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1 Full Proof of Proposition 1

Proposition 1 (Normalizing or freezing weights improves stability; doing both
improves the most). Given Θa, if we only normalize weights of a linear FC
classifier, we obtain Θb; if we only freeze them, we obtain Θc; if we do both, we
obtain Θd. Then, Dd < Db < Da and Dd < Dc < Da.
Proof. (1) Stability Degree of model Θa.

It is assumed that the training for all sessions will reach the minimum loss.
For the training sample m in the 0-th session, the probability that m belongs
to superclass is one, i.e., pmt,csuper

= 1 and pmt,i = 0(i ̸= csuper). According to

pmi =
exp(omi )∑I

j=1 exp(omj )
, the following conditions are satisfied,

õ(t)
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i (i ̸= csuper) = −∞. (1)

After training of T -th session has reached the minimum loss, õ
(T )
csub = b(b ∈

R), õ(T )
i (i ̸= csub) = −∞, then,
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a
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(2) Stability Degree of model Θb.
Under the same conditions above, the following conditions are satisfied ac-

cording to pmi =
exp(cos θm

i )∑I
j=1 exp(cos θm

j )
,

õ(t)
csuper

= 1, õ
(t)
i (i ̸= csuper) = −1. (3)

After training of T -th session has reached minimum loss, õ
(T )
csub = 1, õ

(T )
i (i ̸=

csub) = −1, then the following holds:
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(3) Stability Degree of model Θc.
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Compared with Θa, model Θc freezes weights of neurons corresponding to
previously-seen classes. After training of T -th session has reached its minimum

loss, õ
(T )
csuper = a, õ

(T )
csub = ∞+, õ

(T )
i (i ̸= csuper ∨ i ̸= csub) = −∞, where ∞+ > ∞

in order to offset the influence of õ
(T )
csuper , then,
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)2,

9 > Dc > 4.

(5)

(4) Stability Degree of model Θd.
Compared with Θb, model Θd freezes weights of neurons corresponding to

previously-seen classes. After training of T -th session has reached its minimum

loss, õ
(T )
csuper = 1, õ

(T )
csub = 1, õ

(T )
i (i ̸= csuper ∨ i ̸= csub) = −1, then,

Dd =
∑
i

(
õ
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Comparing the stability degree of different models, we have Dmax = Da,
Dmin = Dd and Θd is the most stable.

2 Full Analysis of Conjecture 2

Conjecture 2 (Sufficient & necessary condition of no impact of freezing embedding-
weights). p ∨ q ⇔ ¬r where p: classifier-weights are normalized, q: classifier-
weights are frozen, r: freezing embedding-weights improves the performance.
The ’only if ’ part: ¬p ∧ ¬q ⇒ r
Analysis. We have 4 propositions that are all true according to our observations:
1○ ¬p ∧ ¬q → r
2○ p ∧ q → ¬r
3○ p ∧ ¬q → ¬r
4○ ¬p ∧ q → ¬r.

They share a similar composition pattern. We summarize them as Table 1.

P Q P ∧Q R P ∧Q → R

¬p ¬q ¬p ∧ ¬q r ¬p ∧ ¬q → r
p q p ∧ q ¬r p ∧ q → ¬r
p ¬q p ∧ ¬q ¬r p ∧ ¬q → ¬r
¬p q ¬p ∧ q ¬r ¬p ∧ q → ¬r

Table 1: Compound propositions.

Let us make p, q, r an realization of general propositions
P : classifier-weights are normalized,
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Q: classifier-weights are frozen,
R: freezing embedding-weights improves the performance, respectively. We want
to construct a common proposition for all the four cases all to be true. Namely,
we need to solve for a comopsitive proposition C(P,Q) → R that satisfies the
truth table with 1○, 2○, 3○, 4○ ordered top-down.

P Q C(P,Q) R C(P,Q) → R

0 0 1 1
1 1 0 1
1 0 0 1
0 1 0 1

Table 2: A truth table that is not completed.

Note that A → B is 0 iff A is 1 and B is 0. Therefore, we want C(P,Q)’s
truth value of the 2, 3, 4 line never to be 1. Given the value pairs of P and Q,
the only way to make that happen is to let C(P,Q) be ¬P ∧ ¬Q → R, which is
a solution that satisfies all four cases, and thus is always true.

P Q ¬P ∧ ¬Q R ¬P ∧ ¬Q → R

0 0 1 1 1
1 1 0 0 1
1 0 0 0 1
0 1 0 0 1

Table 3: The truth table is realized.

Namely, we have ¬P ∧¬Q ⇒ R, which is exactly Conjecture 2, ¬p∧¬q ⇒ r,
with a change of notations.
The ’if ’ part: p ∨ q ⇒ ¬r.
Analysis. Given propositions 2○, 3○, 4○, we will combine them and derive a
logically-equivalent premise.

