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1 Theoretical Analysis

The challenge of DA is to use the source classifier to minimize the target clas-
sification error E(x,y)∼pt

[Ly(Gy(Gf (x)), y)] when target labels are unavailable.
Since the existence of domain shift, the source classifier cannot work properly
on target samples. To better account for the shift between source and target dis-
tributions, density ratio w(x) = pt(x)

ps(x)
[5,7] can be used as a metric of transferability

to measure the discrepancy between domains. Specifically, the shift will be eliminate
if and only if w(x) = pt(x)

ps(x)
= 1. Then, the target classification error can be estimated

by the source distribution ps as:

E(x,y)∼pt [Ly(Gy(Gf (x)), y))] =

∫
Dt

Ly (Gy(Gf (x)), y) pt(x)dx

=

∫
Ds

pt(x)

ps(x)
Ly(Gy(Gf (x)), y)ps(x)dx = E(x,y)∼ps [w(x)Ly(Gy(Gf (x)), y))] .

(1)

However, the density ratio w(x) is often not accessible in DA, we follow [5] and use
estimated ŵ(x) to approximate the real w(x). Specifically, LogReg [1, 4] is used to
estimate the density ratio by Bayesian formula:

ŵ(x) =
pt(x)

ps(x)
=

m(x|d = 0)

m(x|d = 1)
=

P (d = 1)P (d = 0|x)
P (d = 0)P (d = 1|x)

=
ns

nt
· P (d = 0|x)
P (d = 1|x) =

P (d = 0|x)
P (d = 1|x) ,

(2)

where m is a distribution over (x, d) ∼ X × (0, 1), denoting the Cartesian product
between sample sets and domain label sets and d ∼ Bernoulli(0.5) is a Bernoulli
variable representing which domain x belongs to. Here, ns

nt
is a constant regarding to

sample sizes and the source or the target dataset is randomly up-sampled to ensure
ns = nt. In this way, ŵ(x) only depends on P (d=0|x)

P (d=1|x) .

In DA, w(x) can be treated as the real transferability, while ŵ(x) can be considered
as the estimated transferability. Ideally, when the source and target domain is matched
perfectly, P (d = 0|x) = P (d = 1|x) = 0.5, w(x) = P (d=0|x)

P (d=1|x) = 1, target classification
error can be expressed by source one as follows:

E(x,y)∼pt [Ly(Gy(Gf (x)), y))] = E(x,y)∼ps [w(x)Ly(Gy(Gf (x)), y))]

= E(x,y)∼ps [ŵ(x)Ly(Gy(Gf (x)), y))] = E(x,y)∼ps [Ly(Gy(Gf (x)), y))] (3)

Therefore, when the gap between domains are eliminated, target classification error
can be remoted, source classifier works well on trget samples. However, there are two
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thing for us to notice. First, how to make estimated transferability ŵ(x) = 1 to remote
domain discrepancy. Second, how to eliminate the estimated bias between estimated
ŵ(x) and true w(x) to obtain unbiased transferability.

According to the above analysis, if the estimated transferability ŵ(x) is equal to the
real transferability w(x), the transferability estimation can be unbiased. We formalize
the target classification deviation as:

E(x,y)∼pt [Ly(Gy(Gf (x)), y))] =

∫
Dt

Ly (Gy(Gf (x)), y) pt(x)dx

=

∫
Ds

pt(x)

ps(x)
Ly(Gy(Gf (x)), y)ps(x)dx = E(x,y)∼ps [w(x)Ly(Gy(Gf (x)), y))] .

(4)

Based on Cachy-Schwarz Ineqaulity and the inequality of arithmetic and geometric
means, we have∣∣E(x,y)∼ps(ŵ(x)− w(x))Ly(Gy(Gf (x)), y))

∣∣
≤
√

E(x,y)∼ps [(ŵ(x)− w(x))2]E(x,y)∼ps [(Ly(Gy(Gf (x)), y))2]

≤ 1

2

(
E(x,y)∼ps [(ŵ(x)− w(x))2] + E(x,y)∼ps [(Ly(Gy(Gf (x)), y))

2]
)
, (5)

