.

Based on the above observation, we propose a novel sample selection strat-
egy, Self-Filtering (SFT), that filters out noisy samples with the fluctuation in
historical predictions. We store the historical predictions of each example for
different training iterations in an external memory bank and detect the fluctu-
ation event for each sample in the current moment. By applying this criterion,
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SFT can filter out noisy samples and retain boundary samples for current op-
timization. Meanwhile, the memory bank updates dynamically as the learning
proceeds, which can support selecting more reliable samples to boost the model
learning. To reduce the accumulated error stemming from the selection bias of
SFT, we design a regularization term to penalize the confident output distribu-
tion. By assigning the weight of the misclassified categories for the loss function,
the model can avoid overconfidence of the correct prediction and further im-
prove the robustness of our framework for severe label noise. We also integrate a
semi-supervised method, FixMatch [26], into our framework to explore the useful
information in the abandoned noisy samples, which has significantly advanced
the model performance for noise-robust learning.

The contribution can be summarized in four aspects.

– We rethink the sample selection in LNL and propose a new strategy to select
clean samples by using the fluctuation of historical predictions.

– We design a regularization term to penalise the confident output of the
network, which can faithfully mitigate the sample selection bias.

– We build a novel learning framework, Self-Filtering (SFT), and achieve the
new state-of-the-art on three benchmarks with variant noise types.

– We apply the proposed strategy to the prevailing learning framework and
achieve a significant performance promotion, demonstrating its considerable
versatility in LNL.

2 Related Work

Sample selection. The majority of previous works exploit the memorization
of DNNs and utilize the small-loss criterion to select clean samples [12,9,41,32].
One representative work is MentorNet [12] that proposes a teacher network to
select clean samples for a student network with the small-loss trick. Similarly,
Co-teaching [9,41,32] constructs a double branches network to select clean sam-
ples for each branch. A surrogate loss function [22] is introduced to identify
clean samples and theoretically guaranteed in [6]. To avoid tuning the threshold
in the small-loss trick, Beta Mixture Model [2] or Gaussian Mixture Model [14]
is introduced to separate clean and noisy examples among the training loss au-
tomatically. Zhang et al. [43] designs a meta-network trained with extra clean
meta-data to identify noisy samples. Recently, to achieve the stable prediction
for sample selection, Model Ensemble (or Mean Teacher) [23] is introduced to
compute the exponential moving-average predictions over past iterations and
replace current predictions, which performs well to confront the more complex
noise type (e.g. instance-dependent label noise). As a homologous approach that
also aims to select the boundary samples, Me-Momentum [3] modifies the train-
ing strategy and introduces two-loop training in curriculum learning.

Robust loss function. A majority of robust loss functions have been the-
oretically analysed. Compared with the categorical cross-entropy (CCE) loss,
mean absolute error (MAE) has been theoretically guaranteed to be robust to
label noise [7]. Based on this analysis, a novel generalized cross-entropy loss that
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combined CCE and MAE has been proposed in [42] where its convergence and
robustness are also analysed. Inspired by the symmetric Kullback-Leibler Diver-
gence, a symmetric cross entropy (SCE) [31] has been designed to mitigate the
effect of noisy labels. To exploit the virtue of variant noise-robust losses, a meta-
learning method is designed to learn to combine the four loss functions [1,31,8,7]
adaptively. Recently, a new family of loss functions, the peer loss [17] are pro-
posed to punish the agreement between outputs of the network and noisy labels
by adding a regularization term to cross-entropy. It has also been proved that
minimizing those robust loss functions with corrupted labels is equivalent to
minimise the cross entropy loss on the clean set under mild noise ratios.

