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A Additional experiment details

A.1 Hyperparameters

The hyperparameters for the self-supervised tasks used in our experiments are
given in Tab. 4. nmax is the maximum number of patches added to each image.
hmin, hmax, wmin, wmax 2 [0, 1] are the bounds on the patch dimensions relative
to the image size. b 2 [0, 225] is the background brightness. All pixels with
absolute brightness distance less than tbrightness to the background brightness
are assigned to the background. tobject, toverlap 2 [0, 1] are used for the object
and overlap conditions for the patches (see Section 3). The patch resize-scale is
clipped to the range [smin, smax] in addition to the conditions given in Section
3. y0 and k give the midpoint and steepness of the logistic function used for
creating the labels for NSA (logistic).

These parameters encode our assumptions about the unknown real out-
distribution (see Sec. 3). Thus they were not tuned in a data-driven way as no
validation set containing all possible types of real anomalies was available. These
assumptions were chosen based on visual inspection of the input images and self-
supervised examples. E.g., for objects that have larger width than height, wmax is
higher than hmax and vice versa; for classes with high perceived natural variation
y0 should be larger and k smaller.

Table 4: Hyperparameters for the self-supervised tasks.

patch size background constraints scale logistic

nmax hmin, hmax wmin, wmax b tbrightness tobject toverlap smin, smax y0 k

MVTec AD

ob
je
ct

bottle 3 0.06, 0.80 0.06, 0.80 200 60 0.70 0.25 0.7, 1.3 24 1/12
cable 3 0.10, 0.80 0.10, 0.80 N/A N/A N/A N/A 0.7, 1.3 24 1/12
capsule 3 0.06, 0.30 0.06, 0.80 200 60 0.70 0.25 0.7, 1.3 4 1/2
hazelnut 3 0.06, 0.70 0.06, 0.70 20 20 0.70 0.25 0.7, 1.3 24 1/12
metal nut 3 0.06, 0.80 0.06, 0.80 20 20 0.50 0.25 0.7, 1.3 7 1/3
pill 3 0.06, 0.40 0.06, 0.80 20 20 0.70 0.25 0.7, 1.3 7 1/3
screw 4 0.06, 0.24 0.06, 0.24 200 60 0.50 0.25 0.7, 1.3 3 1
toothbrush 3 0.06, 0.80 0.06, 0.40 20 20 0.25 0.25 0.7, 1.3 15 1/6
transistor 3 0.06, 0.80 0.06, 0.80 N/A N/A N/A N/A 0.7, 1.3 15 1/6
zipper 4 0.06, 0.80 0.06, 0.40 200 60 0.70 0.25 0.7, 1.3 15 1/6

te
x
tu
re

carpet 4 0.06, 0.80 0.06, 0.80 N/A N/A N/A N/A 0.5, 2.0 7 1/3
grid 4 0.06, 0.80 0.06, 0.80 N/A N/A N/A N/A 0.5, 2.0 7 1/3
leather 4 0.06, 0.80 0.06, 0.80 N/A N/A N/A N/A 0.5, 2.0 7 1/3
tile 4 0.06, 0.80 0.06, 0.80 N/A N/A N/A N/A 0.5, 2.0 7 1/3
wood 4 0.06, 0.80 0.06, 0.80 N/A N/A N/A N/A 0.5, 2.0 15 1/6

rCXR
male 3 0.06, 0.80 0.06, 0.80 0 20 0.70 0.70 0.7, 1.3 4 1/2
female 3 0.06, 0.80 0.06, 0.80 0 20 0.70 0.70 0.7, 1.3 4 1/2

For FPI (Poisson), we used mixed gradients for seamless cloning. For NSA,
we use mixed gradients for all rCXR data and for MVTec AD texture classes. For
MVTec AD object classes, we find that OpenCV’s [3] seamless cloning method
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causes artifacts when there are sharp contrast changes (e.g., at the boundary
from the object to the background) near the edges of the patch boundary more
frequently when using mixed gradients than source gradients. Thus, we only use
source gradients for these classes for NSA.