In the above inequality, since the second term is bounded by supervised learning in the
labeled source domain, we only need to focus on the first term. We use a discriminator
to alleviate the deviation between the estimated ŵ(x) and the real w(x). From our
unbiased transferability perspective, we further formalize the transferability based on
discriminator as

w(x) =
Bt(x|d = 0)

Bs(x|d = 1)
, (6)

Here, distribution B is obtained from (x, d). In this case, d ∼ Bernoulli(0.5), if d =
1, x ∼ ps or x ∼ pt. Furthermore, as the unbiased transferability is derived in the
discriminator label space, W (x) and Ŵ (x) are assumed to be the real and estimated
transferability in this space. Assume we have upper bound N ≥ 0 for W (x) subject
to N ≥ W (x) ≥ 0 according to the bounded importance weight assumption [2]. Since

W (x) =
Pd(d = 0|x)
Pd(d = 1|x) =

1− Pd(d = 1|x)
Pd(d = 1|x) =

1

Pd(d = 1|x) − 1, (7)

we have

1

N + 1
≤ Pd(d = 1|x) ≤ 1, (8)

Furthermore, since the optimal discriminator is:

Pd(x) = B(d = 1|x), (9)

then we have

Pd(x) = B(d = 1|x) = 1

1 +W (x)
, (10)
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In this way, the first term of Eq. (5) is bounded:

Ex∼ps

[
(ŵ(xi)− w(x))2

]
= Ex∼pds [(Ŵ (x)−W (x))2 ∗ ps(x)

pds(x)
]

≤2Ex∼pds [(Ŵ (xi)−W (x))2] = 2Ex∼pds

[(
Pd(d = 1|x)− P̂d(d = 1|x)
Pd(d = 1|x)P̂d(d = 1|x)

)2]

≤2(N + 1)4Ex∼pds

[(
Pd(d = 1|x)− P̂d(d = 1|x)

)2]
. (11)

Here, pds and pdt are the source and target discriminator distributions, a instance is
sampled from pd which equals to be sampled from pds or pdt. The first two rows change
the probability from source label space to source discriminator domain label space.
Then, the deviation between the real and the estimated transferability is calculated in
the discriminator label space. The second inequality in Eq. (11) can be further rewritten
as:

2(N + 1)4Ex∼pds

[(
Pd(d = 1|x)− P̂d(d = 1|x)

)2]
=2(N + 1)4

(
Ex∼pds [(Pd(d = 1|x))2] + Ex∼pds [(P̂d(d = 1|x))2]

−2Ex∼pds [P̂d(d = 1|x)Pd(d = 1|x)]
)

=2(N + 1)4
(
Ex∼pds [(Pd(d = 1|x))2]− (Ex∼pds [Pd(d = 1|x)])2

+(Ex∼pds [Pd(d = 1|x)])2 + Ex∼pds [(P̂d(d = 1|x))2]

−(Ex∼pds [P̂d(d = 1|x)])2 + (Ex∼pds [P̂d(d = 1|x)])2

−2Ex∼pds [P̂d(d = 1|x)Pd(d = 1|x)]
)

=2(N + 1)4
(
Varx∼pds(Pd(d = 1|x)) + Varx∼pds(P̂d(d = 1|x))

+
(
Ex∼pds [Pd(d = 1|x)]− Ex∼pds [P̂d(d = 1|x)]

)2)
, (12)

where the variances of outputs under real and estimated probability distributions
are Varx∼pds(Pd(d = 1|x)) and Varx∼pds(P̂d(d = 1|x)) respectively. Ideally, when the
source and target domains are aligned, the output of discriminator should be 0.5, then,
Varx∼pds(Pd(d = 1|x)) = 0. Hence, the bias of transferability can be formulated as:

Ex∼pds

[
(ŵ(x)− w(x))2

]
≤ 2(N + 1)4

[
Varx∼pds

(
P̂d(d = 1|x)

)
+
(
Ex∼pds [Pd(d = 1|x)]− Ex∼pds [P̂d(d = 1|x)]

)2
(13)

The second term of Eq. (13) is constrained since the domain adaptation process encour-
ages Ex∼pds(Pd(d = 1|x)) to approximate to Ex∼pds(P̂d(d = 1|x)). Therefore, to learn
unbiased transferability, we can minimize Varx∼pds(P̂d(d = 1|x)).