Label correction. The pioneering methods correct the noisy labels by an
additional inference phase (e.g. knowledge graphs [15] or graphical models [37].
Recently, two types of correction functions are proposed to correction. Firstly,
transition matrix approaches [11,36,40] aim to construct a matrix that stores the
flipping probability between the true label and the noisy one and is estimated
with a set of clean data. Secondly, another family of methods utilize the output
of the network to rectify labels. For example, Song et al. [27] proposes to se-
lect the clean samples by co-teaching framework [9] and progressively refurbish
noisy samples with the prediction confidence. To achieve learning the correction
function in a data-driven way, Wu et al. [33] builds a meta-correcter to generate
labels with the input of the true label and previous predictions of meta-net.

Compared with Me-Momentum [3] that selects samples in current epoch, we
construct the memory bank and propose a novel criterion based on fluctuation
by leveraging the historical predictions. Also, compared with existing works that
select clean samples based on historical predictions (SELFIE [27] computes the
entropy value from predictions histories and RoCL [44] utilizes the variance of the
training loss), our framework exhibits two advantages: (i) Less hyper-parameter.
Our criterion contains only one hyper-parameter, namely, the size of historical
predictions. However, the selection criteria in these works both contain another
statistic threshold except the history size (e.g., an entropy threshold in [27] and a
loss variance threshold in [44]). (ii) Less sensitive. The setting of these thresholds
is related to noise ratios, requiring more cross-validation processes. Those merits
facilitate the application of our criterion to more general scenarios.

3 Methods

3.1 Problem Definition and Overall

Supposing that we have the training set D = {(xi, yi)}ni=1 ∈ (X ,Y) with cor-
rupted labels and yi ∈ [K] = {1, 2, ..., k}, the output distribution of a classifier fθ
after t training epochs can be written as p(t) = f(x; θ). Here, θ is the learnable
parameters. Learning with label noise (LNL) aims to find the optimal parameter
θ∗ which can achieve admirable generalization performance on the clean testing
set.

For a majority of sample selection methods [9,41,32,23,14,44,3], the robust
training process for classifier f can be summarized as the following phases.
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• Phase 1: select the reliable set D̃ from the polluted dataset D via a cer-
tain selection strategy. (e.g. small-loss criterion is designed to select the top τ%
of samples with the smaller loss values in the current mini-batch as the clean
samples, where τ% is the noise ratio estimated by cross-validation.)

• Phase 2: train the classifier f on the selected set D̃, and update the pa-
rameter as θ(t+1) = θt − η∇( 1

|D̃|

∑
(x,y)∈D̃

L(x, y; θt)), where η and L are the given

learning rate and loss function, respectively.
• Phase 3: repeat the above phases until finding the optimal parameter θ∗,

then return the classifier f .
Our approach modifies the aforementioned two phases to render the network

more robust on noisy labels. First, a novel criterion is proposed to select more
boundary examples, which provides more decision information in the subset set
D̃. Second, we introduce a confidence regularization term to enable the loss
function L more robust while tackling noisy labels. Eventually, we present the
learning framework, Self-Filtering (SFT), for LNL that contains two stages of
warming-up and main learning. To further exploit the useful knowledge in the
discarded examples, we adopt the idea of semi-supervised learning and incorpo-
rate FixMatch into our SFT.

3.2 Selecting with the fluctuation

The key step in our selection strategy is to go through the historical prediction
stored in the dynamically updated memory bank module. As shown in Fig.3 (b),
we collect all predictions of the training set D for the epoch t and store them
in the memory bank M. Specifically, this module contains those predictions of
T epochs in the memory bank, where the size of M is n × T . M maintains a
queen data structure with the principle of first-in-first-out (FIFO). Therefore,
for epoch t, M stores predictions of the last T epochs. Finally, for the example
(x, y) in the current epoch t, the criterion for identifying it as the fluctuated
sample can be formulated as

β = (argmax(pt1) = y) ∧ (argmax(pt2) ̸= y), (1)

when t1, t2 ∈ {t− T, ..., t}, T ≥ 2 and t1 < t2. A fluctuation event occurs when
the sample classified correctly at the epoch t1 is misclassified in the epoch t2. By
computing β for each sample with M, we discard these examples where β = 1.
Therefore, the clean samples selected by fluctuation criterion can be represented
as:

D̃ = {(xi, yi) ∈ D|βi ̸= 1}ni=1. (2)

The selected clean samples will be utilized in the following learning stage.

