
Supplementary for ARAH: Animatable Volume
Rendering of Articulated Human SDFs

Shaofei Wang1, Katja Schwarz2,3, Andreas Geiger2,3, and Siyu Tang1

1 ETH Zürich
2 Max Planck Institute for Intelligent Systems, Tübingen

3 University of Tübingen

Abstract. In this supplementary material, we first provide additional
information on loss terms mentioned in the main paper. Secondly, we
introduce the network architecture we used for forward LBS, canonical
SDF, and canonical color networks. Next, we derive implicit gradients
for forward LBS root-finding and our joint root-finding. We then present
ablation studies of our approach. Further, we describe implementation
details and how we set up baselines on the ZJU-MoCap dataset. Finally,
we present additional results and discuss the limitations of our approach.

A Loss Definition

In Section 3.5 of the main paper, we define the loss terms as follows

L = λC · LC + λE · LE + λO · LO + λI · LI + λS · LS (1)

In this section, we elaborate on how each loss term is defined. Let Ip ∈ [0, 1]3

denote the ground-truth RGB value of a pixel p. Further, let P denote the set
of all pixels sampled from an image.
RGB Color Loss: The RGB color loss is defined as

LC =
1

|P |
∑
p∈P

∣∣∣fσc(x̂
(p),n(p),v(p), z,Z)− Ip

∣∣∣ (2)

Eikonal Regularization: We sample 1024 points, denoted as X̂eik, in the range
[−1, 1]3 in canonical space, and compute Eikonal loss [4] as follows:

LE =
1

|P |
∑

x̂∈X̂eik

∣∣∣∥∇x̂fσf
(x̂)∥2 − 1

∣∣∣ (3)

Off-surface Point Loss: In canonical space, we sample 1024 points whose
distance to the canonical SMPL mesh is greater than 20cm. Let X̂off denote
these sampled points, we compute the off-surface point loss as

LO =
1

|P |
∑

x̂∈X̂off

exp
(
−1e2 · fσf

(x̂)
)

(4)

2 Wang et al.

Inside Point Loss: In canonical space, we sample 1024 points that are inside
the canonical SMPL mesh and whose distance to the SMPL surface is greater
than 1cm. Let X̂in denote these sampled points, we compute the inside point
loss as

LI =
1

|P |
∑

x̂∈X̂in

sigmoid
(
5e3 · fσf

(x̂)
)

(5)

Skinning Loss: Finally, in canonical space, we sample 1024 points on the canon-
ical SMPL surface, X̂S, and regularize the forward LBS network with the corre-
sponding SMPL skinning weights W = {w}:

LS =
1

|P |
∑
x̂∈X̂S
w∈W

i=24∑
i=1

∣∣∣fσω (x̂)i −wi

∣∣∣ (6)

We set λC = 3e1, λE = 5e1, λO = 1e2, λI = λS = 10 throughout all experiments.

Mask Loss: As described in Section 3.5 of the main paper, our volume ren-
dering formulation does not need explicit mask loss. Here we describe the mask
loss from [23] which we use in the ablation study on surface rendering (Sec-
tion F). Given the camera ray r(p) = (c,v(p)) of a specific pixel p, we first define
S(α, c,v(p)) = sigmoid(−αmind≥0 fσf

(LBS−1
σω

(c + dv(p))), i.e. the Sigmoid of
the minimal SDF along a ray. In practice we sample 100 ds uniformly between
[dmin, dmax] along the ray, where dmin and dmax are determined by the bounding
box of the registered SMPL mesh. α is a learnable scalar parameter.

Let Op ∈ {0, 1} denote the foreground mask value (0 indicates background
and 1 indicates foreground) of a pixel p. Further, let Pin denote the set of pixels
for which ray-intersection with the iso-surface of neural SDF is found and Op = 1,
while Pout = P \ Pin is the set of pixels for which no ray-intersection with the
iso-surface of neural SDF is found or Op = 0. The mask loss is defined as

LM =
1

α|P |
∑

p∈Pout

BCE(Op, S(α, c,v
(p)))) (7)

where BCE(·) denotes binary cross entropy loss. We set the weight of LM to
be 3e3 and add this loss term to Eq. (1) for our surface rendering baseline in
Section F.

