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1 Results on DomainNet-126

In the main paper, we choose the complete 345-class split of DomainNet to report
the results. In Tab. 1, we show that the benefits using MemSAC persist even on
the split with 126 classes which has much lesser label noise, as proposed in prior
works like [6, 9, 16]. For this experiment, we choose the recommended train-test
splits in the official DomainNet website for the domains real (R), clipart (C),
sketch (S) and painting (P). MemSAC achieves an accuracy of 64.76% classes,
which is 3% larger than the next best approach, PAN (61.75%).

Source Real→ Clipart→ Painting→ Sketches→
Target C P S R P S R C S R C P Avg.

Resnet-50 54.60 57.92 43.71 50.87 38.37 43.92 66.65 50.33 39.87 48.28 52.46 43.47 49.20
MCD [10] 52.94 57.29 40.38 55.71 43.69 47.57 67.80 51.88 44.95 56.83 56.32 50.83 52.18
RSDA [3] 54.60 61.54 50.94 56.56 45.50 48.63 60.41 45.74 48.64 58.62 56.09 54.00 53.44
DANN [2] 61.67 60.27 53.86 58.23 46.46 51.63 64.17 52.70 52.88 61.55 62.73 56.70 56.90
BSP [1] 55.16 60.80 48.60 58.73 45.66 55.47 65.18 48.59 48.58 61.40 56.78 55.79 55.06
SAFN [14] 55.81 64.82 48.50 58.68 49.96 52.42 73.71 56.25 53.54 64.32 60.65 59.53 58.18
CDAN [7] 70.41 66.87 57.73 61.61 50.90 54.72 68.47 59.43 55.49 64.27 64.22 59.14 61.11
PAN [12]† 67.56 66.73 55.86 65.16 58.87 54.55 70.46 57.54 53.14 66.55 64.40 60.22 61.75

MemSAC 73.23±0.09 70.46±0.13 61.51±0.08 66.51±0.21 53.61±0.39 58.79±0.68 71.23±0.20 63.17±0.75 58.11±0.63 67.60±0.16 68.77±0.52 64.09±0.51 64.76

Table 1: Accuracy scores on 126 classes on DomainNet. Bold and underline
indicate the best and next best methods respectively. †Uses hierarchical label
annotation.

2 Using a different adaptation backbone

The benefits obtained by MemSAC are complementary to the nature of adaptation
method used. In Tab. 2a on DomainNet dataset with 345 classes, we show gains
starting from a DANN [2] and CAN [5] objective as well, besides gains using
the CDAN objective showcased in the main paper using a Resnet-50 backbone.
These results indicate that the benefits using our objective are available to a
wide variety of alignment methods.

3 MemSAC with deeper ResNets

In Tab. 2b, we show the results of the baselines as well as MemSAC with a deeper
Resnet-101 backbone. Due to memory constraints, we use a batch size
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Source Real→ Clipart→ Painting→ Sketches→
Target C P S R P S R C S R C P Avg.

DANN [2] 45.93 44.51 35.47 46.85 30.52 36.77 48.02 34.76 32.15 47.1 46.45 38.47 40.58
DANN + MemSAC 49.67 48.61 39.14 49.81 35.1 40.59 50.04 38.51 36.61 50.31 50.8 42.73 44.32

CAN [5] 40.71 37.77 33.7 54.93 31.41 37.37 51.05 33.64 30.95 52.13 42.19 32.04 39.82
CAN + MemSAC 43.79 38.99 36.71 55.36 32.41 39.46 52.48 35.21 32.89 54.15 44.60 33.02 41.59

(a) Accuracy values of MemSAC using DANN and CAN adaptation backbones on
DomainNet-345 classes. Note improved accuracy using MemSAC on top of both
the backbones.

Source Real→ Clipart→ Painting→ Sketches→
Target C P S R P S R C S R C P Avg.