3.3 Learning with selected examples

SFT contains two stages: warming-up and main learning. We firstly conduct a
warming-up of a few epochs to gain the basic discriminability for the network
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Fig. 3. (a) The blue and red dashed line denote the update of memory bank and model
parameter, respectively. For selected set D̃, the objective function is LCE + LCR. For
the set Du, we remove their labels and input them to FixMatch framework. (b) MB
stores the past T epoch prediction of each sample, and select the samples without
fluctuation event to train the model. The updated classifier produces the prediction of
the whole dataset to update MB.

and achieve initialization for the memory bank module. Then, the main learn-
ing proceeds with clean samples selected via the fluctuation criterion. Also, the
external memory bank module is dynamically updated for each epoch.
Warming up. It is necessary to warm up with the whole training set for the
network before the main learning stage. However, it is usually vulnerable for
pair noise that has a certain pattern for noise transition, especially under the
extreme ratio (e.g. 40%). Therefore, we penalize the confidence for the output
of the network to avoid radically moving forward in warm-up stage. Let py

denotes the element in p for the label y, we formulate the confident-penalization
regularization term as

R = −α(pj) · logpj (3)

where pj is the element with the second largest confidence of prediction p.
Under the condition of the pair noise, we consider that the class j could be the
correct category for the noisy instance. α(pj) is an adaptive weight that can be
computed by

α(pj) = max(0, Γ − pj

py
). (4)

Here, Γ is a hyper-parameter of the confidence threshold. If the network is over-
confident in class y, it would be penalized with a larger α(pj). Finally, we can
write our objective function of cross-entropy loss with the regularizer in the
warming-up stage as

L = E(x,y)∈D[LCE(f(x, θ), y) +R(f(x, θ), y)], (5)

Main learning. By leveraging the proposed memory bank (MB) module, we
can train the classification network with the selected clean examples. Meanwhile,
the MB module is updated dynamically as the learning proceeds. Specifically, the
clean sample is selected via the fluctuation criterion and subsequently utilized for
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training the network in the current epoch. After that, we collect the predictions
for the whole examples and store them into the MB module for facilitating the
selection in the next epoch. Since the classification network is weak in the early
learning stage, the error would be accumulated in the following iteration step [9],
leading to the selection bias. To tackle this problem, we propose a regularization
term LCR to penalize the confident output distribution for an example (x, y) as
following

LCR = − 1

K

∑
k∈[K]

α(pk) · logpk, (6)

where the coefficient α(pk) can be computed by Eq. (4). The regularizer penalizes
the confident output of the model by minimizing the expectation of the loss for
each class. This is similar with the label smoothing (LS) [20] term. Recall LS of

LLS = − logpy −
∑

k∈[K]
ε logpk, (7)

where ε is a fixed smoothing coefficient and the later term can be regarded
as a confidence regularization term. Compared with LS, our coefficient α(pk)
is adaptively computed by using the predictive value for each class, which can
avoid tuning the hyper-parameter and can be more robust to the variant noise
ratios.

Let D̃ denotes the selected samples, the loss function for the main learning
stage can be formulated as

L = E(x,y)∈D̃[LCE(f(x, θ), y) + λLCR(f(x, θ), y)], (8)

where λ is a hyper-parameter set by cross-validation.

3.4 Improving with FixMatch

Our framework for sample selection is flexible, which can be combined with the
state-of-the-art semi-supervised method. Hence, to further explore the knowledge
in the discarded noise set, we introduce FixMatch [26] to the main learning
stage. Since FixMatch is play-and-plug for SFT, we denote Self-Filtering with
FixMatch as SFT+ in the following section. The SFT framework is flexible,
which can be implemented by commonly-used differentiation tools. The whole
learning framework is summarised in Fig. 3(a). More details can be found in the
supplemental material.

