
18 Y.-H. Cao et al.

A Implementation details

Datasets. The statistics of the classification benchmarks used in our paper are
shown in Table 9.

Table 9: Statistics of the classification benchmarks used in the paper.
Datasets # Category # Training # Testing

CIFAR-10 10 50,000 10,000
CIFAR-100 100 50,000 10,000
Flowers 102 2,040 6,149
Food-101 101 75,750 25,250
Pets 37 3,680 3,669
DTD 47 3,760 1,880
Caltech-101 101 2020 1010

Training details for SSL methods. Training details for MoCov2, SimCLR,
BYOL, SimSiam and our SSQL on CIFAR-10/CIFAR-100 are shown in Table 10.

Table 10: Training details for MoCov2, SimCLR, BYOL, SimSiam and our SSQL
on CIFAR datasets in Table 1 and Table 2. τ denotes the temperature parameter,
k denotes the size of memory bank in MoCov2, and m denotes the momentum
in MoCov2 and BYOL.

Method
Settings

bs lr wd epochs optimizer lr schedule τ k m dim

SimSiam 512 0.05 5e-4 400 SGD cosine - - - 2048
MoCov2 256 0.03 1e-4 400 SGD cosine 0.2 4096 0.999 2048
SimCLR 512 0.5 1e-4 400 SGD cosine 0.5 - - 2048
BYOL 512 0.5 5e-4 400 SGD cosine - - 0.99 2048
SSQL (ours) 256 0.05 1e-4 400 SGD cosine - - - 2048

Training details for linear evaluation and fine-tuning. For ImageNet lin-
ear evaluation, we follow the same settings in [6]. For linear evaluation on other
datasets, we train for 100 epochs with lr initialized to 30.0, which is divided
by 10 at the 60th and 80th epoch. For fine-tuning, we train for 50 epochs with
lr initialized to 0.001, which is divided by 10 at the 30th and 40th epoch. The
weight decay is 0 for linear evaluation and 1e-4 for fine-tuning.

Training details for LSQ. We initialize LSQ with linear evaluated full preci-
sion models on ImageNet. Then, we train 50 epochs using SGD. We set the batch
size to 256, weight decay to 1e-5, and base lr to 0.001. We divide the learning
rate by 10 at the 30th epoch.
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Fig. 7: Visualization of weights distribution for ResNet-50 fine-tuned on Dtd.

B Experimental results

We present more experimental results here in this section. We present more vi-
sualizations of weight distribution in Sec. B.1, more transfer results in Sec. B.2.
Moreover, we investigate whether our method can be applied in more SSL frame-
works in Sec. B.3 and emerging new Transformer-like architectures in Sec. B.4.

B.1 Weight distribution

In Fig. 7, we visualize the weights distribution of different models (fine-tuned
from ImageNet pretrained models on Dtd). In this case, the backbone weights
have been updated and we can still observe the quantization-friendly property
of our model. As seen, our model has more uniform distribution, smaller ranges
and much fewer outliers.

B.2 Transfer results

Classification benchmarks. We present the ImageNet transfer results on clas-
sification benchmarks under ResNet-18 in Table 11 and the corresponding plots
are shown in Fig. 8. We can see that our SSQL not only greatly improves the per-
formance when quantized to low bit-widths, but also improves the performance
of full precision models in some cases.
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Table 11: ImageNet transfer results on classification benchmarks under R-18.

Datasets Method
Linear evaluation Fine-tuning

FP 8w8a 5w5a 4w4a 3w3a FP 8w8a 5w5a 4w4a 3w3a

CIFAR-10
SimSiam 66.6 66.3 65.5 59.3 35.5 94.5 94.5 92.9 83.6 38.5

SSQL (ours) 81.0 80.9 80.9 79.5 69.6 94.8 94.8 94.5 92.4 74.4

CIFAR-100
SimSiam 33.2 33.2 32.3 25.3 10.9 77.0 77.0 73.7 56.0 9.5

SSQL (ours) 55.8 55.9 55.8 53.5 45.5 79.0 78.8 77.6 73.4 44.8

Flowers
SimSiam 53.7 54.1 53.8 44.2 12.9 84.2 84.0 80.2 72.3 18.5

SSQL (ours) 87.4 87.1 86.8 86.1 79.9 92.0 92.0 91.6 90.9 77.0

Food-101
SimSiam 36.4 35.0 35.3 32.4 13.6 81.3 81.3 78.0 63.8 4.3

SSQL (ours) 60.7 60.9 59.9 57.6 48.7 80.9 80.9 79.9 73.0 19.6

Pets
SimSiam 48.3 48.7 47.7 42.4 6.2 80.2 80.2 77.9 54.1 8.8

SSQL (ours) 77.3 77.3 77.0 75.1 66.3 81.9 81.8 81.4 79.9 57.4

Dtd
SimSiam 54.2 54.0 53.2 50.9 31.3 66.2 66.3 66.1 51.9 16.1

SSQL (ours) 67.7 67.2 67.2 67.0 62.1 69.0 69.0 68.8 67.4 46.6

Caltech-101
SimSiam 53.9 54.3 53.4 47.6 20.6 75.6 75.6 73.5 63.1 6.4

SSQL (ours) 80.2 80.1 80.1 79.0 70.4 81.6 81.4 82.0 80.9 62.3

Combining with LSQ on COCO. We initialize LSQ with COCO fine-tuned
models. Notice that we only quantize the backbone here (without quantizing
ROI heads). As shown in Fig. 9, we can observe that our SSQL provides a
better starting point for low bit QAT training on COCO. Take 2w4a (APbb)
as an example, SSQL achieves 6.3 points higher than SimSiam (25.4 v.s. 19.1)
after the first 1k iteration, while the initial accuracy of the FP model is about
the same (38.2 v.s. 38.4). Consequently, our SSQL achieves higher final accuracy
(36.4 v.s. 35.8) and it shows that our pretrained model can serve as a better
initialization when combined with QAT methods to boost performance.