We use MCDropout [3, 6] to compute Varx∼pd(P̂d(d|x)) as:

Varx∼pd(P̂d(d|x)) ≈
1

K

K∑
k=1

(
(Gd(Gg(x)))k −

(
1

K

K∑
k=1

(Gd(Gg(x)))k

))2

, (14)
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where K is the number of times performing stochastic forward passes through the
discriminator network. We set u(x) = Varx∼pds(P̂d(d = 1|x))+Varx∼pdt(P̂d(d = 0|x)),
i.e., the modeled uncertainty. Here, We set U = [u(x1), ...u(xi), ...]. u(xi) represents
the modeled uncertainty for the ith sample.

Based on Eq. (14), we define the L2 regularized U as the bias loss and minimize
the bias loss as:

minLbias = min ||U||22 = min
Gd,Gf

nt+ns∑
i=1

(
Varxi∼pd(P̂d(d|xi))

)2
, (15)

When bias loss becomes small, the upper bound of Ex∼p̂s [(ŵ(x) − w(x))2] can be
lower,leading to a smaller bias of the target classification transfer error. an unbiased
estimation of the target classification error is achieved if Lbias = 0, where the estimated
ŵ(x) are equal to the true w(x).

2 Implement Details

Our results are all obtained without heavy engineering tricks. We randomly run our
methods with batch size 64 for three times with different random seeds {0, 1, 2} via
PyTorch, and report the mean accuracy. We run all the experiments on a single Titan
V100 (32G) GPU with 20 epochs for Office-31 and 30 epochs for Office-Home and
VisDA.

2.1 Implement Details for UDA scenarios

For the Office-31 and Office-Home datasets, we use the pretrained ResNet-50 model
as the backbone, while selecting ResNet-101 for larger and more challenging VisDA
dataset. Following DANN, CADA, MDD and TransPar, we replace the original FC
layer with a bottleneck layer (256 units for DANN-based and CADA-based, 1024 units
for MDD-based and TransPar-based). Specifically, we reimplement CADA on our own,
leading to more similar implemention with DANN.

We update the unbiased transferbility each epoch by using the normalized variance
of 10 times MCDropout forward propagation. Specifically, the normalization is con-
ducted following the formulation xi =

xi−min(xi)
max(xi)

and the normalized variance is seen
as unbiased transferbility for the next adversarial adaptation and pseudo label learn-
ing. Meanwhile, the Lbias loss is obtained by 3 times MCDropout forward propagation
each batch during training.

As a plug-in, we adopt the same learning rate scheduler, base learning rate, weight
decay factor and use the same optimizer as DANN, CADA, MDD and TransPar. For
all experiments, the training augmentation contains RandomResizedCrop and Ran-
domHorizontalFlip except CenterCrop and RandomHorizontalFlip for VisDA. The
default hyper-parameter αtce is 1, αbias is 0.01.

2.2 Implement Details for SSDA scenarios

Under SSDA setting, we follow the basic setting of UDA, but in this case, not only
source domain, but also a part of target domain have labels. We follow the normal
setting in SSDA, only 1% of target samples are randomly selected out as target labeled
domain. During training, each batch has 64 samples, 16 samples from source domain,
16 samples are from target labeled domain and 16 samples are from target unlabeled
domain. The parameter setting is the same as UDA.
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2.3 Implement Details for SSL scenarios

Under SSL setting, we make a little change to the DA setting, we treat target domain
under DA setting in two parts: labeled target domain and unlabeled target domain.
The labeled target domain contains 3 labeled samples for each class setting as source
domain, the remained unlabeled target domain is set as unlabeled domain. Here, there
is no domain gap between labeled and unlabeled domain while there is still some
discrepancy between labeled and unlabeled domain due to label lacking.

We use ResNet-34 as backbone networks and adopt SGD with learning rate of
1e-3, momentum of 0.9 and weight decay factor of 5e-4. We decay the learning rate
with a multiplier 0.1 when training process reach three quarters of the total iterations.
The batch size is set as 64 for Office-Home. There are 32 labeled samples and 32
unlabeled samples in each batch for training. For adversarial training, we use gradient
reversal layer (GRL) to flip gradient in the backpropagation between feature encoder
and domain discriminator to obtain domain invariant.
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