4 Experiments

To evaluate the performance of our proposed method, we implement experi-
ments in several dimensions: (1) Task variety: we select three visual tasks with
various dataset including CIFAR-10 [13], CIFAR-100 [13] and a real-world task
Clothing1M [37]. (2) Noise condition: we manually corrupt the partial labels
with three noise types (e.g. symmetric, pair and instance dependent noise) on
CIFAR-10&100 and various noise ratios ranging from 20% to 80%. The code is
available at https://github.com/1998v7/Self-Filtering.

https://github.com/1998v7/Self-Filtering
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4.1 Noise types

To simulate the actual noise condition in real-world, we refer to [3] manually
construct three noise types: symmetric, pair and instance-dependent label noise.
Specially, we introduce a transition matrix T to corrupt the clean label y into
a wrong label ŷ. Given a noise ratio τ , for each sample (x, y), the T is defined
as Tij(x) = P(ŷ = j|y = i), where Tij denotes that the true label transits from
clean label i to noisy label j.

(1) For symmetric label noise, the diagonal entries of the symmetric transi-
tion matrix are 1− τ and the off-diagonal entries are τ/(k− 1), where k denotes
the number of categories.

(2) For pair-flipped label noise, the diagonal entries of the symmetric tran-
sition matrix are 1− τ and there exists other value τ in each row.

(3) For instance-dependent label noise, we stay the same construct algo-
rithm with [3][34]. The actual flip rate relies on the pre-setting noise ratio τ and
the representation of images. The detail algorithm is provided in Appendix 1.

(4) For open-set label noise, it’s reported as the combination of aforemen-
tioned type noise. We select a real-world datasets to verify the effectiveness of
our framework. Clothing1M[37] contains one million images of 14 categories and
its noise ratio is around 39.46%.

4.2 Network structure and experimental setup

We adopt ResNet-18 [10] and ResNet-34 [10] to implement SFT on CIFAR-10
and CIFAR-100, respectively. The setting for the optimizer is listed as follows
that SGD is with the momentum 0.9, the weight decay is 5e-4, the batch size
is 32, and the initial learning rate is 0.02, and decayed with the factor 10 at 60
epoch. The number of epoch is set to be 75 for CIFAR-10 and 100 for CIFAR-100.
For the warming-up stage, we train the network for 10 epochs and 30 epochs for
CIFAR-10 and CIFAR-100, respectively, which is similar to Me-Momentum [3].
Typical data augmentations including randomly cropping and horizontally flip-
ping are applied in our experiments.

For Clothing1M, we utilize the same architecture of ResNet-50 pre-trained on
ImageNet. For image preprocessing and data augmentations, we resize the image
to 256×256 and crop them into 224×224. The horizontally flipping is adopted.
We train the classifier network for 15 epochs using SGD with 0.9 momentum,
weight decay of 0.0005, and the batch size of 32. The warming-up stage is one
epoch. The learning rate is set as 0.02 and decayed with the factor of 10 after 10
epochs. Following the convention from [14], we sample 1000 mini-batches from
the training data while ensuring the labels (noisy) are balanced.

Hyper-parameter setup. We set memory bank size T = 3 and confidence
threshold Γ = 0.2 for all experiments. We set the trade-off coefficient λ in loss
function as 1 and the threshold c in FixMatch as 0.95 following [26].
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Table 1. Test accuracy (%) on CIFAR-10 (the top) and CIFAR-100 (the bottom). The
mean accuracy accuracy (±std) over 5 repetitions are reported.

