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1 More Experiments on DomainNet in Cross Domain
Setting

In Table 3 (in the main text), we train our model on Painting, Real and Sketch,
and evaluate the model’s generalization ability on Clipart, Infograph, and Quick-
draw. In this section, we evaluate our proposed DiMAE in the opposite setting
in Table 3 in the main text. Specifically, we train our model on Clipart, In-
fograph, and Quickdraw, and then evaluate our model on Painting, Real and
Sketch. Exactly following the evaluating setting in DIUL [8], we leverage the
linear evaluation on 1% and 5% label fraction setting, and leverage the full net-
work finetuning on 10% and 100% label fraction setting. We report the averaged
results on 10 runs.

We present the experimental results in S-Table 1 (DomainNet) . Our Di-
MAE gets significant gains over DIUL [8] and other SSL methods [2, 1, 3, 6, 4]
on overall and average accuracy1. Specifically, compared with contrastive learn-
ing based methods on Average Metrics, such as MoCo V2 [2], SimCLR V2 [1],
BYOL [3], AdCo [6], our generative based method, i.e., DiMAE, improves the
cross-domain generalization tasks by +4.52% and +2.96% for DomainNet [7]
on 1% and 5% fraction setting, respectively. Our DiMAE also improves the
contrastive learning based methods on 10% and 100% label fraction setting by
+27.02% and +19.21% , respectively. When we compare our DiMAE with the
generative baseline method, i.e., MAE [4], our DiMAE also improves +3.07%
and +4.13% for DomainNet on 1% and 5% fraction setting respectively, where
our model is tested by linear evaluation. Our DiMAE also improves the MAE
baseline by +11.9% and +18.29% for DomainNet on 10% and 100% frac-
tion setting, respectively, where the whole model is finetuned. The significant
improvement to other states-of-the-art methods illustrates that our proposed

1 Overall and Avg. indicate the overall accuracy of all the test data and the arithmetic
mean of the accuracy of 3 domains, respectively. Note that they are different because
the capacities of different domains are not equal.
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S-Table 1: Results of the cross-domain generalization on DomainNet. All of the
models are trained on Clipart, Infograph, Quickdraw domains of DomainNet and
tested on the other three domains. The title of each column indicates the name
of the domain used as target. All the models are pretrained for 1000 epoches
before finetuned on the labeled data. Results style: best, second best.

Label Fraction 1% Label Fraction 5%

method Painting Real Sketch Overall Avg. Painting Real Sketch Overall Avg.

ERM 6.68 6.97 7.25 6.94 6.96 7.45 6.08 5.00 6.24 6.18
MoCo V2 [2] 11.38 14.97 15.28 14.04 13.88 20.80 24.91 21.44 23.06 22.39

SimCLR V2 [1] 16.97 20.25 17.84 18.85 18.36 21.35 24.34 27.46 24.15 24.38
BYOL [3] 5.00 8.47 4.42 6.68 5.96 9.78 10.73 3.97 9.09 8.16
AdCo [6] 11.13 16.53 17.19 15.16 14.95 19.97 24.31 24.19 23.08 22.82

MAE(ViT small) [4] 17.86 24.57 19.33 21.63 20.59 24.55 30.43 26.07 27.90 27.02
DIUL [8] 14.45 21.68 21.30 19.59 19.14 21.09 30.51 28.49 27.48 28.19

DiMAE(ViT tiny) 15.36 23.73 13.8 19.37 17.63 18.11 28.17 14.48 22.57 20.25
DiMAE(ViT small) 20.18 30.77 20.03 25.63 23.66 27.02 39.92 26.50 33.59 31.15

Label Fraction 10% Label Fraction 100%

method Painting Real Sketch Overall Avg. Painting Real Sketch Overall Avg.