Resnet-101 45.62 44.24 33.12 41.96 27.07 33.07 48.54 34.92 29.84 35.87 42.64 28.01 37.07
DANN [2] 47.71 44.1 35.99 48.33 32.00 38.54 48.13 34.57 34.23 48.19 48.56 39.67 41.67
MCD [10] 41.11 39.01 26.1 40.77 28.26 33.02 45.49 33.03 29.1 38.29 42.3 29.51 35.49
CDAN [7] 52.47 48.0 40.42 46.63 32.42 39.18 48.81 37.92 35.39 45.69 48.92 37.31 42.76
SAFN [14] 44.93 46.52 28.2 37.2 31.11 36.3 53.32 36.95 32.48 44.12 53.46 40.05 40.38

ToAlign [13] 50.10 48.27 35.98 50.24 31.41 41.10 54.60 43.67 36.82 50.15 54.32 42.06 44.89
MemSAC 56.25 52.96 42.22 53.52 37.46 43.46 53.38 42.69 39.65 53.17 55.29 44.29 47.86

(b) Results on DomainNet-345 dataset with Resnet-101 backbone and batch size of
24.

Table 2: Ablations on DomainNet-345 dataset.

of 24 for all the methods (unlike the experiments with Resnet-50 in
the main paper where we use a batch size of 32). It is clearly evident
that relative improvements by MemSAC over other baselines are still significant,
indicating that our benefits persist even with a more powerful CNN backbone.

4 Ablations on KNN-based pseudo-labeling
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A crucial choice made in the design of MemSAC is the use of kNN-based
pseudo-labeling instead of directly using the classifier predictions on unlabeled
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target samples as pseudo-labels for all the target samples. This follows from the
observation that the kNN based pseudo-labeling is generally robust to noisy clas-
sifier boundaries, especially amidst domain shifts. Moreover, with the help of the
memory bank, the neighborhood from which the nearest neighbors are computed
is much larger than the size of the mini-batch. We verify this intuition in Fig. 1,
where the mean similarity score between the samples from the same class is much
higher when trained using the proposed kNN based pseudo-labeling technique
as compared to the classifier based pseudo-labeling technique. Furthermore, we
analyze the effect of the choice of the parameter K in Fig. 2. Our accuracy is
robust to most values of K in the range of 1-20. At large values of K, however,
the accuracy falls steeply due to large amounts of noise in the pseudo-labels.
Additionally, in Tab. 4b, we show that both the memory bank and kNN based
pseudo-labeling are crucial to achieve performance gains using the consistency
loss, as removing one of them (or both of them) results in significant drop in
performance.

5 Results on Office-Home dataset

In the main paper, we show results using largest available datasets for domain
adaptation, namely DomainNet-345 as well as CUB-200 with 345 and 200 cat-
egories, respectively. In Tab. 3, we show result using a medium-sized dataset,
Office-Home [11]. Office-home contains 65 categories across 4 domains, and around
4k images in each domain. We observe that MemSAC outperforms competitive
baselines even on Office-Home. Specifically, we use CDAN as the adaptation
backbone, and report an improvement of 1.12% over this baseline, indicating the
effectiveness of MemSAC even for unsupervised adaptation even on medium-sized
datasets.

However, the results of MemSAC on OfficeHome dataset are not SOTA,
which might be attributed to two reasons. Firstly, the categories in OfficeHome
dataset are clearly distinct from each other leading to little avenues for negative
alignment, which MemSAC tries to alleviate. To illustrate this, we use a ImageNet
pre-trained Resnet-50 model and compute feature embeddings for all images
from DomainNet-clipart domain. We then use the ground truth labels to find
the class prototypes (or per-class average feature) for all the 345 classes and
compute pairwise Euclidean distance between class prototypes. Lower euclidean
distances between class prototypes indicates more class confusion and more likely
negative transfer. We compute inter-class distances for OfficeHome and CUB200
datasets as well in similar fashion and show results in Fig. 3a. Evidently, the
inter-class distances between classes from DomainNet and CUB200 are much
smaller compared to OfficeHome, and hence greater benefit in using an approach
like MemSAC.