Symm. Pair. Inst.
Method 20% 40% 20% 40% 20% 40%

DMI [39] 88.18±0.36 83.98±0.48 89.44±0.41 84.37±0.78 89.14±0.36 84.78±1.97
Peer Loss [17] 88.97±0.47 84.29±0.52 89.61±0.66 85.18±0.87 89.94±0.51 85.77±1.19
Co-teaching [9] 87.16±0.11 83.59±0.28 86.91±0.37 82.77±0.57 86.54±0.11 80.98±0.39
JoCoR [32] 88.69±0.19 85.44±0.29 87.75±0.46 83.91±0.49 87.31±0.27 82.49±0.57
SELFIE [27] 90.18±0.25 86.27±0.31 89.29±0.19 85.71±0.30 89.24±0.27 84.16±0.44
CDR [35] 89.68±0.38 86.13±0.44 89.19±0.29 85.79±0.41 90.24±0.39 83.07±1.33
Me-Momentum [3] 91.44±0.33 88.39±0.34 90.91±0.45 87.49±0.56 90.86±0.21 86.66±0.91
PES[4] 92.38±0.41 87.45±0.34 91.22±0.42 89.52±0.91 92.69±0.42 89.73±0.51

SFT (ours) 92.57±0.32 89.54±0.27 91.53±0.26 89.93±0.47 91.41±0.32 89.97±0.49

DMI [39] 58.73±0.70 49.81±1.22 59.41±0.69 48.13±0.52 58.05±0.20 47.36±0.68
Peer Loss [17] 58.41±0.55 50.53±1.31 58.73±0.51 50.17±0.42 58.91±0.41 48.61±0.78
Co-teaching [9] 59.28±0.47 51.60±0.49 58.07±0.61 49.79±0.69 57.24±0.69 49.39±0.99
JoCoR [32] 64.17±0.19 55.97±0.46 60.42±0.35 50.97±0.58 61.98±0.39 50.59±0.71
SELFIE [27] 67.19±0.30 61.29±0.39 65.18±0.23 58.67±0.51 65.44±0.43 53.91±0.66
CDR [35] 66.52±0.24 60.18±0.22 66.12±0.31 59.49±0.47 67.06±0.50 56.86±0.62
Me-Momentum [3] 68.03±0.53 63.48±0.72 68.42±0.19 59.73±0.47 68.11±0.57 58.38±1.28
PES [4] 68.89±0.41 64.90±0.57 69.31±0.25 59.08±0.81 70.49±0.72 65.68±0.44

SFT (ours) 71.98±0.26 69.72±0.31 71.23±0.29 69.29±0.42 71.83±0.42 69.91±0.54

Table 2. Comparison results with SSL with symmetric (S), pair (P) and instance (I)
label noise.

CIFAR-10 CIFAR-100
Methods SSL S 50% P 40% I 40% S 50% P 40% I 40%

SELF [23] Mean Teacher 91.4 90.9 90.4 71.8 70.7 69.1
CORES2∗ [5] UDA 93.1 92.4 92.2 73.1 72.0 71.9
DivideMix [14] MixMatch 94.6 93.4 93.0 74.6 72.1 71.7
ELR+ [16] MixMatch 93.8 92.7 92.2 72.4 74.4 72.6

SFT+ FixMatch 94.8 92.9 94.4 75.4 74.2 74.1
SFT+∗

MixMatch 94.9 93.7 94.1 75.2 74.9 74.6

4.3 Comparison with state-of-the-arts

Baseline. We evaluate our method against the following state-of-the-art meth-
ods. (1) Robust loss function: DMI [39], Peer loss [17]. (2) Sample selection
methods: Co-teaching [9], JoCoR [32], SELFIE [27], Me-Momentum [3]. Note
that both of them explore the memorization effect and utilize the small-loss crite-
rion to select clean examples. (3) Sample selection methods with SSL: SELF [23],
CORES2∗ [5], DivideMix [14] and ELR+ [16]. Specially, SELF and CORES2∗

use the SSL methods of Mean Teacher [30] and UDA [38], respectively. DivideMix
and ELR+ both utilize MixMatch. (4) Others: CDR [35], PES [4].