ERM 9.90 9.19 5.12 8.56 8.07 31.50 40.21 24.01 34.48 31.91
MoCo V2 [2] 25.35 29.91 23.71 27.37 26.32 43.42 58.61 40.38 50.66 47.47

SimCLR V2 [1] 24.01 30.17 31.58 28.75 28.59 46.79 62.32 51.05 55.71 53.39
BYOL [3] 9.50 10.38 4.45 8.92 8.11 34.02 46.48 24.82 38.59 35.11
AdCo [6] 23.35 29.98 27.57 27.65 26.97 43.55 61.42 51.23 54.37 52.07

MAE (ViT small) [4] 41.24 54.68 39.41 47.82 45.11 53.13 68.51 48.86 60.21 56.83
DIUL [8] 25.90 33.29 30.77 30.72 29.99 49.64 63.77 54.31 57.91 55.91

DiMAE (ViT tiny) 44.59 58.24 44.05 51.54 48.96 55.41 70.26 51.52 62.30 59.06
DiMAE (ViT small) 50.73 64.89 55.41 59.01 57.01 70.48 82.79 72.10 77.18 75.12

DiMAE can learn more domain-invariant features from multiple domain data in
the self-supervised learning.

2 Experiments with ViT tiny backbone

ViT tiny is a smaller backbone than ViT-small used in our paper. To illustrate
the effectiveness of our proposed DiMAE, we also provide the results when we
use ViT tiny as the backbone, because ViT tiny2 is much smaller than current
popular CNN backbone, i.e., ResNet18 [5]. We evaluate our model by exactly
following the setting in DIUL [8]. Specifically, we evaluate our model in three
different settings on two different datasets.

2 The number of parameters for the following backbone network: ViT tiny 5.49M,
ViT small 21.59M, Resnet18 11.69M. We can see that ViT tiny is much smaller
than ResNet18.
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S-Table 2: Results of the cross-domain generalization on DomainNet. All of the
models are trained on Painting, Real, Sketch domains of DomainNet and tested
on the other three domains. The title of each column indicates the name of the
domain used as target. All the models are pretrained for 1000 epoches before
finetuned on the labeled data. Results style: best, second best.

Label Fraction 1% Label Fraction 5%

method Clipart Infograph Quickdraw Overall Avg. Clipart Infograph Quickdraw Overall Avg.

ERM 6.54 2.96 5.00 4.75 4.83 10.21 7.08 5.34 6.81 7.54
MoCo V2 [2] 18.85 10.57 6.32 10.05 11.92 28.13 13.79 9.67 14.56 17.20

SimCLR V2 [1] 23.51 15.42 5.29 11.80 14.74 34.03 17.17 10.88 17.32 20.69
BYOL [3] 6.21 3.48 4.27 4.45 4.65 9.60 5.09 6.02 6.49 6.90
AdCo [6] 16.16 12.26 5.65 9.57 11.36 30.77 18.65 7.75 15.44 19.06

MAE (ViT small) [4] 22.38 12.62 10.50 13.51 15.17 32.60 15.28 13.43 17.85 20.44
DIUL [8] 18.53 10.62 12.65 13.29 13.93 39.32 19.09 10.50 18.73 22.97

DiMAE (ViT tiny) 26.27 15.10 15.43 17.55 18.93 39.95 16.46 11.34 18.47 22.50
DiMAE (ViT small) 26.52 15.47 15.47 17.72 19.15 42.31 18.87 15.00 21.68 25.39

Label Fraction 10% Label Fraction 100%

method Clipart Infograph Quickdraw Overall Avg. Clipart Infograph Quickdraw Overall Avg.

ERM 15.10 9.39 7.11 9.36 10.53 52.79 23.72 19.05 27.19 31.85
MoCo V2 [2] 32.46 18.54 8.05 15.92 19.69 64.18 27.44 25.26 33.76 38.96

SimCLR V2 [1] 37.11 19.87 12.33 19.45 23.10 68.72 27.60 30.56 37.47 42.29
BYOL [3] 14.55 8.71 5.95 8.46 9.74 54.44 23.70 20.42 28.23 32.86
AdCo [6] 32.25 17.96 11.56 17.53 20.59 62.84 26.69 26.26 33.80 38.60

