
Supplementary material: Embedding contrastive
unsupervised features to cluster in- and

out-of-distribution noise in corrupted image
datasets

1 Linear separability of samples on the hyper-sphere

Figure 1 illustrates the linear separability of samples on the hypersphere on for
each class of CIFAR-10 corrupted with ID noise and OOD noise from ImageNet32.
We train the unsupervised N -pairs algorithm and use a non-linear projection
with the final dimension being 2 as in Wang et al. [10]. Here we use the simpler
CIFAR-10 dataset because the final 2D projection size is too small, which causes
convergence issues with more difficult classification problems such as CIFAR-100.
The linear separation is not as good as when using the larger dimension of 128 for
the contrastive projection head but allows direct visualization of the separation.
We display 1, 000 randomly selected samples at the dataset level as well as the
predicted linear boundary. The OOD samples cluster on one side of the circle,
confirming our hypothesis by becoming linearly separable from the in-distribution
data.
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Fig. 1. Linear separation of OOD and ID on the hypersphere for each of the CIFAR-10
classes corrupted with rin = rout = 0.2, OOD from ImageNet32. Linear separability at
the class level.
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Table 1. Self-supervised initialization harms OOD robustness. CIFAR-100 corrupted
with rin = rout = 0.2

Noise Unsup init CE M EDM DSOS RRL Ours

rin = 0.2 ✗ 65.79 67.50 71.03 70.54 72.64 72.95
rout = 0.2 ✓ 64.89 66.99 56.89 66.76 66.76 71.62

Table 2. Linear separability between ID and OOD samples on the hypersphere in
CIFAR-100 using ImageNet32 or Places365 as OOD data and on the miniImageNet
part of CNWL dataset.

Dataset Cifar-100 miniImageNet

Corruption dataset INet32 P365 Web Web
rout 0.2 0.2 0.2 0.6

Linear classifier score 98.21 95.95 99.66 99.54

2 Unsupervised initialization for label noise robust
algorithms

In this paper, we chose to use the unsupervised features to detect the label
noise but to avoid using them to initialize the CNN in the supervised phase.
We did this to provide a fair comparison with existing noise robust algorithms
as we observe that naive unsupervised initialization will harm the detection of
out-of-distribution noise. Although existing works have showed that unsupervised
learning can be used to improve robustness to in-distribution noise [2,3] or to
reduce uncertainty [4] we find that the effects are detrimental in the presence
of OOD noise. We believe that this is because unsupervised learning will learn
features for OOD samples before the supervised phase, making it easier to overfit
the OOD noise and reduce the capacity of existing algorithms to detect OOD
images since all existing approaches rely on CNNs producing underconfident
predictions on OOD samples [7,11]. Table 1 reports accuracy results of three
state-of-the-art algorithms (EDM [9], DSOS [1], RRL [7]) and our algorithm
trained using a CNN trained from random initialization or initialized using
iMix [6] when trained on CIFAR-100 corrupted with 20% of ID and OOD noise
from ImageNet32. We also report baselines that do not perform noise or label
correction: CE and M [12]. We find that noise robust algorithms designed to
function from a random initialization perform much worse when a self-supervised
initialization is used. Note that part of the accuracy decrease could also be due
to hyper-parameters that we did not tune. Standard cross-entropy training (CE)
and Mixup (M) perform slightly worse as well or at least does not benefit from the
unsupervised weight initialization. We encourage future research in this direction.
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Table 3. hyper-parameters for training SNCF on corrupted image datasets.

Dataset corruption resolution β epochs batch size lr lr red. warmup mixup network

CIFAR-100
INet 32× 32 1 100 256 0.1 50, 80 15 yes PreActRes18
Places 32× 32 1 100 256 0.1 50, 80 30 yes PreActRes18

CNWL Web
32× 32 r̃out 100 256 0.1 50, 80 15 yes PreActRes18

299× 299 1 200 64 0.01 100, 160 15 yes InceptionResNetV2

Webvision Web 227× 227 1 100 64 0.01 50, 80 5 yes InceptionResNetV2

3 Hyper-parameter table for experiments

Table 3 references the different hyper-parameters we use to train SNCF. We find
that in most cases β = 1 is a sufficient hyper-parameter except for the CNWL
dataset in the 32 × 32 resolution where we use the estimated ratio of OOD
samples in the dataset r̃out. This is not necessary for the 299× 299 resolution
where we use β = 1 for all noise configurations.

4 Run times

Although OPTICS is computationally expensive, we only run it once at the
beginning of training on the embedded unsupervised features so it has no impact
on the epoch train time. For reference, computation time for the spectral em-
bedding + three OPTICS iterations for different neighborhood sizes {25, 50, 75}
on an i7-8700K in Python (averaged over 10 runs) takes 93s for 50,000 samples
(100 classes) and 1h19m for 1,000,000 samples (1000 classes). This one-off cost
is offset because we skip extra forward passes computed every epoch by other
label robust algorithms (EDM, DSOS, SM) to evaluate feature representations
or losses throughout training. Single epoch training times on a RTX 2080TI on
CIFAR-100 with 20% OOD and ID noise are: ours 63s, EDM 93s, and DSOS
57s. Because of the equal sampling we perform in the algorithm, lower noise
levels lead to longer run times as noisy examples are over-sampled to complete
clean batches. This low noise configuration is the longest run time for SNCF. All
algorithms are run using half precision.

