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1 Setup

1.1 Details for Data Augmentations

In Sec. 4.3, we ablate the data augmentations in self-supervised learning. The
combinations of data augmentations we used are the same as the symmetric
version proposed in [3], including random cropping, resizing, horizontal flipping,
color jittering, gray scale converting, Gaussian blurring, and solarization. The
probability and parameters of the data augmentations are detailed in Tab. 1.

Table 1: The probabilities and parameters of the data augmentations
Data Augmentations Probability Parameters

Random Crop 1.0 (0.08, 1.0)
Resize 1.0 224
Horizontal Flip 0.5 -
Color Jitter 0.8 (0.4, 0.4, 0.2, 0.1)
Gray Scale 0.2 -
Gaussian Blur 0.5 (0.1, 2.0)
Solarization 0.2 128

2 More Experiments

We provide other interesting experiments in Supplementary Materials.

2.1 Longer Pre-training

Here, we benchmark the MoCo v2+ and BYOL with longer training. We also
introduce the supervised pre-training as a baseline. We start by investigating
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12 pre-trained models that vary along two dimensions, training time (i.e., 100,
200, 300, 500 epochs) and pre-training methods (i.e., supervised, MoCo v2+,
BYOL). Furthermore, we plot the results of downstream tasks in Fig. 1. For
most downstream tasks, it can be seen that all pre-training methods tend to
saturation or even degradation with longer training time (e.g., 500 epochs). On
the contrary, the linear classification accuracy consistently benefits from longer
training. This contradiction unveils the fact that longer training in self-supervised
learning helps models better adapt to the pre-training dataset, and does not
automatically improve the quality of learned representations.
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Fig. 1: The linear evaluation and transfer learning results of different pre-training
methods with various training time
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Fig. 2: The transfer performances of intermediate checkpoints

The invalidity of longer training invokes us to examine the overfitting problem
in self-supervised learning. We train MoCo v2+ and BYOL on ImageNet for
300 epochs. During training, we fetch the intermediate checkpoints for every 50
epoch, and evaluate them on downstream tasks to see how representations evolve
as the optimization proceeds.

The results are plotted in Fig. 2. Without exception, the performances on
all downstream tasks meet saturation or even decline after a period of training
time, suggesting that overfitting to pretext tasks does happen in self-supervised
learning. According to [5], lower layers of convolutional neural networks converge
rapidly during training. As for self-supervised pre-training, low-level and mid-
level representations that are of more importance in transferring to downstream
tasks [6] may stop evolving when the learning rate decays to a small value. We,
therefore, hypothesize that currently used optimization strategies (e.g., learning
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Fig. 3: The results of linear evaluation and downstream tasks under different
subsampling ratio

Table 2: The performances of linear evaluation and transfer learning. All models
use ResNet-50 as backbone and are trained for 100 epochs. Supervised-X stands
for supervised learning on ImageNet-X, where X is the number of classes. Note
that 2♭ means class taxonomy with artifact and non-artifact, and that 2⋄ means
the class taxonomy with imbalanced data distribution

ImageNet VOC07 VOC07+12 COCO CityScapes
Acc AP50 AP50 APC4

box APC4
seg APFPN

box APFPN
seg mIoU

Supervised-2♭ 9.2 70.2 79.1 36.8 32.3 37.6 34.0 75.7
Supervised-2⋄ 0.7 29.2 46.8 20.9 19.2 26.3 24.4 63.6
Supervised-10 10.6 66.5 77.1 35.8 31.6 36.4 33.0 73.0
Supervised-79 45.4 74.4 80.9 38.3 33.6 39.8 36.0 76.1
Supervised-127 53.3 74.9 81.0 38.5 33.4 39.7 36.0 75.2
Supervised-1000 77.1 76.4 81.8 38.9 33.9 40.5 36.4 76.0

MoCo v2+ 69.1 77.0 82.3 38.9 34.1 39.7 35.8 76.9
S-MoCo v2+ 69.3 76.0 82.3 38.4 33.6 39.7 36.1 77.1
BYOL 69.4 76.3 82.1 38.5 33.8 39.5 35.7 77.6

rate decays to zero) are the reason for overfitting. A better optimization strategy
is waiting to be developed.

2.2 Data Variation

Variation of pre-training data. Inspired by [2], we explore the relationship
between self-supervised learning methods and the size of pre-training data. We
uniformly sample some classes in ImageNet. For any sampled classes, all its
training images will be added to the training set. There are five ratios of sampling:
10%, 20%, 50%, 70%, 100%. To keep training iterations constant, we extend the
training epochs adaptively.