A second reason could be that the amount of unlabeled data in OfficeHome is
much lesser compared to DomainNet on any transfer setting. On average, around
30k unlabeled samples are available in any target domains from DomainNet while
only 4k samples are available from OfficeHome. To verify this argument, we
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Table 3: Accuracy scores on 65 categories on OfficeHome [11] dataset.
Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P AVG

Resnet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN [2] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [8] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN [7] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP [1] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
SAFN [14] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
RSDA [3] 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
MemSAC 53.10 73.7 77.8 62.9 71.22 72.32 61.22 51.93 79.22 75.0 59.39 83.35 68.42
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345 dataset on R → C.

Fig. 3: (a) shows the distribution of distances between class prototypes from each
category from DomainNet, CUB-200 and OfficeHome datasets. DomainNet and
CUB-200 have lesser inter-class distances than Office-Home. (b) shows the effect of
using varying degree of target unlabeled samples on the adaptation performance.
The performance of MemSAC consistently improves as more unlabeled data
becomes available.

subsample the clipart domain from DomainNet to only use {5,10,25,50,75}% of
unlabeled data during adaptation on the transfer task R → C. As indicated in
Fig. 3b, the benefits from MemSAC grows significantly when larger unlabeled
data is available. Note that OfficeHome contains only 10% of unlabeled data
compared to DomainNet, and from Fig. 3b, the gains using MemSAC is minimal.

6 Category wise accuracies on DomainNet

We show the accuracy for each coarse category and the gain/fall in accuracy
between the baseline CDAN and MemSAC in Fig. 4 for few more tasks from
DomainNet, in addition to the R→C task shown in the main paper. Evidently,
MemSAC has non-trivial benefits over the baseline over most of the categories
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(a) C → R
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(b) P → C
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(c) P → R
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(d) S → P

Fig. 4: Category wise accuracy increase and decrease on DomainNet dataset
compared with CDAN baseline.

(marked by ↑), and any drops in accuracy (marked by ↓) are negligible. For
example, on the task of P→C, we observe improvements of 14.6% on trees
and 4.2% on category insects, thus indicating that our benefits sustain over
most categories, and are more pronounced for categories containing finer grained
classes.

7 Results on Birds-123 and CompCars datasets

In addition to the results on CUB200 in the main paper for fine-grained adaptation,
we also show the results using MemSAC on other fine-grained datasets such
as Birds-123 and CompCars [15]. Birds-123 contains images of different bird
species from 123 common categories across CUB, NaBirds and iNaturalist datasets.
CompCars, on the other hand, contains images from web and surveillance domains
of 181 car models, and involves domain shift in the form of curated web images
vs in-the-wild surveillance footage. Our method efficiently handles the domain
shift across these challenging settings as shown in Tab. 4a. MemSAC attains
an accuracy of 78.42% on the Birds-123 dataset and 52.75% on CompCars
dataset which is much higher than all prior methods including PAN, even though
PAN is specifically designed for fine-grained adaptation. These results verify the
effectiveness of MemSAC on challenging fine-grained dataset settings.
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Birds-123 CompCars

Source 72.02 15.64
DANN 63.36 48.90
PAN 74.04 48.62
CDAN 72.95 50.40
MemSAC 78.42 52.75

(a)

W/ kNN Classifier PL

w/ Mem. 47.26 44.81
w/o Mem. 43.32 43.24

(b)

DomainNet

Source Only 35.98
+ MemSAC 38.11(+2.13%)

CDAN 43.24
+ MemSAC 47.26(+4.02%)

(c)

Table 4: In a, we show the comparison of MemSAC with prior methods on fine-
grained datasets Birds-123 and CompaCars. In b, we show the role of memory
module and kNN pseudo labeling. In c, we show the role of adversarial losses to
improve MemSAC training.

8 Role of adaptation in MemSAC

We next verify the role of adaptation losses in our proposed framework. While
MemSAC can efficiently improve alignment using similarity consistency losses,
we still need to bootstrap the training using adaptation losses for few iterations,
to avoid noisy pseudo-labels in the later stages of training. As shown in Tab. 4c,
while MemSAC can still boost performance of Source Only model, the gains
observed using MemSAC alongside adaptation losses like CDAN are much higher.

9 Queue updates using momentum encoder

We now discuss possible alternative strategies to update the memory bank. For
this purpose, we generalize the update rule using a momentum encoder, proposed
in [4]. After the initial bootstrapping phase where we train the encoder on source
data for few iterations, we initialize the momentum encoder F using the state of
the encoder E . After that, at every iteration, the parameters of the momentum
encoder θF are updated as follows.