B Network Architectures

In this section, we describe detailed network architectures for the forward LBS
network fσω

, the SDF network fσf
and the color network fσc

introduced in
Sections 3.1-3.2 of the main paper.

Supplementary for ARAH 3

MLP MLP MLP MLP MLP

Linear Linear Linear Linear Linear
sine sine sine sine

HyperNet

SDF

SDF Network

Linear Linear

Mapping Network

ReLU LinearReLU LinearReLU

Linear Linear
sine sine

MLP MLP

Fig. 1: Network Architecture for the SDF Network. Our SDF network
builds upon MetaAvatar [19] which uses a hypernetwork (top) that conditions
on local body poses and shape (θ, β), and predicts the parameters of a neural
SDF with periodic activation (middle). Since MetaAvatar does not model per-
frame latent codes, we add a mapping network (bottom) that maps the per-frame
latent code Z to scaling factors {γ} and offsets {η} which are used to modulate
the outputs from each linear layer of the neural SDF, except for the last layer.

B.1 Forward LBS Network

We use the same forward LBS network as [3], which consists of 4 hidden layers
with 128 channels and weight normalization [15]. It uses Softplus activation with
β = 100. fσω

only takes query points in canonical space as inputs and does not
have any conditional inputs.

To initialize this forward LBS network, we meta learn the network on skinning
weights of canonical meshes from the CAPE [8] dataset. Specifically, we use
Reptile [10] with 24 inner steps. The inner learning rate is set to 1e−4 while
the outer learning rate is set to 1e−5. Adam [6] optimizer is used for both the
inner and the outer loop. We train with a batch size of 4 for 100k steps of the
outer loop. We use the resulting model as the initialization for our per-subject
optimization on the ZJU-MoCap [13] dataset.

B.2 Canonical SDF Network

We describe our canonical SDF network in Fig. 1. The hypernetwork (top) and
neural SDF (middle) are initialized with MetaAvatar [19] pre-trained on the
CAPE dataset. Note that the SDF network from MetaAvatar can be trained

4 Wang et al.

Color Network

Linear Linear Linear Linear LinearReLU ReLU ReLUReLU LinearReLU

Fig. 2: Network Architecture for the Color Network. The color network
takes canonicalized query points x̂, normal vectors n, viewing directions v, an
SDF feature z, and a per-frame latent code Z as inputs.

with canonical meshes only and does not need any posed meshes as supervision.
Each MLP of the hypernetwork (top) consists of one hidden layer with 256
channels and uses ReLU activation. The neural SDF (middle) consists of 5 hidden
layers with 256 channels and uses a periodic activation [16]. In addition to the
MetaAvatar SDF, we add a mapping network [2, 14] which consists of 2 hidden
layers with 256 channels and a ReLU activation. It maps the per-frame latent
code Z to scaling factors and offsets that modulate the outputs from each layer
of the neural SDF. We initialize the last layer of the mapping network to predict
scaling factors with value 1 and offsets with value 0.

B.3 Canonical Color Network

We describe our canonical color network in Fig. 2. The network consists of 4
hidden layers with 256 channels and ReLU activation. The inputs to the network
are also concatenated with activations of the third layer and fed into the fourth
layer together.

C Implicit Gradients

In this section, we describe how to compute gradients of the root-finding solutions
wrt. the forward LBS network and the SDF network. In the main paper, we
use our novel joint root-finding algorithm to find the surface point and sample
points around the surface point; these sampled points, along with the surface
point, are mapped to canonical space via iterative root-finding [3]. Section C.1
describes how to differentiate through these points to compute gradients wrt.
the forward LBS network. Section C.2 describes how to compute gradients wrt.
the forward LBS network and the SDF network given the surface point and its
correspondence. Section C.1 is used for volume rendering, which is described in
Section 3.4 of the main paper. Section C.2 is used for surface rendering, which
is one of our ablation baselines in Section F.

