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Abstract. Semi-supervised learning (SSL) has achieved new progress
recently with the emerging framework of self-training deep networks,
where the criteria for selection of unlabeled samples with pseudo labels
play a key role in the empirical success. In this work, we propose such a
new criterion based on consistency among multiple, stochastic classifiers,
termed Stochastic Consensus (STOCO). Specifically, we model parame-
ters of the classifiers as a Gaussian distribution whose mean and stan-
dard deviation are jointly optimized during training. Due to the scarcity
of labels in SSL, modeling classifiers as a distribution itself provides ad-
ditional regularization that mitigates overfitting to the labeled samples.
We technically generate pseudo labels using a simple but flexible frame-
work of deep discriminative clustering, which benefits from the overall
structure of data distribution. We also provide theoretical analysis of
our criterion by connecting with the theory of learning from noisy data.
Our proposed criterion can be readily applied to self-training based SSL
frameworks. By choosing the representative FixMatch as the baseline,
our method with multiple stochastic classifiers achieves the state of the
art on popular SSL benchmarks, especially in label-scarce cases.

Keywords: Semi-supervised learning, stochastic classifiers, consistency
criterion, deep discriminative clustering

1 Introduction

The practical success of deep learning across a range of application problems
assumes the access to massive amounts of annotated training data. However,
data annotations are usually costly, and in some cases they could be difficult to
be acquired due to, e.g., the lack of domain expertise. The situation motivates
topics of data-efficient learning, such as semi-supervised learning (SSL) [25], few-
shot learning [15], and domain adaptation [57], etc. Among them, SSL is a more
classical one that aims for model learning with a few number of labeled samples
and a large number of unlabeled ones from the same data distribution.

Deep SSL achieves good progress recently, and the methods generally fall
in three categories. Those in the first category are based on self-training with
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pseudo labels [18,25]; they work better by selecting unlabeled samples with
pseudo labels assigned by the previously learned model, and then updating the
model in a supervised manner using both the labeled and pseudo-labeled data;
the selection criteria are usually based on confidence filtering of pseudo labels
[16,26,44,53], where the unlabeled samples with high confidence remain and oth-
ers are discarded. Methods in the second category are based on consistency reg-
ularization that enforces the consistency of model predictions between a sample
and its perturbed counterpart, including randomly augmented duplicates [42],
virtual adversarial examples [33], similar/smooth neighbors [30], to name a few;
the smoothness assumption is also considered in these methods, i.e., close input
samples should have close labels. The last category of FixMatch [44] and Co-
Match [26] has shown remarkable performance by integrating self-training and
consistency regularization. In spite of these advances, we show in this paper that
the selection criteria in existing methods can be further improved for better SSL.

Specifically, we propose a novel consistency criterion among multiple stochas-
tic classifiers under the self-training framework of SSL, termed Stochastic Con-
sensus (STOCO); Fig. 1 gives the illustration. The proposed criterion is partially
inspired by co-training [3,6,8] and tri-training [41,55]; they leverage category pre-
dictions of one or two classifiers on unlabeled samples to enlarge the training
set, wherein a design principle is based on majority voting that shares a simi-
lar insight with the popular techniques of ensemble learning [7,12]. In classical
ensemble learning, the number of model parameters grows linearly with that
of model classifiers. To improve the efficiency, we propose the use of stochastic
classifiers [29] for consistency criterion, where parameters of multiple stochas-
tic classifiers are sampled from a same Gaussian distribution whose mean and
standard deviation are simultaneously optimized during training. In the extreme
case, one can sample an infinite number of classifiers while keeping the model
size unchanged. Due to the scarcity of labels in SSL, modeling classifiers as a
distribution itself can provide regularization that mitigates overfitting to the la-
beled samples. We note that a recent work UPS [39] uses MC-dropout [17] to
model randomness, which is model-dependent and data-independent, and yields
diverse network structures; differently, STOCO uses stochastic classifiers, whose
parameters are modeled as a learnable, model-agnostic Gaussian distribution
that can dynamically capture the pattern of sensible decision boundaries, directly
benefiting model generalization, as demonstrated in Sec. 4.