MAE (ViT small) [4] 51.86 24.81 23.94 29.87 33.54 59.21 28.53 23.27 32.06 37.00
DIUL [8] 35.15 20.88 15.69 21.08 23.91 72.79 32.01 33.75 41.19 46.18

DiMAE (ViT tiny) 68.58 36.14 21.08 34.95 41.93 81.42 42.57 27.89 42.88 50.63
DiMAE (ViT small) 70.78 38.06 27.39 39.20 45.41 83.87 44.99 39.30 49.96 56.05

2.1 Evaluation on DomainNet

In this section, we evaluate our DiMAE with ViT tiny in two settings on the
DomainNet dataset, i.e., pretraining on Clipart, Infograph, Quickdraw, evaluat-
ing on Painting, Real, Sketch (Clipart, Infograph, Quickdraw → Painting, Real,
Sketch), and pretraining on Painting, Real, Sketch, evaluating on Clipart, Info-
graph, Quickdraw (Painting, Real, Sketch → Clipart, Infograph, Quickdraw).

Clipart, Infograph, Quickdraw → Painting, Real, Sketch. We exactly
follow the cross-domain generalization evaluation process in DIUL [8], which is
divided into three steps. First, we train our model on Clipart, Infograph, Quick-
draw in the unsupervised manner. Then, we will use a small number of labeled
training examples of the validation subset in Clipart, Infograph, Quickdraw to
finetune the classifier or the whole network. In detail, when the fraction of la-
beled finetuning data is lower than 10% of the whole validation subset in the
source domains, we only finetune the linear classifier for all the methods. When
the fraction of labeled finetuning data is larger than 10% of the whole valida-
tion subset in the source domains, we finetune the whole network, including the
backbone and the classifier. Last, we can evaluate the model on Painting, Real,
Sketch.

We report our results with ViT-tiny in S-Table 1. The results in S-Table 1
show our DiMAE with ViT tiny backbone has competitive results with other
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states-of-the-art methods that usually use ResNet18 or ViT small backbones
that are larger than ViT tiny. Specifically, our DiMAE with ViT tiny backbone
improves other states-of-the-art methods, including contrastive learning based
methods and generative methods, by +3.72% and +3.85% on Overall and
Average Metrics for 10% label fraction, respectively. For 100% Label Fraction
setting, our method using ViT tiny backbone improves other states-of-the-art
methods by+2.09% and+2.23% on Overall and Average Metrics, respectively.

Painting, Real, Sketch → Clipart, Infograph, Quickdraw. We exactly
follow the cross-domain generalization evaluation process in DIUL [8], which is
divided into three steps. First, we train our model on Painting, Real, Sketch in
the unsupervised manner. Then, we will use a small number of labeled train-
ing examples of the validation subset in Painting, Real, Sketch to finetune the
classifier or the whole network. In detail, when the fraction of labeled finetuning
data is lower than 10% of the whole validation subset in the source domains,
we only finetune the linear classifier for all the methods. When the fraction of
labeled finetuning data is larger than 10% of the whole validation subset in the
source domains, we finetune the whole network, including the backbone and the
classifier. Last, we can evaluate the model on Clipart, Infograph, Quickdraw.

We report our results with ViT-tiny in S-Table 2. The results in S-Table 2
show our DiMAE with vit tiny backbone has competitive results with other
states-of-the-art methods that usually use ResNet18 or ViT small backbones
that are larger than ViT tiny. Specifically, our DiMAE with ViT tiny backbone
improves other states-of-the-art methods, including contrastive learning based
methods and generative methods, by +4.04% and +3.76% on Overall and
Average Metrics for 1% label fraction, respectively. For Label Fraction 10% and
100% setting, our DiMAE with ViT tiny backbone improves other states-of-the-
art methods by +8.39% and +4.45% on Average Metric, respectively.