Supplementary for ARAH 5

C.1 Implicit Gradients for Forward LBS

Here we follow [3] and describe how to compute implicit gradients for the forward
LBS network given samples on camera rays and their canonical correspondences.
Denoting sampled points in observation space as X̄ = {x̄}Ni=1, and their canonical

correspondences obtained by iterative root-finding [3] as X̂∗ = {x̂∗}Ni=1, they
should satisfy the following condition

LBSσω (x̂
∗(i))− x̄(i) = 0, ∀i = 1, . . . , N (8)

As done in [23], by applying implicit differentiation, we obtain a differentiable
point sample x̂ as

x̂ = x̂∗ − (J∗)−1 ·
(
LBSσω

(x̂∗(i))− x̄(i)
)

(9)

where J∗ =
∂LBSσω

∂x̂ (x̂∗). x̂∗ and J∗ are detached from the computational graph
such that no gradient will flow through them. These differentiable samples can
be used as inputs to the SDF and color networks. Gradients wrt. σω are com-
puted from photometric loss Eq. (2) via standard back-propagation. Taking the
derivative wrt. σω for both sides of Eq. (9) results in the same analytical gradient
defined in Eq. (14) of [3].
Pose and Shape Optimization: We note that implicit gradients can also
be back-propagated to SMPL parameters {θ, β} as the SMPL model is fully
differentiable. We found pose and shape optimization particularly helpful when
SMPL estimations are noisy, e.g . those estimated from monocular videos. In
Fig. 3 we show a qualitative sample on the People Snapshot dataset [1] where the
pose is improved while the resulting model also achieves better visual quality.

Input After Optimization Unseen wo. opt.Before Optimization Unseen w. opt.

Fig. 3: Result of Pose and Shape Optimization. We can improve the noisy
SMPL estimations on training poses with implicit gradients and improve the
rendering quality on unseen poses (see Unseen w. opt.).

6 Wang et al.

C.2 Implicit Gradients for Joint Root-finding

Now we derive implicit gradients for our joint root-finding algorithm. We denote
the joint vector-valued function of the ray-surface intersection and forward LBS
as gσf ,σω

(x̂, d). The joint root-finding problem is

gσf ,σω
(x̂, d) =

[
fσf

(x̂)
LBSσω

(x̂)− (c+ v · d)

]
= 0 (10)

with a slight abuse of notation, we denote the iso-surface point as x̂∗ and their
corresponding depth in observation space as d∗. We follow [23] and use implicit
differentiation to obtain a differentiable point sample x̂ and a depth sample d:

[
x̂
d

]
=

[
x̂∗

d∗

]
− (J∗)−1 · gσf ,σω

(x̂∗, d∗) (11)

where J∗ is defined as

J∗ =

 ∂fσf

∂x̂ (x̂∗) 0

∂LBSσω

∂x̂ (x̂∗) −v

 (12)

Similar to Section C.1, these differentiable samples can be used as inputs to the
SDF and color networks and gradients wrt. σf , σω can be computed from the
photometric loss Eq. (2).

D Implementation Details

We use Adam [6] to optimize our models and the per-frame latent codes {Z}.
We initialize the SDF network with MetaAvatar [19] and set the learning rate
to 1e−6 as suggested in [19]. For the remaining models and the latent codes, we
use a learning rate of 1e−4. We apply weight decay with a weight of 0.05 to the
per-frame latent codes.