To implement our proposed consistency criterion, for any unlabeled sam-
ple, we compute the element-wise product of category predictions from multiple
stochastic classifiers, and select samples with the maximum value in the product
higher than a pre-defined threshold; we then take an average of the predictions
from multiple classifiers, and generate pseudo labels from the thus obtained av-
erages using a simple but flexible deep learning based discriminative clustering
framework [13]. Intuitively, the pseudo labels are generated to both encourage
the cluster size balance and respect the underlying data distribution. In this
work, we provide theoretical analysis of our proposed criterion by connecting
with the theory of learning from noisy data [1]. Our method can be readily
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applied to self-training based SSL frameworks. Choosing the representative Fix-
Match as the baseline, our method with multiple stochastic classifiers achieves
the state of the art on four popular benchmarks, especially in label-scarce cases.

2 Related Works

Over the past two decades, a huge literature has emerged on semi-supervised
learning (SSL), including a broad variety of algorithms [14]. We focus on deep
learning based ones, which can be mainly divided into three categories except
for those meta-learning based SSL approaches [19,27,36,47].

Methods in the first category leverage the idea from the earlier works [32,43]
that pseudo labels for unlabeled data are produced by the trained model itself
and then used to refine the current model, termed as self-training. Such a simple
strategy is widely adopted or developed in various fields [16,18,25,39,40,51,56,57].
Lee [25] assigns the highest-score category to an unlabeled sample. Entropy
minimization [18] directly uses predicted class probability distributions as pseudo
labels. To improve, confidence thresholding [16] is often used to select reliable
pseudo labels. Recently, UPS [39] utilizes both uncertainty and confidence of a
network prediction to select a more accurate subset of pseudo labels.

The second category is consistency regularization, which enforces the consis-
tent prediction between a sample and its counterpart perturbed by modifying the
model [24,38,46,54] or input [2,30,33,42]. For example, Rasmus et al. [38] mini-
mize the difference between the activations of the unperturbed parent model and
those of the perturbed models after denoising; Mean Teacher [46] is the moving
average over weights of model parameters, whose predictions are used as targets;
WCP [54] derives the worst-case perturbations on network weights and structures
via optimizing with spectral methods and then stabilizes model predictions in
presence of such perturbations; Sajjadi et al. [42] make the model prediction con-
sistent for an individual unlabeled sample when it goes through multiple passes
of random transformation; VAT [33] reduces the divergence between model pre-
dictions of the vanilla unlabeled sample and its virtual adversarial counterpart;
SNTG [30] constructs a graph based on mean teacher predictions to guide the
student model so that the neighbors have similar features; PAWS [2] enforces
the consistency of distance-based, non-parametrically predictions between the
anchor and positive views of a same unlabeled image.

The last category includes methods combining self-training with consistency
regularization [4,5,26,44,50,53]. Apart from mixup, ReMixMatch [4] encourages
alignment between marginal class distributions of labeled and unlabeled data,
and makes consistent predictions between a weakly-augmented image and mul-
tiple strongly-augmented images of the same sample. FixMatch [44] trains the
model on the strongly-augmented version of a sample with the prediction on
its weakly-augmented version as the pseudo label; pseudo labels are selected
above a pre-defined confidence threshold. Flexibly adjusting class-wise confi-
dence thresholds is introduced in [53], where the principle is to scale down the
fixed threshold if one class has less highly confident samples. CoMatch [26] uti-
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Fig. 1: Diagram for our method of stochastic consensus (STOCO). We sam-
ple multiple classifiers from a learned Gaussian distribution N (µ,Σ); for the
weakly-augmented version of any unlabeled sample, we calculate the element-
wise product of category predictions from these stochastic classifiers and se-
lect samples with the maximum value in the product higher than a pre-defined
threshold τ ; we take an average over the predictions from multiple classifiers,
and generate pseudo labels from the thus obtained averages via deep discrimina-
tive clustering; then, with these derived targets, the model is trained using the
strongly-augmented version of selected samples via a cross-entropy loss H(p, q).

lizes the similarities between embeddings of unlabeled samples to weight and
sum their class probabilities as the pseudo label; a pseudo label graph is then
constructed to regularize the embedding graph. Our method shares a similar
motivation with these ones, but differs in the aim to progressively improve the
noise rate of selected samples by applying the proposed consistency criterion
among multiple stochastic classifiers, in a distinctive perspective of designing a
more strict criterion, which is under-explored.