As shown in Fig. 3, the linear classification accuracy is monotonically related
to the subsampling ratio in both supervised and self-supervised pre-training. The
transfer performances reach a plateau with a relatively large subsampling ratio
(≥50%). For a low-data regime (≤20%), self-supervised pre-training has a distinct
advantage over supervised pre-training in transferring to downstream tasks.
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Semantic information of labels. Supervised pre-training with different class
taxonomies in ImageNet has been discussed in [4]. In this part, we study the
comparison between supervised and self-supervised pre-training given different
class taxonomies. The total number of training samples remains the same re-
gardless of the change of taxonomy. We use the WordNet tree [1] and follow the
practice of bottom-up clustering in [4], where leaf nodes belonging to the same
ancestor are iteratively clustered together. According to this rule, we present four
taxonomies that contain 2, 10, 79, and 127 classes respectively. We notice that the
sample proportion of 2-class taxonomy is extremely imbalanced (about 1:327). To
exclude the effect caused by imbalanced data distribution, we introduce another
merging rule, which divides all classes into artifact and non-artifact. The data
distribution is well-balanced (an approximate 1:1 ratio). Tab. 2 shows that when
the semantic information of labels is inadequate (the number of classes is less than
79) or the data is highly imbalanced (the taxonomy with 2 imbalanced classes),
self-supervised learning methods seem to be a better choice for pre-training.

2.3 More Network Architectures

In this subsection, we attempt to make sure that our conclusions still apply to
other architectures. We adopt ResNet-18 and ResNet-101 as the backbone. We
pre-train MoCo v2, MoCo v2+, and BYOL-SGD for 100 epochs. Tab. 3 shows
the linear accuracy of MoCo v2 receives a large promotion with sophisticated
model configurations (51.9% vs. 57.3% for ResNet-18 and 65.0% vs. 70.8% for
ResNet-101), which is comparable to BYOL-SGD (57.8% for ResNet-18 and
71.7% on ResNet-101). Both MoCo v2+ and BYOL achieve competitive results
on VOC07 and VOC07+12.

Archs Models
ImageNet VOC07 VOC07+12

Acc AP50 AP AP75 AP50 AP AP75

ResNet-18
MoCo v2 51.9 70.3 40.9 41.0 78.3 50.2 54.2
MoCo v2+ 57.3 71.2 41.2 41.3 78.6 50.7 55.9
BYOL-SGD 57.8 71.1 42.0 43.3 78.7 51.1 55.4

ResNet-101
MoCo v2 65.0 76.7 50.2 55.1 82.5 59.3 65.8
MoCo v2+ 70.8 76.9 50.3 55.3 82.8 59.1 65.5
BYOL-SGD 71.7 76.9 50.2 55.1 82.6 59.3 65.6

Table 3: Linear evaluation on ImageNet and detection results on VOC07 and
VOC07+12 with ResNet-18 and ResNet-101.
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2.4 Other Anchors for NormRescale

Here, we explore other anchor choices for NormRescale. We use the released
supervised1 and self-supervised (MoCo v22) pre-trained model as the anchor to
rescale the LARS-trained BYOL.

wS
VOC07 VOC07+12

AP50 AP AP75 AP50 AP AP75

w/o rescale 71.7 38.8 37.0 79.1 48.7 51.7

BYOL-SGD 76.6 48.1 51.6 82.1 56.7 62.9
Constant 76.1 47.9 51.8 82.3 56.8 62.7
MoCo v2 76.4 48.1 52.0 82.2 56.5 62.8
Supervised 76.2 48.1 52.2 82.4 56.7 63.1

Table 4: The fine-tuning results on VOC07 and VOC07+12 of LARS-trained
BYOL re-scaled by different SGD-trained models or constant.

As we can see in Tab. 4, Using the released model like supervised or MoCo v2
also bring about good results. Besides, we find the norm values of LARS-trained
weight are roughly 10 times to that of SGD-trained weight (also shown in Fig. 3b
in our paper), so we simply rescale the weight norm by a factor of 0.1 (abbreviated
as “Constant”). Tab. 4 shows that even rescale the norm with a constant, the
model does not experience significant performance degradation. NormRescale is
rather robust to the choice of anchor model.

1https://download.pytorch.org/models/resnet50-0676ba61.pth
2https://github.com/facebookresearch/moco
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