We train our models with a batch size of 4 and 2048 rays per batch, with
1024 rays sampled from the foreground mask and 1024 rays sampled from the
background. As mentioned in Section 3.4 of the main paper, we sample 16 near
and 16 far surface points for rays that intersect with a surface and 64 points for
rays that do not intersect with a surface. Our model is trained for 250 epochs
(except for sequence 313 which we trained for 1250 epochs, due to its training
frames being much fewer than other sequences), which corresponds to 60k-80k
iterations depending on the amount of training data. This takes about 1.5 days
on 4 NVIDIA 2080 Ti GPUs. During training, we follow [20] and add normally
distributed noise with zero mean and a standard deviation of 0.1 to the input θ of
the SDF network. This noise ensures that the canonical SDF does not fail when
given extreme out-of-distribution poses. We also augment the input viewing di-
rections to the color network during training. We do so by randomly applying

Supplementary for ARAH 7

roll/pitch/yaw rotations sampled from a normal distribution with zero mean
and a standard deviation of 45◦ to the viewing direction, but reject augmenta-
tion in which the angle between the estimated surface normal and the negated
augmented viewing direction is greater than 90 degrees.

For inference, we follow [12, 13] and crop an enlarged bounding box around
the projected SMPL mesh on the image plane and render only pixels inside the
bounding box. For unseen test poses we follow the practice of [12, 13] and use
the latent code Z of the last training frame as the input. The rendering time of
a 512× 512 image is about 10-20 seconds, depending on the bounding box size
of the person. In this process, the proposed joint root-finding algorithm takes
about 1 second.

E Implementation Details for Baselines

In this section, we describe the implementation details of the baselines from the
main paper, i.e. Neural Body [13], Ani-NeRF [12], and A-NeRF [17].

E.1 Neural Body

For quantitative evaluation, we use the official results provided by the Neural
Body website. For generating rendering results and geometries, we use the official
code of Neural Body and their pre-trained models without modification.

E.2 Animatable NeRF (Ani-NeRF)

For quantitative evaluation, we use the official code and pre-trained models when
possible, i.e. for sequences 313, 315, 377, and 386. For the remaining sequences
that the official code does not provide pre-trained models, we train models using
the default hyperparameters that were applied to sequences 313, 315, 377, and
386.

We note that when reconstructing geometry on the training poses, Neural
Body and Ani-NeRF compute visual hulls from ground-truth masks of training
views and set density values outside the visual hulls to 0. This removes extrane-
ous geometry blobs from reconstructions by Neural Body and Ani-NeRF. When
testing on unseen poses, we disable the mask usage, as, by definition of the task,
we do not have any image as input.

E.3 A-NeRF

For A-NeRF, we follow the author’s suggestions to 1) use a bigger foreground
mask for ray sampling, 2) enable background estimation in the official code, and
3) use L2 loss instead of L1 loss. The learned models give reasonable novel view
synthesis results on training poses (Fig. 6) but cannot generalize to unseen poses
(Fig. 7). We hypothesize that this is because training poses on the ZJU-MoCap
dataset are extremely limited, and A-NeRF uses only keypoints instead of surface

8 Wang et al.

Surface
Rendering
PSNR 28.5

Uniform
Sampling (64)

PSNR 29.6

Our
Sampling (33)

PSNR 31.6
GT

Fig. 4: Ablation on ray sampling strategies. We observe severe geometric
artifacts with models trained with surface rendering. A simple uniform sampling
strategy (as used in [12, 13]) produces stratified artifacts due to the discretized
sampling. In contrast, our proposed approach does not suffer from these problems
and achieves better result.

models to construct their conditional inputs to NeRF networks. The lack of a
surface model makes it easy for A-NeRF to confuse background and foreground,
resulting in obvious floating blob artifacts. These artifacts are amplified when
training poses are limited, making the generalization result of A-NeRF on the
ZJU-MoCap dataset the worst among the baselines.

F Ablation Study

In this section, we ablate on ray sampling strategies as well as canonicalization
strategies. We conduct an ablation on sequence 313. Metrics on all novel views
of training poses are reported.

F.1 Ablation on Ray Sampling Strategies

We compare our proposed ray sampling strategy to surface rendering and uni-
form sampling with 64 samples on the novel view synthesis task (Fig 4). As
discussed in the main paper, we did not use more sophisticated hierarchical sam-
pling strategies [9,18,22] due to the computational cost of running the iterative
root-finding [3] on dense samples and the memory cost for running additional
forward/backward passes through the LBS network.