3 The Proposed Method

Consider a labeled batch with nx pairs of samples and one-hot labels X =
{(xi,yi)}nx

i=1, and an unlabeled batch with nu samples U = {ui}nu
i=1, where nu =

γnx. Here, γ controls the relative size of X and U . Let the number of classes be
K. The objective of semi-supervised learning (SSL) is to predict class labels for
unseen samples by learning a feature extractor g(·;θg) that lifts any input sample
to the feature space Z, and a classifier f(·;θf ) that outputs class probabilities
from the feature z ∈ Z, where θg and θf collect the network parameters of
feature extractor and classifier respectively. Let p(x;θm) be the label distribution
predicted by the classification model f(g(·)), where θm = {θg,θf} collects all
parameters of the model. LetH(·, ·) be the cross entropy between two probability
distributions. For unlabeled data, we consider two types of data augmentation: a
strong one (i.e., RandAugment [11]) and a weak one (i.e., standard flip-and-shift
strategy), denoted by A(·) and α(·) respectively.
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3.1 FixMatch

FixMatch [44] integrates two simple but effective SSL techniques, self-training
[25] and consistency regularization [42]. The recent theoretical result [48] has sug-
gested that such a combination could achieve high accuracy concerning ground-
truth labels. Specifically, FixMatch optimizes two losses: a supervised loss Ls

and an unsupervised loss Lu, computed on X and U respectively. Ls is the cross
entropy between predicted label distribution and ground-truth one, computed
on the weakly-augmented labeled images:

Ls =
1

nx

nx∑
i=1

H(p(α(xi);θm),yi). (1)

The computation of Lu is as follows. For the weakly-augmented unlabeled images
{α(ui)}nu

i=1, FixMatch first produces category predictions {p(α(ui);θm)}nu
i=1; the

images with max p(α(ui);θm) > τ are selected and their pseudo labels are gen-
erated by ŷi = argmax p(α(ui);θm), where the hyperparameter τ determines
the threshold of traditional confidence filtering [16,40,44,50,57]; then, the model
is trained on the strongly-augmented version of the selected samples to predict
the generated pseudo labels. For any selected sample ui, we denote the one-hot
pseudo label of α(ui) as ŷi and write Lu as the cross entropy between predicted
label distribution of A(ui) and ŷi:

Lu=
1

nu

nu∑
i=1

I[max p(α(ui);θm)>τ ]H(p(A(ui);θm), ŷi), (2)

where I[·] is an indicator. Combining Ls and Lu gives the overall loss of FixMatch:

Loverall = Ls + λuLu, (3)

where λu is to make a trade-off in the joint optimization problem. Optimizing
Eq. (3) implements self-training and consistency regularization simultaneously.

3.2 Our Method: Stochastic Consensus

FixMatch achieves the state-of-the-art performance by setting a high τ , which
improves the quality of pseudo labels. However, its use of the traditional confi-
dence criterion is sub-optimal since it only leverages the prediction information
from one classifier. The earlier works of co-training [8] and tri-training [55] have
suggested that the prediction information from other classifiers can be helpful.
To this end, we propose for SSL a novel sample selection scheme, the consis-
tency criterion among multiple classifiers, which can further improve the quality
of pseudo labels. Generally, the model size will linearly increase as the number
of classifiers grows. To enhance efficiency, we propose to use stochastic classifiers
[29], which are modeled by a Gaussian distribution whose parameters are jointly
learned in training. One can sample an arbitrary number of classifiers from the
learned distribution while keeping the model size consistent. We thus term our
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proposed method as Stochastic Consensus (STOCO). Moreover, we use a simple
but flexible deep learning based discriminative clustering framework [13] to gen-
erate a soft version of pseudo labels, which encourages cluster size balance while
avoiding the introduction of additional hyperparameter: temperature T [4,5].
Consistency Criterion among Stochastic Classifiers. A Gaussian distribu-
tion N (µ,Σ) is used to model the classifier f(·;θf ), i.e., θf ∼ N (µ,Σ), where
µ and Σ are the mean vector (by flattening the weight matrix) and diagonal
covariance matrix respectively. With the reparametrisation trick [22], the over-
all loss will be back-propagated to the learnable parameters of µ and Σ. With
diagonal Σ, we can always keep the model size as having two classifiers. To be
specific, we first draw m vectors {ϵj}mj=1 of the same size as µ from a standard

Gaussian distribution. Then, m stochastic classifiers {θj
f}mj=1 are derived by:

θj
f = µ+ σ ⊙ ϵj , (4)

where σ is the diagonal of Σ and ⊙ indicates element-wise product. Due to the
nature of randomness in the independent sampling, classifiers in {θj

f}mj=1 are
different; meanwhile, they do not deviate too much from each other since they
come from the same source, thus stabilizing training and avoiding degeneration.
On the other hand, since SSL only has access to a few labeled samples, a set of
sensible solutions might exist and thus it is natural to model the classifier as a
distribution, which also acts as an implicit regularization to mitigate overfitting.
These characteristics provide sufficient conditions for our consistency criterion.
For a weakly-augmented version of a given unlabeled sample ui, we extract the
feature by zα

i = g(α(ui);θg). Each classifier in {θj
f}mj=1 takes zα

i as input and

outputs the class probability distribution p(zα
i ;θ

j
f ). We take an ensemble of the

predicted label distributions by computing the element-wise product:

ṗ(zα
i ) = p(zα

i ;θ
1
f )⊙ p(zα

i ;θ
2
f )⊙ · · · p(zα

i ;θ
m
f ). (5)

The sample will be selected if max ṗ(zα
i ) > τ . The proposed criterion is in

fact an evolved version of self-training, which selects unlabeled samples for one
classifier if all classifiers are confident of the same class. Such a selection strategy
is essentially majority voting, leading to more reliable results [7,12,37]. Without
loss of generality, the cross entropy in Lu is computed between p(zA

i ;θ1
f ) and

the one-hot form of ŷi = argmax ṗ(zα
i ), where zA

i = g(A(ui);θg).
Pseudo Label Generation via Deep Discriminative Clustering. The core
idea is to introduce an auxiliary distribution [13,20,49] by considering the over-
all data structure in the feature space, which enforces structural regularization.
Specifically, given m predicted label distributions {p(zα

i ;θ
j
f )}mj=1 for the weakly-

augmented version of an unlabeled sample ui, we take the average as:

p̄(zα
i ) =

1

m

m∑
j=1

p(zα
i ;θ

j
f ), (6)

which integrates the prediction information from all m stochastic classifiers and
is still a probability distribution (i.e.,

∑
p̄(zα

i ) = 1). For unlabeled data {ui}nu
i=1,
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we collectively write the predicted probability vectors {p̄α
i }

nu
i=1 as P , where

p̄α
i = p̄(zα

i ). We also write p̄αik as the k-th element of p̄α
i . To refine the model

predictions iteratively, we then introduce a target counterpart Q = {q̄α
i }

nu
i=1,

which is obtained by optimizing the following objective [13]:

min
Q

KL(P |Q) + KL(ϱ|π), (7)

where ϱ = 1/nu

∑nu

i=1 q̄
α
i is the empirical label distribution, π is the uniform dis-

tribution, and KL(·|·) denotes the KL divergence between two distributions. The
first term in Eq. (7) minimizes the divergence between P and Q, which avoids
the targets deviating too much from the predictions and thus shows respect to
the underlying data distribution; the second term minimizes the divergence be-
tween ϱ and π, which avoids degenerate solutions (i.e., cluster merging) and
encourages cluster size balance. The closed-form solution of Q is derived by [13]:

q̄αik =
p̄αik/(

∑
i′ p̄

α
i′k)

0.5∑
k′ p̄αik′/(

∑
i′ p̄

α
i′k′)0.5

, (8)

which generates the pseudo labels to supervise the model learning, whose effec-
tiveness has been demonstrated in various applications [9,21,28,34,45].

Given ṗ(zα
i ) and q̄α

i for any unlabeled sample, we have an improved version
of the unsupervised loss Lu as:

Lu =
1

nu

nu∑
i=1

I[max ṗ(zα
i ) > τ ]H(p(zA

i ;θ1
f ), q̄

α
i ). (9)

3.3 Theoretical Analysis

We provide theoretical analysis for our method to show its progressively im-
proved classification error by connecting with the theory in [1]. The work [1]
adapts the probably approximately correct (PAC) learning theory from reliable
data to noisy data, giving a learning algorithm guidance on how to handle in-
correct training samples. The theory is explained below.

Theorem 1. ([1], Theorem 2) If we draw a sequence ς of

ζ ≥ 2

ϵ2(1− 2η)2
ln(

2N

δ
) (10)

samples, then a hypothesis h that minimizes the disagreement with ς will have
the PAC property:

Pr[d(h, h∗) ≥ ϵ] ≤ δ, (11)

where ϵ is the classification error rate of the worst-case hypothesis, η (< 0.5) is
an upper bound on the classification noise rate, N is the number of hypotheses, δ
is a confidence parameter, and d(·, ·) is the sum over the probability of elements
from the symmetric difference between hypotheses h and h∗ (the ground truth).
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Theorem 1 tells that if the condition (10) is satisfied, then the difference between
the conjectured rule h and the correct rule h∗ will be small (less than ϵ) with a
high probability (greater than 1− δ). Following [55], we have:

v =
c

ϵ2
= ζ(1− 2η)2, (12)

where c = 2ν ln( 2Nδ ), v is an intermediate variable, and ν is a positive number to
make the condition (10) hold equality. During the model training of our method,
the classification noise rate at the t-th iteration is estimated by:

ηt =
ηtx|X |+ η̌tu|U t

l |
|X ∪ U t

l |
, (13)

where ηtx denotes the classification noise rate on the labeled set X , ηtx|X | is
accordingly the number of labeled samples mislabeled by the model, U t

l indicates
the set of unlabeled samples selected by our method, η̌tu denotes the estimation
of the upper-bound classification noise rate on U t

l , and η̌tu|U t
l | is accordingly the

number of mislabeled samples in U t
l . According to Eq. (12), vt is computed by:

vt=ζt(1−2ηt)2= |X ∪U t
l |
(
1−2

ηtx|X |+η̌tu|U t
l |

|X ∪ U t
l |

)2

. (14)

Eq. (12) shows that v is proportional to 1/ϵ2, i.e., ϵt < ϵt−1 if vt > vt−1,
suggesting that the classification model can be progressively improved via the
use of U t

l in training. The condition vt > vt−1 can be also written as:

|X ∪ U t
l |
(
1−2

ηtx|X |+η̌tu|U t
l |

|X ∪ U t
l |

)2

> |X ∪ U t−1
l |

(
1−2

ηt−1
x |X |+η̌t−1

u |U t−1
l |

|X ∪ U t−1
l |

)2

. (15)

Considering that ηtx and ηt−1
x can be very small and assuming that 0 < η̌tu, η̌

t−1
u <

0.5, we can simplify the condition (15) as:

0 <
η̌tu
η̌t−1
u

<
|U t−1

l |
|U t

l |
< 1. (16)

Our consistency criterion among multiple stochastic classifiers conducts a strict
selection process, where one unlabeled sample will be selected if all classifiers
have consistent and confident predictions, leading to a lower classification noise
rate than the traditional confidence filter used in FixMatch. It implies that the
assumption of 0 < η̌tu, η̌

t−1
u < 0.5 would be implemented and thus the condition

of η̌tu < η̌t−1
u would be met. On the other hand, the number of unlabeled samples

selected by our method would increase in a gradual manner with the training
due to the strict selection; consequently, the conditions of |U t

l | > |U t−1
l | and

η̌tu|U t
l | < η̌t−1

u |U t−1
l | would be satisfied. These analyses suggest that our method

would iteratively improve the model performance, as demonstrated in Sec. 4.2.
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4 Experiments

In this section, we follow FixMatch [44] in terms of hyperparameter setting and
model architecture, and evaluate our method using FixMatch as the backbone
on typical semi-supervised learning (SSL) benchmark datasets.

4.1 Setup

Datasets. We use the following four SSL benchmark datasets for our experi-
ments with various number of labeled samples. CIFAR-10 [23] contains 60, 000
colour images in 10 classes, with 6, 000 images per class. There are 50, 000 train-
ing images and 10, 000 test images. The 10 classes are completely mutually ex-
clusive. We follow FixMatch and examine on the three settings of 40, 250, and
4, 000 labels. CIFAR-100 [23] also has 60, 000 images in total but consists of
100 classes, resulting in a more chanllenging classification scenario. Each class
has 600 images, where 500 images are for training and the remaining 100 are
for testing. We experiment on 400-, 2, 500-, and 10, 000-label settings. SVHN
[35] includes 73, 257 images for training and 26, 032 images for testing. There
are 10 classes in SVHN, corresponding to 10 digits of {0, 1, . . . , 9}. Images in
SVHN have a colored background and multiple extremely blurred digits, which
are taken from the real-world streets. We evaluate on the three settings of 40,
250, and 1, 000 labels. STL-10 [10] is a dataset tailored for SSL, which com-
prises 5, 000 labeled color images of size 96× 96 and 100, 000 unlabeled images.
The unlabeled samples are drawn from a distribution slightly shifted from the
one of labeled data, leading to a more realistic test. The labeled set is split into
ten pre-defined folds of 1, 000 images each. We evaluate on five of these ten folds.
Implementation Details. For all experiments, we follow FixMatch’s training
protocol, including optimizer, learning rate schedule, and data preprocessing,
and consistently apply the same hyperparameter setting, e.g., γ = 7, τ = 0.95,
and λu = 1. Besides, we empirically set the classifier number m as 5. For CIFAR-
10 and SVHN, we use a Wide ResNet-28-2 [52] as the base network; for CIFAR-
100, we use a Wide ResNet-28-8 that leverages more convolution filters to cope
with larger label space; for STL-10, we use a Wide ResNet-37-2 that utilizes
more convolution layers to handle higher input resolution. For inference, we use
a fixed classifier determined by the learned mean µ and report the classification
result of mean±std over five trials with different folds of labeled data.