A.2 Comparison of self-supervised tasks

Table 5: Comparison of CutPaste [14], FPI [28], PII [29], and NSA self-supervised
tasks.

CutPaste [14] FPI [28] PII[29]
NSA

(binary)
NSA

(continuous)
NSA

(logistic)

Di↵erent source and des-
tination images?

7 3 3 3 3 3

Resize patch before
blending?

7 7 7 3 3 3

Di↵erent source and des-
tination patch locations?

3 7 7 3 3 3

Blending mode copy-paste
linear

interpolation
seamless
cloning

seamless
cloning

seamless
cloning

seamless
cloning

Label type binary

bounded
continuous

(interpolation
factor)

bounded
continuous

(interpolation
factor)

binary
continuous
(di↵erence-

based)

bounded
continuous
(di↵erence-

based)

Loss BCE-loss BCE-loss BCE-loss BCE-loss MSE-loss BCE-loss

Table 6: Comparison of the original patch-selection procedures for CutPaste [14],
FPI [28], PII [29], and our method. We use our patch-selection procedure for our
re-implementations of CutPaste, FPI, and PII. See Sec. 3 for more details on
our method.

CutPaste [14] FPI [28] and PII [29] Ours

Patch size area ratio between patch and image
sampled from (0.02, 0.15)

width and height relative to im-
age dimensions sampled from
U(0.1, 0.4)

width and height relative to image
dimensions sampled from truncated
Gamma(2, 0.1)

Patch aspect ratio sampled from (0.3, 1) [ (1, 3.3) square, except when truncated by
the image boundary

any ratio resulting from the above

Location restrictions entire patch must appear in the full
image

patch center must lie within the
core 80% of the image dimensions

patch must contain part of the ob-
ject and object portions at source
and destination must overlap
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B Additional results

B.1 Additional ablation studies

To validate our design choices we conducted several ablation studies beyond
comparing di↵erent label definitions and comparing NSA to simpler baseline
synthetic anomalies (see Sec. 4.2). Additional variants of NSA (logistic) consid-
ered were:

A Do not use foreground constraints for any classes. Note that in the original,
foreground constraints were not applied to cable, transistor, and textures so
these experiments do not need to be duplicated.

B Only use a single patch per training example instead of a random number
of patches.

C Generate patch shapes as for CutPaste [14]:

1. sample the area ratio between the patch and the full image from (0.02, 0.15),

2. determine the aspect ratio by sampling from (0.3, 1) [ (1, 3.3),

3. sample location such that patch is contained entirely within the image.

(Use single patch, uniform distributions, no foreground constraints, no re-
sizing.)

D Mask the patches with a union of 5 random ellipses to achieve non-rectangular
patch shapes.

For these experiments we report image-level and pixel-level AUROC% (Tab. 7).
The results back-up our design choices as the final version outperforms all three
variants. Specifically, the experiments show that

A using foreground constraints is most important for classes where the images
contain a lot of background due to the shape of the objects (e.g., screw and
capsule),

B using a random number of patches performs slightly better than using a
single patch,

C our patch-selection procedure leads to much better overall performance of
NSA than the patch selection procedure described in [14], and

D beyond the diverse sizes and aspect ratios the shape of the patches is not
important. This could be due to the fact that because of Poisson blending
rectangular patches due not necessarily create rectangular anomalies, so NSA
with rectangular patches already creates various non-rectangular anomalies.
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Table 7: Image-level and pixel-level AUROC % for MVTec AD and standard
error across five di↵erent random seeds for NSA (logistic) variants.