Results on CIFAR-10 & 100. To evaluate the performance of SFT, we con-
duct experiments on CIFAR-10 and CIFAR-100 under three noise types with
variant noise ratios τ ∈ {0.2, 0.4}. Since SSL can dramatically improve the per-
formance, we split the table of each benchmark into two parts for a fair com-
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Table 3. Test accuracy (%) on
the Clothing1M.

Method Acc.

Cross Entropy 64.54

MentorNet [12] 67.14

Co-teaching [9] 68.51

No JoCoR [32] 70.30

SSL Forward [24] 69.84

Joint Optim [29] 72.23

Me-Momentum [3] 73.13

SFT 74.16

DivideMix [14] 74.76

SSL ELR+ [16] 74.81

SFT+* 75.08
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Fig. 4. Illustration of the performance of variant
methods as the noise ratio changes. Notably, SFT
can produce considerable performance under extreme
noise ratios.
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Fig. 5. SFT achieves the highest F-score for sample selection results on CIFAR-10 (the
top) and CIFAR-100 (the bottom).

parison. The bottom part includes methods using SSL, while the top part does
not. As shown in Tab. 1, our SFT outperforms the almost state-of-the-art on
two datasets with three noise types. Compared with the homologous approach
Me-Momentum, SFT achieves the higher accuracy of 89.97% and gains the sig-
nificant improvement of 6.24% in Symm.-40%, 9.56% in Pair.-40% and 11.53%
in Inst.-40%. The results exhibit the superiority of SFT in handling the noise
issue for learning with more categories.

Our framework is flexible that can easily integrate the semi-supervised tech-
nology (SSL) to further boost the generalization performance, denoting SFT+
(with FixMatch) or SFT+∗ (with MixMatch). Tab. 2 shows the result when com-
bining vanilla models with recent SSL techniques. The hybrid approach, SFT+
(or SFT+∗) consistently outperforms other methods. Especially, for the instance-
dependent label noise, our approach achieves the average of 1.7% improvement
compared with the state-of-the-art.
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Fig. 6. Most boundary examples can be
selected by SFT. The clusters with green
dots are samples in the same categories.
The red dots are the selected clean sam-
ples in the last ten epochs.
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Fig. 7. The losses distribution of noisy
CIFAR-10 with Pair.40% after warming-
up. There exists an obvious disparity be-
tween clean and noisy samples by using
the reguliazer R during warming-up.

Results on Clothing1M. To demonstrate the effectiveness of our method on
real-world noisy labels, we evaluate our approach on Clothing1M dataset, which
is a real-world benchmark in LNL tasks. As shown in Tab. 3, our proposal obtains
the state-of-the-art performance. For a fair comparison, we divide the table into
two parts according to using the semi-supervised technique or not. Our SFT+*
(with MixMatch) outperforms other methods and achieves the improvement of
0.27% over ELR+, demonstrating its effectiveness for the real-world application.

4.4 Further analysis

Robustness. To validate the robustness of SFT in a more challenging noisy
environment, we compare it with three robust methods [9,32,3] under a more
noise ratio setting τ ∈ {0.1, ..., 0.8}. We plot the test accuracy and F-score as
the Symm. noise ratio increases. As shown in Fig. 4, SFT produces a good perfor-
mance, even on the challenging condition with a far higher noise ratio. Compared
with the homologous approach Me-Momentum, SFT exhibits the favorable prop-
erty of selecting the clean samples and consistently outperforms Me-Momentum
on variant noise ratios. SFT also exhibits considerable robustness under extreme
noise conditions as shown in Fig. 4.
Effectiveness. We evaluate the effectiveness of SFT from these three aspects.

(1) How accurate is the sample selection strategy? We conduct the comparison
experiments on CIFAR-10 & 100 and plot the curves of F-score for the selection
result. As shown in Fig. 5, SFT achieves the highest F-score on all noise types
as the training proceeds. Under 40% noise ratios, SFT attains average 0.97 F1-
score, indicating it obtains high selection accuracy and recall scores.