4.2 Ablation Studies and Learning Analyses

Ablation Studies. To examine the effects of two key components in our method,
we conduct careful ablation studies on CIFAR-10 with 40 labels by evaluating
several variants of our method: (1) STOCO (w/o CC and DDC), which removes
both consistency criterion among stochastic classifiers and pseudo label gener-
ation via deep discriminative clustering, namely FixMatch; (2) STOCO (w/o
CC), which removes the consistency criterion only; (3) STOCO with varied
number of stochastic classifiers, i.e., m ∈ {1, 2, 5, 10, 15, 20}. Results are shown
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Method STOCO (w/o CC and DDC) STOCO (w/o CC) STOCO (m=1) STOCO (m=2) STOCO (m=5) STOCO (m=10) STOCO (m=15) STOCO (m=20)

Error rate 11.27 9.25 8.46 6.68 4.74 4.86 6.79 7.19

Table 1: Ablation studies. We follow [4,26,44] to report error rates on a single
40-label split from CIFAR-10. STOCO (w/o CC and DDC) removes both con-
sistency criterion among stochastic classifiers and pseudo label generation via
deep discriminative clustering, namely FixMatch. STOCO (w/o CC) removes
the consistency criterion only. STOCO (m = 5) is with 5 stochastic classifiers,
i.e., our method.

in Table 1. We observe that our method (m = 5) degrades by 4.51% after re-
moving the consistency criterion, and then by 2.02% after successively removing
the deep discriminative clustering. This verifies that both components are in-
dispensable and thus our method has a reasonable design. Given that the only
difference between STOCO (m = 1) and STOCO (w/o CC) is whether they use
a stochastic classifier, the former slightly outperforms the latter, showing the
superiority of the stochastic classifier. The error rate decreases with the growth
of m when m ≤ 5, indicating that more classifiers can enhance the generaliza-
tion ability via more strict sample selection; a reverse phenomenon is observed
when m > 5, suggesting that the selection process is too strict to involve enough
unlabeled samples in training so that the model cannot converge fast and well.
Notably, our STOCO yields fairly stable performance when m varies in a wide
range, suggesting the excellent robustness of our method.

Learning Analyses. As analyzed in Sec. 3.3, the proposed consistency cri-
terion among multiple stochastic classifiers conducts a strict selection process,
which would meet the three conditions of progressively improving model’s gen-
eralization ability: (1) |U t

l | > |U t−1
l |, which states that the number of selected

unlabeled samples should increase as the training proceeds; (2) η̌tu < η̌t−1
u , which

tells that the classification noise rate of the selected pseudo-labeled set should
decrease iteratively; (3) η̌tu|U t

l | < η̌t−1
u |U t−1

l |, which describes that the number
of mislabeled samples in the selected pseudo-labeled set should reduce with the
training. To verify these empirically, we conduct experiments on CIFAR-10 with
40, 250, and 4, 000 labels, and examine how the following five quantities evolve
during training; they are the training loss measured on the training set, test loss
measured on the test set, mask rate that is the ratio of selected samples in an
unlabeled batch, noise rate and mislabeled number that are respectively the ra-
tio and number of incorrectly labeled samples in the selected pseudo-labeled set,
which are measured using the ground truth labels, just for visualization. In Fig.
2, we plot the evolving curves of these quantities during training, by comparing
our method with the baseline FixMatch [44]. We highlight several observations
below. (1) The training loss of our STOCO is lower than that of FixMatch since
our proposed consistency criterion selects fewer unlabeled samples, which are the
most confident ones with the largest easiness. (2) The test loss of our STOCO
decreases and then stabilizes at a low level, showing the progressively improved
generalization performance; particularly, in the extreme case where only 4 la-
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(a) Training loss (b) Training loss (c) Training loss