Image-level AUROC % Pixel-level AUROC %

NSA (logistic) variants final A B C D final A B C D

ob
je
ct

bottle 97.7 ± 0.3 97.5 ± 0.5 97.1 ± 0.4 97.1 ± 0.7 98.4 ± 0.2 98.3 ± 0.1 98.4 ± 0.1 97.9 ± 0.1 97.4 ± 0.2 98.9 ± 0.0

cable 94.5 ± 1.0 – 96.1 ± 1.0 92.4 ± 2.0 91.8 ± 1.4 96.0 ± 1.4 – 94.7 ± 2.7 96.7 ± 0.5 86.8 ± 2.4

capsule 95.2 ± 1.7 91.7 ± 1.9 89.7 ± 1.3 84.6 ± 0.8 95.6 ± 0.7 97.6 ± 0.9 96.4 ± 0.4 95.2 ± 1.4 92.7 ± 0.9 97.1 ± 0.2

hazelnut 94.7 ± 1.1 93.1 ± 0.8 92.2 ± 2.7 85.2 ± 2.5 94.1 ± 2.0 97.6 ± 0.6 97.5 ± 0.7 93.6 ± 0.9 94.5 ± 1.2 97.5 ± 0.4

metal nut 98.7 ± 0.7 99.0 ± 0.6 97.7 ± 1.0 94.4 ± 1.0 99.3 ± 0.3 98.4 ± 0.2 98.5 ± 0.1 96.5 ± 0.9 97.0 ± 0.3 98.2 ± 0.4

pill 99.2 ± 0.6 99.0 ± 0.2 97.8 ± 0.5 94.5 ± 1.6 96.9 ± 1.0 98.5 ± 0.3 97.5 ± 0.2 90.5 ± 4.5 92.8 ± 2.2 97.1 ± 1.0

screw 90.2 ± 1.4 77.8 ± 3.3 85.3 ± 3.4 56.3 ± 1.8 90.3 ± 1.0 96.5 ± 0.1 92.9 ± 0.6 95.6 ± 0.8 82.6 ± 1.6 96.2 ± 0.2

toothbrush 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.7 ± 0.2 100.0 ± 0.0 94.9 ± 0.7 93.8 ± 1.1 91.7 ± 2.8 94.4 ± 0.9 95.3 ± 0.2

transistor 95.1 ± 0.2 – 93.7 ± 1.5 91.2 ± 1.7 93.2 ± 0.8 88.0 ± 1.8 – 83.8 ± 0.9 83.1 ± 2.2 86.0 ± 1.1

zipper 99.8 ± 0.1 100.0 ± 0.0 99.8 ± 0.3 98.9 ± 1.1 99.9 ± 0.1 94.2 ± 0.3 94.1 ± 0.2 94.0 ± 0.3 94.0 ± 0.3 94.9 ± 0.1

average 96.5 ± 0.3 – 94.9 ± 0.6 89.4 ± 0.4 96.0 ± 0.2 96.0 ± 0.4 – 93.3 ± 0.9 92.3 ± 0.5 94.8 ± 0.3

te
x
tu
re

carpet 95.6 ± 0.6 – 88.7 ± 2.8 87.4 ± 5.7 97.2 ± 1.3 95.5 ± 2.3 – 95.8 ± 5.0 88.3 ± 4.5 98.0 ± 0.7

grid 99.9 ± 0.1 – 100.0 ± 0.0 98.6 ± 0.8 100.0 ± 0.0 99.2 ± 0.1 – 98.4 ± 0.7 92.5 ± 2.0 99.4 ± 0.0

leather 99.9 ± 0.1 – 99.9 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 99.5 ± 0.1 – 99.3 ± 0.5 99.5 ± 0.1 99.7 ± 0.0

tile 100.0 ± 0.0 – 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.1 99.3 ± 0.0 – 98.5 ± 0.4 95.6 ± 2.1 98.2 ± 0.4

wood 97.5 ± 1.5 – 91.4 ± 4.3 91.4 ± 2.5 98.0 ± 0.3 90.7 ± 1.9 – 86.5 ± 3.9 ?856 ± 2.0 92.4 ± 0.6

average 98.6 ± 0.3 – 96.0 ± 0.7 95.5 ± 1.5 99.0 ± 0.3 96.8 ± 0.7 – 95.7 ± 1.6 92.3 ± 1.1 97.5 ± 0.1

overall average 97.2 ± 0.3 – 95.3 ± 0.5 91.4 ± 0.5 97.0 ± 0.2 96.3 ± 0.4 – 94.1 ± 0.8 92.3 ± 0.5 95.7 ± 0.2