5 Hardware

All networks are trained using mixed precision on a Nvidia RTX 2080TI (32× 32
and 84 × 84 resolution) and two Nvidia TeslaV100 (227 × 227 and 299 × 299
resolution)

6 Visualization of OOD sample clustering on the CNWL

We observe that the samples can be clustered at the dataset level on the CNWL
dataset [5] where little ID noise is present. Figure 2 is a UMAP [8] visualization
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of the separation of the features when the web noise is injected at 40% and a
visual appreciation of how well the noise is captured by the 2D Gaussian mixture.
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Fig. 2. Visualization of the separation of OOD clusters on the CNWL dataset corrupted
with 40% web noise. The right hand plot shows the decision made by the 2D Gaussian
Mixture when fit to the embedded features E while the left hand plot is the ground-truth.

7 Detected clusters of OOD samples on Webvision

Figure 3 shows examples of images from captured OOD clusters on Webvision.
Some seem to capture very basic features such as black backgrounds in cluster
5, white backgrounds in cluster 10, or a basic square shape in cluster 1. More
complex features are also captured such as human bodies in cluster 3, faces in
cluster 4, hands in cluster 8, or text in cluster 9. Including these images when
training the network helps improve low-level features and the accuracy when
predicting on ID data (see the ablation table in the main paper).

8 Fast noise annotation using the linear separability of
OOD samples

Although we propose to use an automatic algorithm to detect clusters in the
ordered chain computed in OPTICS, we believe that for real world applications,
this task could easily (and probably more accurately) be done by a human
annotator, circling the clusters and selecting a few random images from each
cluster to classify between clean or OOD at the cluster level. This would not be
a lengthy task and would be favorable to real world applications.
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Fig. 3. Visualization of OOD clusters captured from the embedding.
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Table 4. hyper-parameters for clustering the embedded contrastive features E using
OPTICS.

Dataset corruption resolution neigh. size min size ξ

CIFAR-100
INet 32× 32 {75, 50, 25} 75 0.01
Places 32× 32 {75, 50, 25} 75 0.01

Webvision Web 84× 84 {75, 50, 25} 50 0.01

9 OPTICS hyper-parameters

Table 4 references the hyper-parameters used for detecting the OOD noise cluster
and outliers, where ξ is the only sensitive hyper-parameter of the cluster detection
algorithm in OPTICS that we provide a study for in the main body of the paper.
We scan the embedded features at three neighborhood sizes and select the
neighborhood leading to the lowest amount of outliers. For the CNWL dataset,
we find that using a spherical covariance in the Gaussian mixture is better when
the number of samples in the clean and OOD set is unbalanced, i.e. for 20% and
80% of noise, a spherical covariance captures the clusters more accurately. We
use the full covariance setting otherwise.

10 SCNF algorithm

Algorithm 1 presents pseudocode for the SNCF algorithm.
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Algorithm 1 SNCF

Input: D = {(xi, yi)}Ni=1 a web noise dataset. h a randomly initialized CNN. g a CNN
pretrained using self-supervised constrastive learning on D
Parameters: α, ewarmup, emax, ξ, τ , neigh
Output: Trained neural network h

1: feats = g(D) ▷ Extract unsup. contrastive features
2: embed = Embedding(feats, neigh)
3: for c = 1, . . . C do ▷ Apply OPTICS per class
4: embedC = embed[class == c]
5: clusterClean, clusterOod, outliers = OPTICS(embedC, ξ)
6: allClean, allOod, allIdn ←− clusterClean, clusterOod, outliers
7: end for
8:
9: embedOod = Embedding(feats[allOod], neigh) ▷ Re-embed without ID
10: simsOod = OPTICS(embedOod, ξ) ▷ Discover similar OOD clusters
11:
12: for e = 1, . . . ewarmup do ▷ Warmup
13: for t = 1, . . .numBatches do
14: Sample the next mini-batch (x, y) from D[allclean]
15: l = CrossEntropy(h(xmixed), ymixed)
16: h = UpdateNetworkWeights(L)
17: end for
18: end for
19:
20: for e = ewarmup + 1, . . . emax do ▷ Noise robust training
21: for t = 1, . . .numBatches do
22: Two weakly augmented views (x, y) and (x′, y) from D[allClean]
23: Two weakly augmented views (z, ) and (z′, ) from D[allIdn]
24: w = ConsistencyReg(h(z), h(z′), τ) ▷ Guessing labels for idn images
25: Supervised mini-batch X = (x, x′, z) with labels Y = (y, y, w)
26: Xmix, Ymix = mixup(X,Y, α) ▷ Mixup
27: lce = CrossEntropy(h(Xmix), Ymix)
28:
29: Weak augs Q = (x, z, o) from D[allClean],D[allIdn],D[allOod ]
30: Strong augs Q′ = (x′′, z′′, o′′) from D[allClean],D[allIdn],D[allOod ]
31: sims = ComputeSims(y, w, simsOod)
32: lcont = GuidedContLoss(h(Q), h(Q′), sims) ▷ Cont feats through proj.
33:
34: h = UpdateNetworkWeights(lce + lcont)
35: end for
36: end for
37: return h ▷ Robustly trained network
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