(d) Test loss (e) Test loss (f) Test loss

(g) Mask rate (h) Mask rate (i) Mask rate

(j) Noise rate (k) Noise rate (l) Noise rate

(m) Mislabeled number (n) Mislabeled number (o) Mislabeled number

Fig. 2: Learning analyses on our STOCO. For all subfigures, the horizontal axis
represents the training epoch; the colors of blue and orange correspond to the
results of FixMatch and our method respectively. The results are obtained on
CIFAR-10 with 40 (column 1), 250 (column 2), and 4, 000 (column 3) labels.
Refer to the main text for how these quantities are defined and computed.

bels are available per class (cf. Fig. 2d), our STOCO exhibits a clear loss drop
with the training when compared to FixMatch, verifying the better convergence
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: The t-SNE visualization of features learned by FixMatch (left two
columns) and our STOCO (right two columns). In columns 1 and 3, the colors
of red and blue denote the training and test samples respectively; their counter-
parts whose classes are color-coded are in columns 2 and 4 respectively. Results
in these plots are obtained on CIFAR-10 with 40 (a-d) and 250 (e-h) labels.

performance of our method. (3) In the row of test loss, we find that FixMatch
suffers a slight rise at the late stage of training whereas our STOCO does not,
suggesting that our method indeed has the effect of alleviating overfitting. (4) As
the training process proceeds, our STOCO has an increasing mask rate, and its
noise rate and mislabeled number decrease, indicating that the three conditions
are satisfied; notably, our method achieves a much lower mislabeled number than
FixMatch on all label settings, demonstrating the superiority of our method.
These observations corroborate our analyses in Sec. 3.3.

Feature Visualization. To get an intuitive sense of the effect of our method,
we expose qualitative differences between the strong baseline FixMatch [44] and
our method. We use t-SNE [31] to visualize features of both training and test
data, which are extracted by the learned feature extractor of each method. The
results on CIFAR-10 with 40 and 250 labels are plotted in Fig. 3. We emphasize
several interesting observations below. (1) The marginal feature distributions of
training and test data are similar, i.e., test samples lie in the support of training
data (cf. columns 1 and 3). (2) As the size of the labeled set increases, the
class-conditional feature distribution becomes purer and gets closer to the true
label distribution (cf. columns 2 and 4), suggesting that the model generalization
improves. (3) On the extremely label-scarce setting (cf. Fig. 3a and Fig. 3c), our
STOCO yields more similar marginal feature distributions between the training
and test data. (4) In Fig. 3b of FixMatch, two different classes wrongly merge
into one cluster, e.g., red airplane and purple ship. A possible reason is that the
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CIFAR-10 CIFAR-100 SVHN STL-10

Method 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 40 labels 250 labels 1000 labels 1000 labels

Π-Model [38] - 54.26±3.97 14.01±0.38 - 57.25±0.48 37.88±0.11 - 18.96±1.92 7.54±0.36 26.23±0.82
Pseudo-Labeling [25] - 49.78±0.43 16.09±0.28 - 57.38±0.46 36.21±0.19 - 20.21±1.09 9.94±0.61 27.99±0.83
Mean Teacher [46] - 32.32±2.30 9.19±0.19 - 53.91±0.57 35.83±0.24 - 3.57±0.11 3.42±0.07 21.43±2.39
MixMatch [5] 47.54±11.50 11.05±0.86 6.42±0.10 67.61±1.32 39.94±0.37 28.31±0.33 42.55±14.53 3.98±0.23 3.50±0.28 10.41±0.61
UPS [39] - - 6.42 - - - - - - -
Meta-Semi [47] - - 6.10±0.10 - - 29.69±0.18 - - - 8.03±0.24
UDA [50] 29.05±5.93 8.82±1.08 4.88±0.18 59.28±0.88 33.13±0.22 24.50±0.25 52.63±20.51 5.69±2.76 2.46±0.24 7.66±0.56
ReMixMatch [4] 19.10±9.64 5.44±0.05 4.72±0.13 44.28±2.06 27.43±0.31 23.03±0.56 3.34±0.20 2.92±0.48 2.65±0.08 5.23±0.45
FixMatch [44] 13.81±3.37 5.07±0.65 4.26±0.05 48.85±1.75 28.29±0.11 22.60±0.12 3.96±2.17 2.48±0.38 2.28±0.11 7.98±1.50
CoMatch [26] 6.91±1.39 4.91±0.33 - - - - - - - -
FlexMatch [53] 4.99±0.16 4.80±0.06 3.95±0.03 32.44±1.99 23.85±0.23 19.92±0.06 5.36±2.38 - 2.86±0.91 5.56±0.22

STOCO 7.17±1.95 4.77±0.30 3.86±0.05 41.45±1.21 27.41±0.35 21.82±0.20 2.85±0.16 2.47±0.14 2.38±0.06 7.79±0.52

Table 2: Error rates for CIFAR-10, CIFAR-100, SVHN, and STL-10.

shapes of a ship and a plane with its wings removed and the backgrounds of sky
and sea are visually similar. In contrast, our STOCO separates these ambiguous
classes in the feature space (cf. Fig. 3d), demonstrating that our method can
learn more discriminative features.