Supplementary for ARAH 9

Backward
LBS

PSNR 29.5

SMPL
Weights

PSNR 30.5

Ours
PSNR 31.6 GT

Fig. 5: Ablation on Learned LBS networks. Backward LBS has difficulties
with learning skinning weights for points far from the surface, resulting in ar-
tifacts under specific poses. Canonicalization with deterministic SMPL weights
results in discretized artifacts on the cloth surface. In contrast, our approach
does not suffer from these problems.

F.2 Ablation on Learned forward LBS

In this subsection, we replace our learned forward LBS with (1) a backward
LBS network that conditions on local body poses θ, and (2) a deterministic
LBS with nearest neighbor SMPL skinning weights. For the learned backward
LBS, we always canonicalize the query points using the SMPL global transla-
tion and rotation before querying the LBS network. We also sample points on
the transformed SMPL meshes and supervise the backward LBS network with
corresponding skinning weights using Eq. (6). We show qualitative results in
Fig. 5.

F.3 Ablation on Root-finding Initialization

To ablate the effect of multiple initializations for root-finding, we add additional
initializations from the nearest 2 SMPL bones but do not observe any notice-
able change in metrics. We report PSNR/SSIM/LPIPS as: single initialization
- 31.6/0.973/0.050, 2 more initializations: 31.5/0.972/0.049. Also, adding more
initializations for root-finding drastically increases memory/time consumption,
we thus decide to use only a single initialization for root-finding in our approach.

G Additional Quantitative Results

We present complete evaluation metrics including PSNR, SSIM, LPIPS on the
test poses of the ZJU-MoCap [13] dataset in Table 1.

We also report quantitative results on the H36M dataset [5], following the
testing protocols proposed by [12] in Table 2.

10 Wang et al.

Table 1: Complete evaluation results on novel pose synthesis. PSNR,
SSIM, LPIPS are reported for the test poses of the ZJU-MoCap dataset.

313 315 377
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NB 24.1 0.908 0.126 19.8 0.867 0.152 24.2 0.917 0.119
Ani-N 23.9 0.909 0.115 19.2 0.855 0.167 22.6 0.900 0.153

A-NeRF 22.0 0.855 0.209 18.7 0.810 0.232 22.6 0.890 0.165
Ours 24.4 0.914 0.092 20.0 0.881 0.105 25.5 0.933 0.093

386 387 390
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NB 26.1 0.894 0.171 22.7 0.902 0.135 24.2 0.882 0.164
Ani-N 25.5 0.884 0.187 23.1 0.906 0.145 23.9 0.887 0.173

A-NeRF 24.8 0.858 0.241 22.4 0.885 0.162 22.6 0.846 0.226
Ours 27.0 0.910 0.127 24.2 0.917 0.099 24.8 0.896 0.126

392 393 394
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NB 26.0 0.916 0.135 23.5 0.900 0.132 24.1 0.888 0.150
Ani-N 24.3 0.900 0.169 23.8 0.897 0.155 24.1 0.887 0.171

A-NeRF 23.7 0.886 0.183 22.1 0.875 0.175 22.7 0.861 0.199
Ours 26.2 0.927 0.106 24.4 0.915 0.104 25.2 0.908 0.111

Table 2: Evaluation results on the H36M dataset. Numbers of NARF [11]
and Ani-N [12] are reported in [21].