B.3 Applications in other SSL methods

In this subsection, we demonstrate that our method SSQL can also work on
other SSL frameworks. We experiment on MoCov2 and BYOL on CIFAR-10
under R-18 in Table 12. Our SSQL has consistent improvements, too.

Table 12: Linear evaluation results on CIFAR-10.
Backbone Method FP 6w6a 5w5a 4w4a 3w3a 2w4a

ResNet-18

BYOL 89.3 89.4 89.3 88.0 75.1 63.3
BYOL+SSQL 90.8 90.7 90.6 89.8 85.0 85.7

MoCov2 88.9 88.4 88.2 86.8 72.2 50.7
MoCov2+SSQL 89.6 89.6 89.5 88.5 83.4 85.2
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Fig. 8: Transfer recognition results. The first/third and second/fourth row shows
the results under linear evaluation and fine-tuning (‘FT’), respectively. Best
viewed in color.

B.4 Applications in vision transformers

In this subsection, we investigate whether the SSQL can be applied on Transformer-
like backbones to achieve effectiveness. We supplement the results on CIFAR-10
using ViT-Small by adapting SSQL to MoCov3 (we use official code and conduct
linear evaluation) in Table 13. Our SSQL does have potentials on Transformer-
like backbones.

C More analysis of the synergy

In this section, we give more analysis as a supplement to Sec. 3.3 in the paper.
We give empirical support for the weakly correlated assumption in Sec. C.1 and
analyze the synergy from another perspective in Sec. C.2.
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Fig. 9: COCO fine-tuning results using LSQ (2w4a), initialized with the fine-
tuned FP models in Table 7.

Table 13: Linear evaluation results on CIFAR-10 under ViT-Small.
Backbone Method FP 8w8a 6w6a 5w5a 4w4a

ViT-Small
MoCov3 88.0 87.6 87.2 82.2 82.0

MoCov3+SSQL 88.6 88.6 88.3 88.2 86.9

C.1 Support for the weakly correlated assumption

We plot the curve and histogram of correlation between the quantization and
contrastive errors during training (10k iterations≈100 epochs) in Fig. 10. Notice
that the value range is [−1, 1] and in most cases the correlation is around 0 (i.e.,
uncorrelated), and it does not exceed ±0.1. Experimental results verify that our
assumption is a reasonable one.
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Fig. 10: The correlation between the quantization and contrastive errors during
training on CIFAR-10 using ResNet-18. Left: Curve of the correlation. Right:
Histogram distribution of the correlation.
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C.2 Analysis of the synergy from another perspective

For simplicity, we assume f is a two-layer perceptron:

z1 = w2σ(w1 · x1) , (16)

where w1 and w2 are the corresponding weights and σ(·) is the activation func-
tion.

We consider only the first term in each loss function (i.e., the similarity
between p1 and z2) without loss of generality. Suppose we quantize w2 and
wq

2 = w2 +∆w and the analysis is the same for other weights or activations.

LSSQL =− pq1 · z2 = −h(zq1) · z2
=− h(z1 +∆z) · z2

≈−
(
h(z1) + h′(z1)∆z

)
· z2

=− p1 · z2 − h′(z1)∆z · z2 ,

where ∆z = ∆wσ(w1 ·x1). By introducing quantization noise, we can see that its
effect can be thought of as adding a random perturbation to the points before
evaluating their similarity as usual. This provides an explanation on why our
method could lead to better results.

We now investigate the backward pass for LSSQL:

∂LSSQL

∂z1
=

∂L

∂pq1
· ∂p

q
1

∂z1

=− z2 ·
∂h(z1 +∆z)

∂z1
≈− z2(h

′(z1) + h′′(z1)∆z)

(17)

∂LSSQL

∂w2
=

∂L

∂z1
· ∂z1
∂zq1
· ∂z

q
1

∂w2
=

∂L

∂z1
· σ(w1 · x1) (18)

∂LSSQL

∂w1
=

∂L

∂z1
· ∂z1
∂zq1
· ∂z

q
1

∂w1
=

∂L

∂z1
· (w2 +∆w)σ′(w1 · x1) · x1 (19)

The backward pass for LSimSiam is obvious from the above derivations:

∂LSimSiam

∂z1
= −z2h′(z1) (20)

∂LSimSiam

∂w1
= −∂LSimSiam

∂z1
· w2σ

′(w1 · x1) · x1 (21)

When comparing Equation (17) with Equation (20), we can find an extra
term −z2h′′(z1)∆z in the gradients and we think this second-order term can
help model learn better.