4.3 Comparison with the State-of-the-art

We compare the proposed STOCO with the state-of-the-art methods on CIFAR-
10 in Table 2, where results of existing methods are quoted from their respective
papers or [44]. With 400 labels per class, all compared methods show small dif-
ferences in performance; nevertheless, by combining SSL techniques, FixMatch
greatly improves over Π-Model, Pseudo-Labeling, and Mean Teacher that are on
their own; notably, our STOCO achieves the best result of 3.86%. With 25 labels
per class, the methods based on technique combination are far ahead of those
on their own by a margin larger than 20%, showing the huge advantages of tech-
nique combination; again, our method outperforms all the compared ones. With
only 4 labels per class, the simpler FixMatch that combines self-training and
consistency regularization is superior to the excellent ReMixMatch, which ad-
ditionally integrates self-supervised learning and mixup; notably, with multiple
stochastic classifiers, our STOCO produces a much better result than FixMatch
and is on par with CoMatch, showing that our method is suitable for application
scenarios with extremely scarce labels. Furthermore, we find that our method
achieves a high classification accuracy of 7.17% on the challenging 40-label set-
ting, which is only 2.40% and 3.31% lower than that on the 250- and 4000-label
settings respectively, indicating that the benefit from increasing the number of
labeled samples is limited on CIFAR-10 due to its simplicity.

The comparisons between different methods on the difficult CIFAR-100 are
shown in Table 2, where most of the phenomena are similar to those on CIFAR-
10. Besides, we emphasize the following several observations. (1) Compared to
the results on CIFAR-10, these on CIFAR-100 still have a large room of improve-
ment since the 100 classes in CIFAR-100 come from a fine-grained classification
of 20 superclasses and thus are difficult to distinguish. (2) ReMixMatch performs
better than FixMatch, especially on the hardest 400-label setting, which is due
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to its use of distribution alignment (empirically found by [44]). (3) Our STOCO
improves over FixMatch by a large margin, e.g., 7.40% on the 400-label setting,
demonstrating the effectiveness of our method in tackling different learning sce-
narios with varying label conditions. Note that recent methods achieve the SSL
goal of performing better with less supervision by technique combination; dif-
ferently, our method gets closer to the goal via the use of a sample selection
criterion based on stochastic consensus.

The results on SVHN are reported in Table 2, from which we take similar
observations to those above. It is noteworthy that with only 4 labels per class,
our STOCO outperforms the state-of-the-art FlexMatch by 2.51%, confirming
the superiority of our method. When increasing the number of labels in each
class from 4 to 100, we find that the performance gain is small (0.47%). This
suggests that for a simple task like SVHN, a few labels are enough to get a good
classification model. Although the same number of labels are available for each
class, the results on CIFAR-100 are much worse than those on SVHN, implying
that the required number of labeled samples to achieve good performance is task-
dependent. Establishing a principled metric is expected to estimate this number
in practical applications, such that the manual labeling efforts can be reduced.

We also organize the results on STL-10 in Table 2. With 100 labeled samples
per class involved in training, the SSL methods based on technique combination
exhibit clear advantages over others in such a challenging test; in particular, our
STOCO is comparable to the state-of-the-art ones.

5 Conclusion

Semi-supervised learning (SSL) is a popular field, which aims to reduce the label-
ing cost in cases requiring domain expertise, e.g., medical diagnosis and cultural
relic identification. Recent SSL methods focus on integrating various SSL tech-
niques including self-training, where the criterion for selecting unlabeled samples
with pseudo labels plays an important role in the empirical success. However, we
note that the research direction of sample selection criterion is under-explored in
SSL. To this end, we propose a novel criterion based on consistency among mul-
tiple stochastic classifiers, termed Stochastic Consensus (STOCO), which can be
readily applied to any self-training based SSL framework. We choose the repre-
sentative FixMatch as the baseline and achieve the state of the art on typical
SSL benchmarks, especially in label-scarce cases. STOCO improves the model’s
generalization ability without losing simplicity, which helps audience expansion
in the academic community and industrial deployment in recognition systems.
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