(2) Are the boundary examples selected? We conduct the experiment with
Inst. & Pair -40% and record the selected set in different epoch to illustrate the
dynamic selecting process by t-SNE [21]. As illustrated in Fig. 6, most of selected
samples (red) lie around the decision boundary, demonstrating the effectiveness
of the fluctuation criterion for selecting boundary examples.

(3) How effective is the framework in the warming-up stage? We plot the
distribution of training losses for all instances after warming-up in Fig. 7. The
blue and red parts represent the losses of clean and noise labels, respectively. By
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Table 4. The significant gain with our selection criterion for other methods.

CIFAR-10 CIFAR-100
Method P 40% I 40% S 40% S 80% P 40% I 40% S 40% S 80%

Co-teaching Base 82.7 80.8 83.5 34.6 49.8 49.3 51.6 19.2
After 84.9(2.2) 83.9(3.1) 85.2(1.7) 39.7(5.1) 52.1(2.3) 51.9(2.6) 54.1(2.5) 23.6(4.4)

JoCoR Base 83.9 82.4 85.4 38.0 51.0 50.6 56.0 22.7
After 86.8(2.9) 85.6(3.2) 87.1(1.7) 41.6(3.6) 53.6(2.6) 53.6(3.0) 58.4(2.4) 26.8(4.1)

DivideMix Base 93.4 94.5 94.7 93.0 71.0 70.9 72.9 57.9
After 94.1(0.7) 94.7(0.2) 94.6(0.1) 92.8(0.2) 72.4(1.4) 72.0(1.1) 73.3(0.4) 59.1(1.2)

Table 5. Comparison of the total training time (hours) on CIFAR-10.

Co-teaching[9] MW-Net[25] MSLC[33] CORES2[5] DivideMix[14] Me-Momentum[3] SFT SFT+

2.9h 4.7h 4.1h 2.6h 4.4h 4.8h 2.4h 4.1h

introducing the regularizer during the warming-up stage, there exists an obvious
disparity between clean and noisy samples, verifying the effect of R in mitigating
the overconfidence during warming-up.

Versatility. Our fluctuation criterion is flexible and play-and-plug that can be
applied on other modern methods [9,32,14]. We replace the sample selection
phase with our selection module and conduct experiments on CIFAR-10 & 100
under four settings of noise. As shown in Tab. 4, by introducing the fluctuation
criterion, these three methods almost outperform the basic version that uses the
small-loss criterion. Even in the current SOTA work DivideMix, the improvement
of performance on CIFAR-100 is remarkable. The fluctuation criterion gains a
significant average improvement of almost 2.0% under all settings. These results
demonstrate the great flexibility of our proposed selection strategy.

Efficiency. We compare the training time with typical methods to show its
efficiency. We evaluate them on CIFAR-10 and obtain the mean value of train-
ing time with the 40% rate of three noise types. All models are trained on a
single Geforce-3090. As shown in Tab.5, SFT is consistently faster than other
methods since it can directly back-propagate with selected and does not rely on
sophisticated learning strategies, e.g., two-loop training in Me-Momentum [3].

4.5 Hyper-parameter selection

The confidence threshold Γ and the size T of the memory bank are two hyper-
parameters that need tuning with cross-validation. To study the impact of T
and Γ , we conduct ablation studies and compared the confidence regularization
(CR) with label smoothing (LS) as shown in Tab. 6, Fig. 8 and Fig. 9.

Confidence threshold Γ .We conduct the experiments from two aspects. First,
in Tab. 6, we compare different setting of Γ on our framework and the value of Γ
belongs to {0.2, 0.4, 0.6, 0.8}. As shown, the different values of Γ slightly affect
the generalization performance of the model and a relatively small Γ is more
preferred in our learning framework.
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Table 6. The hyper-parameter selec-
tion of Γ . Test acc. is reported.