θF = (1− µ) ∗ θE + (µ) ∗ θF (1)

Here, µ is called the momentum parameter, and controls the speed of updates.
The source features encoded in the memory bank M are obtained by a forward
pass on F , while the source features used to compute the supervised loss as well
as all the target features are computed using a forward pass on E . We note that
the original update rule discussed in the main paper is just a special case of
Eq. (1), which is obtained by putting µ = 0.

The intuition behind using such a momentum based encoder is that it gives
features with a slow drift through the training, and hence can support larger
queues. We use such a momentum update on MemSAC and show results for CUB-
Drawings dataset in Tab. 5a We found no benefit using such a momentum encoder
in our method. This might be because we already bootstrap the encoder until
the features stabilize and achieve a slow-drift phenomenon, and using momentum
based updates on top of that might not improve accuracy. In light of these results,
designing better memory bank update schedules is left as a potential direction
for future work.
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µ C→D D→C Avg. Acc.

0 73.97 61.94 67.95
0.5 68.61 55.24 61.92
0.9 68.89 55.24 62.06

0.999 71.43 58.81 65.12

(a) MemSAC with different values
of momentum parameter µ.

λsc C→D D→C Avg. Acc.

0.001 65.84 51.29 58.56
0.01 69.38 55.91 62.64
0.1 73.97 61.94 67.95
1 19.02 50.56 36.29

(b) Effect of loss coefficient λsc on
the accuracy for CUB-Drawings
dataset on 200 classes.

Table 5: Ablation on CUB-Drawing dataset using Resnet-50 backbone

10 Effect of loss coefficient

We show the ablation using the loss coefficient of our sample consistency loss in
Tab. 5b on CUB-Drawing dataset. We find that using a value of λsc as 0.1 gave
the best result, while using any larger value gives much inferior results, as noisy
negative and positive pairs have a high influence on the training.

11 Training Curves

In Fig. 5, we show the trends for the mean similarity score, psuedo label accuracy
as well as the final target accuracy during training. We compare between MemSAC
which uses a consistency based loss, with an approach which does not contain
such a consistency constraint. We observe that using our sample consistency loss
gives a higher value of mean similarity score, psuedo-label accuracy as well as
final target accuracy during training, and each of them improve with training
indicating the effectiveness of our proposed loss.
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Fig. 5: Training Curves for D → C (a) Mean similarity score of within class
samples vs. Training iterations. (b) Pseudo-label accuracy vs. Training iterations.
(c) Final target accuracy vs. Training iterations
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12 Training details

In Tab. 6, we give complete details regarding all the hyperparameters used for
the experiments. While all the hyperparameters are same across both DomainNet
and CUB-Drawings, we use a memory bank M of size 24k for CUB-Drawings
and 48k for DomainNet. This is because datasets with larger number of images
can give benefit with larger memory banks.

All the models were implemented using PyTorch 1.4.0 using 2080Ti GPUs.
Following [7], learning rate is 0.003 for the feature encoder which is pretrained
on ImageNet and 0.03 for the classifier.

Hyperparameter Value

BatchSize 32
QueueSize 48000
(λadv, λsc) (1,0.1)
Temperature τ 0.07
Bootstrap Iter. 4000
Total Iterations 90k
k in kNN 5
Learning Rate for E 0.003
Learning rate for G and C 0.03
No. of GPUs 1

Table 6: Values of hyperparameters used in training MemSAC on all the experi-
ments.

13 Limitations

Domain adaptation aims to efficiently address the problem of labeling overhead in
low-resource domains enabling equitable performance of machine learning models
across geographic, social or economic factors. However, MemSAC shares with
other deep domain adaptation approaches the limitation of lack of explainability
and uncalibrated model uncertainty, which may have a negative impact on
applications where decisions based on domain adaptation have a bearing on
safety or equity. Moreover, we also note the significant room for improvement
to achieve accuracy levels of fully supervised models, as noted in Table 1 in the
main paper (MemSAC vs. Tgt. Supervised).
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