(p ∧ q) ∨ (p ∧ ¬q) ∨ (¬p ∧ q)
⇔ (p ∨ (p ∧ ¬q) ∨ (¬p ∧ q))) ∧ (q ∨ (p ∧ ¬q) ∨ (¬p ∧ q))
⇔

(
(p ∨ (p ∧ ¬q) ∨ ¬p) ∧ (p ∨ (p ∧ ¬q) ∨ q)

)
∧
(
(q ∨ (p ∧ ¬q) ∨ ¬p) ∧ (q ∨ (p ∧ ¬q) ∨ q)

)
⇔

(
(p ∨ p ∨ ¬p) ∨ (p ∨ ¬q ∨ ¬p) ∧ (p ∨ ∨q) ∧ (p ∨ ¬q ∨ q)

)
∧
(
(q ∨ p ∨ ¬p) ∧ (q ∨ ¬q ∨ ¬p) ∧ (q ∨ p ∨ q) ∧ (q ∨ ¬q ∨ q)

)
⇔ (1 ∧ 1 ∨ (p ∨ p ∨ q) ∧ 1) ∧ (1 ∧ 1 ∧ (q ∨ p ∨ q) ∧ 1)
⇔ (p ∨ p ∨ q) ∧ (q ∨ p ∨ q)
⇔ (p ∨ q) ∧ (p ∨ q) ⇔ p ∨ q.
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Similarly, we can derive 2○ ∨ 3○ ∨ 4○ as
(p ∧ q → ¬r) ∨ (p ∧ ¬q → ¬r) ∨ (¬p ∧ q → ¬r)
⇔ (p ∧ q) ∨ (p ∧ ¬q) ∨ (¬p ∧ q) → ¬r.

With the premise replaced, we have
2○ ∨ 3○ ∨ 4○ ⇔ p ∨ q → ¬r,

Given 2○, 3○, 4○ are all always true. it holds that p∨ q → ¬r is always true,
Namely, we have p ∨ q ⇒ ¬r.

3 Insights from Fine-tuning

3.1 Embeddings need to be contrastively learned

As shown in Fig. 1, straightforward training on coarse labels does not help much
the subsequent FSL on fine labels (now acc at ∼ 25%), while contrastive learning
self-supervised by the fine cues does help (now acc at ∼ 35%). Thus, coarsely-
trained embedding can be generalizable.

Fig. 2-left shows that freezing embedding-weight outperforms not freezing
them. It implies the embedding space without any update is generalizable, and
that, if classifier-weights are not frozen, freezing embedding-weights helps.

3.2 Freezing weights helps, surely for classifiers

Fig. 2-right implies that, if classifiers weights are frozen, then freezing embedding-
weights does not help. Comparing left with right of Fig. 2, we find that freezing
classifier-weights (right) outperforms not doing so (left), either freezing embedding-
weights (circle) or not (triangle).

Fig. 1: Ablation study of contrastive learning when fine-tuning ResNet12 w/o
IL. Left: w/o; right: w/. (CIFAR-100)
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Fig. 2: Ablation study of freezing embedding-weights for fine-tuning a contrastive
model. Left: when not freezing classifier-weights. Right: when freezing them.

4 Rethinking C2FSCIL and Knowe with More Results

Given a tree-like product catalog at Amazon.com, there is a class hierarchy per
tree, as shown in Fig. 3. Furthermore, Fig. 4 presents the basic idea of Knowe.
To learn over time (i.e., sequential learning), it is suggested in [4,5] that neural
networks can be limited by catastrophic forgetting (CF) just like Perceptron
is unable to solve X-OR. Knowledge forgetting, or called catastrophic forget-
ting/interference is about a learner’s memory (e.g., LSTM) and is a result of the
stability–plasticity dilemma regarding how to design a model that is sensitive
to, but not radically disrupted by, new input [4,5]. Often, maintaining plasticity
results in forgetting old classes while maintaining stability prevents the model
from learning new classes, which may be caused by a single set of shared weights.
Our setting requires a balance between coarse and fine performance unexplored
by existing works, as shown in Fig. 5.

Fig. 3: Two examples of Amazon item catalog. Best seen on computer.
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Fig. 4: Basic idea of Knowe. In base session we train Θ on D to get Θ(0). Per
incremental session, Θ(t) is trained on C-way K-shot support set S(t) based on
Θ(t−1), t ≥ 1 and then tested on any class seen in either D or S(1), ...,S(t).

Method Class hierarchy Few-shot Learning Incremental Learning

LwF [3] ✓
CEC [6] ✓ ✓
ANCOR [2] ✓ ✓
IIRC [1] ✓ ✓

C2FSCIL (Ours) ✓ ✓ ✓

Table 4: Comparison of settings with related works.
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Fig. 5: The stability-plasticity trade-off. Top-right is FT w/o IL; bottom-left
represents most IFSL methods; bottom-right is our approach. (CIFAR-100)
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Fig. 6: Knowe reaches a balance on BREEDS.
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Fig. 7: The visualization of all confusion matrices of Knowe tested on the
BREEDS living17 dataset.
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