CIFAR-10 0.2 0.4 0.6 0.8

Symm. 40% 89.67 89.51 89.27 89.29

Pair. 40% 89.74 90.11 89.51 89.43

Inst. 40% 89.93 89.61 89.37 89.29

CIFAR-100 0.2 0.4 0.6 0.8

Symm. 40% 69.88 69.61 69.17 69.34

Pair. 40% 69.23 69.07 68.71 68.66

Inst. 40% 69.84 69.91 69.52 69.37
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Fig. 8. Comparison confidence regularization
(CR) with label smooth (LS). Γ , ε denote the
confidence threshold and smooth coefficient
respectively.
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Fig. 9. The hyper-parameter selection of memory bank size T . Test accuracy (%) and
F-score are reported.

Further, to verify that this confidence regularization can be regarded as a
robust loss function in a mild noisy condition, we compare CR with LS on
two benchmarks with 40% symm. label noise. As shown in Fig. 8, our model
achieves the best performance when Γ = 0.2 for all benchmarks. For the smooth
coefficient ε, the setting is variant for different benchmarks (e.g. 0.1 for CIFAR-
10, 0.4 for CIFAR-100). Therefore, we recommend Γ = 0.2 for most cases.
Memory bank size T . We conduct experiments with variant settings and plot
the testing accuracy and F-score for sample selection in Fig. 9. Intuitively, the
larger size T tends to detect more fluctuation events in the memory bank and
further mitigate the selection of boundary examples. As we expected, the classi-
fication results and selection accuracy illustrate that our model attains the best
performance with a smaller T . Therefore, we set T = 3 for all experiments.

4.6 Ablation study

Selection criterion. The majority voting strategy can select samples with high
probability of consistent prediction results (right or wrong) in memory bank.
Thus, we conduct an ablation study that replaces our criterion with the voting
strategy. In Tab. 7, the significant improvement of test accuracy and F-score
compared with voting strategy verifies the superiority of the fluctuation criterion.
Regularization terms. To directly validate the effectiveness of regularization
terms for warming-up and main learning, we remove them in different stages and
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Table 7. Ablation study of each com-
ponents. The results of test accuracy
and F-score on variant noise labels are
reported.

CIFAR-10 Pair. 40% Inst. 40%

Acc. F-score Acc. F-score

SFT 89.74 0.963 90.06 0.969

w. Voting 85.11 0.862 83.92 0.846

w/o. R 88.79 0.952 88.83 0.961

w/o. LCR 87.14 0.944 87.36 0.948

w/o. R & LCR 86.05 0.940 86.31 0.946
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Fig. 10. Ablation study of selected samples
number. The solid lines and dashed lines de-
note the number of selected set D̃ and the
clean labels in D̃, respectively. The horizontal
dashed line denotes the actual clean samples
number.

retrain the model. We evaluate them with the classification accuracy and F-score
for the selected results. As shown in Tab. 7, by removing each component, the
performance of the model is degraded. Specifically, test accuracy and F-score
averagely decrease 3.72% and 0.023 on 40% noise ratio without R and LCR.
We also plot the selection curve in Fig. 10. With the support of the two terms,
the selected subset contains less noisy labels. Meanwhile, red dashed lines in two
figures are close to the horizontal dashed line, indicating the boundary samples
are almost selected by our framework.

5 Conclusion

In this paper, we propose a simple but effective framework, Self-Filtering, to se-
lect clean samples from the noisy training set. We build a memory bank module
to store the historical predictions and design the fluctuation criterion for selec-
tion. Compared with the small-loss criterion, the fluctuation strategy takes the
boundary sample into account and improves the generalization performance for
learning with noisy labels. To reduce the accumulated error of the sample selec-
tion bias, we propose a confidence-penalization term. By increasing the weight
of the misclassified categories with this term, we mitigate the noise effect in
learning proceeding and thus the algorithm is robust to label noise. Extensive
experiments and studies exhibit the great properties of the proposed framework.
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