B.2 Per-region overlap

The AU-PRO0.3 metric is defined as the area under the per-region overlap (PRO)
curve for false positive rates up to 30 % [2]. To calculate PRO, we decompose
the ground-truth label maps into M connected components such that Cj,k gives
the set of anomalous pixels in a connected component k of label map j. Let Pj

denote the predicted anomalous pixels when using a threshold t. [2] defines PRO
as:

PRO =
1

M

X

j

X

k

|Pj \ Cj,k|
|Cj,k|

(17)

Unlike pixel-level AUROC, AU-PRO assigns equal weight to small and large
anomalies. This is desirable for practical applications where precise localization
of small anomalies is at least as important as localization of large anomalies.

In Tab. 8 we report AU-PRO0.3 scores for our models from Tab. 2 as well
as the scores for PaDiM [6] for reference. Note that unlike our method, PaDiM
relies on ImageNet pretraining, so this is not a fair comparison. The authors of
CutPaste [14] and DRAEM [36] did not report AU-PRO for their method but we
hope that future methods that learn from scratch can compare their localization
performance to our AU-PRO scores.
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Table 8: AU-PRO0.3 % for MVTec AD defect localization and standard error
across five di↵erent random seeds. Scores are calculated for 256⇥ 256 resampled
image and mask. Best scores between PaDiM-WR50-Rd550 [6] and NSA within
standard error are bold-faced. Note that PaDiM uses pretrained ImageNet fea-
tures.

SOTA Our Experiments

PaDiM
[6]

CutPaste
(end-to-end)

FPI PII
NSA

(binary)
NSA

(continuous)
NSA

(logistic)

ob
je
ct

bottle 94.8 91.2 66.0 79.0 93.0 ± 0.9 89.9 ± 1.1 92.9 ± 0.3

cable 88.8 59.8 51.9 55.7 87.6 ± 3.4 85.4 ± 2.1 89.9 ± 1.0

capsule 93.5 83.5 79.9 67.6 91.8 ± 0.8 79.9 ± 9.0 91.4 ± 2.2

hazelnut 92.6 81.3 71.4 90.9 93.6 ± 0.4 93.1 ± 1.3 93.6 ± 0.9

metal nut 85.6 54.4 72.2 91.5 94.9 ± 0.2 90.8 ± 1.1 94.6 ± 0.6

pill 92.7 83.1 50.4 65.2 93.7 ± 0.9 92.5 ± 3.5 96.0 ± 0.5

screw 94.4 72.6 69.8 78.4 90.6 ± 1.3 80.6 ± 10.3 90.1 ± 0.3

toothbrush 93.1 88.1 60.3 66.8 91.2 ± 0.6 89.0 ± 1.8 90.7 ± 1.0

transistor 84.5 68.5 55.4 57.4 72.6 ± 4.4 63.3 ± 1.2 75.3 ± 2.4

zipper 95.9 84.9 81.2 86.6 88.9 ± 0.5 83.6 ± 3.3 89.2 ± 0.3

average 91.6 76.7 65.8 73.9 89.8 ± 0.8 84.8 ± 2.8 90.4 ± 0.5

te
x
tu
re

carpet 96.2 50.4 21.6 93.5 84.0 ± 11.8 71.1 ± 8.2 85.0 ± 6.2

grid 94.6 91.5 86.0 95.9 96.5 ± 0.1 94.2 ± 0.8 96.8 ± 0.4

leather 97.8 83.7 84.1 98.1 98.9 ± 0.1 98.6 ± 0.4 98.7 ± 0.1

tile 86.0 54.4 42.0 83.2 93.9 ± 0.9 90.3 ± 2.5 95.3 ± 0.5

wood 91.1 64.0 41.7 81.7 89.2 ± 2.4 86.1 ± 5.7 85.3 ± 3.7

average 93.2 68.8 55.1 90.5 92.5 ± 2.0 88.1 ± 1.3 92.2 ± 1.4

overall average 92.1 74.1 62.3 79.4 90.7 ± 0.4 85.9 ± 2.1 91.0 ± 0.6
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