2.2 Evaluation on PACS

We exactly follow the protocol of [8]. Specifically, when evaluating on the “Photo”
domain, we learn the backbone on the training subset of Art, Cartoon and Sketch
on PACS in a self-supervised manner, and then linearly train a classifier with
the backbone fixed on 1% and 5% label fraction setting, and finetune a classifier
with the backbone trained on 10% and 100% label fraction setting. We evaluate
our model on the validation subset in Photo, and report the averaged results by
10 runs. We leverage the similar strategy when evaluating our method on “Art”,
“Cartoon” and “Sketch”.

We present our results in S-Table 3. In this setting, our DiMAE achieves
a better performance than previous works on most tasks and gets significant
gains over DIUL and other SSL methods on average accuracy. Compared with
state-of-the-art method DIUL and other SSL methods, our DiMAE improves
the accuracy by +10.88%, +8.78% and +2.24% on average on 1%, 10% and
100% Label Fraction setting, respectively.
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S-Table 3: Results of the cross-domain generalization setting on PACS. Given the
experiment for each target domain runs respectively, there is no overall accuracy
across domains. Thus we report the average accuracy and the accuracy for each
domain. The title of each column indicates the name of the domain used as
target. All the models are pretrained for 1000 epochs before finetuned on the
labeled data. Results style: best, second best.

Label Fraction 1% Label Fraction 5%

method Photo Art. Cartoon Sketch Avg. Photo Art. Cartoon Sketch Avg.

MoCo V2 [2] 22.97 15.58 23.65 25.27 21.87 37.39 25.57 28.11 31.16 30.56
SimCLR V2 [1] 30.94 17.43 30.16 25.20 25.93 54.67 35.92 35.31 36.84 40.68

BYOL [3] 11.20 14.53 16.21 10.01 12.99 26.55 17.79 21.87 19.65 21.47
AdCo [6] 26.13 17.11 22.96 23.37 22.39 37.65 28.21 28.52 30.35 31.18

MAE(ViT small) [4] 30.72 23.54 20.78 24.52 24.89 32.69 24.61 27.35 30.44 28.77
DIUL [8] 27.78 19.82 27.51 29.54 26.16 44.61 39.25 36.41 36.53 39.20

DiMAE (ViT tiny) 50.48 41.35 29.39 26.93 37.04 49.10 44.71 32.25 29.80 38.97
DiMAE (ViT small) 48.86 31.73 25.83 32.50 34.23 50.00 41.25 34.40 38.00 40.91

Label Fraction 10% Label Fraction 100%

method Photo Art. Cartoon Sketch Avg. Photo Art. Cartoon Sketch Avg.

MoCo V2 [2] 44.19 25.85 33.53 24.97 32.14 59.86 28.58 48.89 34.79 43.03
SimCLR V2 [1] 54.65 37.65 46.00 28.25 41.64 67.45 43.60 54.48 34.73 50.06

BYOL [3] 27.01 25.94 20.98 19.69 23.40 41.42 23.73 30.02 18.78 28.49
AdCo [6] 46.51 30.21 31.45 22.96 32.78 58.59 29.81 50.19 30.45 42.26

MAE(ViT small) [4] 35.89 25.59 33.28 32.39 31.79 36.84 25.24 32.25 34.45 32.20
DIUL [8] 53.37 39.91 46.41 30.17 42.47 68.66 41.53 56.89 37.51 51.15

DiMAE (ViT tiny) 61.85 65.09 49.79 28.28 51.25 63.75 62.74 56.51 30.56 53.39
DiMAE (ViT small) 77.87 59.77 57.72 39.25 58.65 78.99 63.23 59.44 55.89 64.39

3 Visualization

We visualize more reconstruction results of DiMAE using ViT-base in S-Figure 1.
The results show that the encoder of our DiMAE removes the domain style
and the domain-specific decoders learn specific style information. That means
DiMAE could eliminate the style noise on visible patches as no messy style
information appears in reconstructions and provide complete reconstructions
with specific domain styles.
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S-Figure 1: Reconstruction visualization of different decoders. Sketch→Real de-
notes using Sketch as source domain and Real as a different domain to recon-
struct.
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