Training Poses Unseen Poses
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

NARF Ani-N Ours NARF Ani-N Ours NARF Ani-N Ours NARF Ani-N Ours
S1 21.41 22.05 24.45 0.891 0.888 0.919 20.19 21.37 23.08 0.864 0.868 0.899
S5 25.24 23.27 24.54 0.914 0.892 0.918 23.91 22.29 22.79 0.891 0.875 0.890
S6 21.47 21.13 24.61 0.871 0.854 0.903 22.47 22.59 24.04 0.883 0.884 0.900
S7 21.36 22.50 24.31 0.899 0.890 0.919 20.66 22.22 22.58 0.876 0.878 0.891
S8 22.03 22.75 24.02 0.904 0.898 0.921 21.09 21.78 22.34 0.887 0.882 0.896
S9 25.11 24.72 26.20 0.906 0.908 0.924 23.61 23.72 24.36 0.881 0.886 0.894
S11 24.35 24.55 25.43 0.902 0.902 0.921 23.95 23.91 24.78 0.885 0.889 0.902

Average 23.00 23.00 24.79 0.898 0.890 0.918 22.27 22.55 23.42 0.881 0.880 0.896

Supplementary for ARAH 11

H Additional Qualitative Results

H.1 Qualitative Results on ZJU-MoCap Training Poses

We present additional qualitative results on ZJU-MoCap training poses in Fig. 6.
Due to better geometry constraints, our approach better captures cloth wrinkles,
textures, and face details. We also avoid extraneous color blobs under novel views
which all baselines suffer from.

H.2 Additional Qualitative Results on ZJU-MoCap Test Poses

We show additional qualitative results on ZJU-MoCap test poses in Fig. 7. Simi-
lar to the results presented in the main paper, A-NeRF and Neural Body do not
generalize to these within-distribution poses. Ani-NeRF produces noisy render-
ing due to its inaccurate backward LBS network. Note that since these results are
pose extrapolations, it is not possible to reproduce the exact color and texture of
ground-truth images. Still, our approach does not suffer from the artifacts that
baselines have demonstrated, resulting in better metrics, especially for LPIPS
(Table 1). We present more qualitative results in the supplementary video.

H.3 Additional Qualitative Results on Out-of-distribution Poses

We show additional qualitative results on out-of-distribution poses [7] in Fig. 8.
We present more results in the supplementary video.

H.4 Closest Training Poses to Out-of-distribution Poses

To further demonstrate the generalization ability of our approach, we also visual-
ize the closest training pose from the ZJU-MoCap dataset to out-of-distribution
test poses from the AIST++ dataset and the AMASS dataset in Fig. 9. To find
the closest training pose to a test pose, we convert local poses (i.e. all pose
vectors excluding global orientation) to a matrix representation and find the
closest training pose with nearest neighbor search using the converted matrix
representation.

H.5 Qualitative Results on Models Trained with Monocular Videos

In this subsection, we present models trained on monocular videos. For this
monocular setup, we use only the first camera of the ZJU-MoCap dataset to train
our models. We do not modify our approach and all hyperparameters remain the
same as the multi-view setup. We train each model for 500 epochs on 500 frames
of selected sequences in which the subjects do repetitive motions while rotat-
ing roughly 360 degrees. We animate the trained model with out-of-distribution
poses from AIST++ [7]. Qualitative results are shown in Fig. 10. Even under
this extreme setup, our approach can still learn avatars with plausible geome-
try/appearance and the avatars still generalize to out-of-distribution poses. For
the complete animation sequences, please see our supplementary video.

12 Wang et al.

I Limitations

As reported in Section D, our approach is relatively slow at inference time. The
major bottlenecks are the iterative root-finding [3] and the volume rendering.

Another limitation is that neural rendering-based reconstruction methods
tend to overfit the geometry to the texture, resulting in a reconstruction bias. As
shown in Fig. 11, while NeRF-based baselines are unable to recover detailed wrin-
kles, SDF-based rendering (ours and NeuS) wrongfully reconstructs the stripes
on the shirt as part of the geometry. Note that A-NeRF and Ani-NeRF also suf-
fer from this kind of bias. Neural Body demonstrates less overfitting effects. We
hypothesize that this is because the structured latent codes in Neural Body are
local in space and thus give the color network more flexibility, making the density
network less prone to overfitting. Still, Neural Body gives noisy reconstructions
and cannot generalize to unseen poses. Resolving this reconstruction bias while
maintaining a clean geometry is an interesting avenue for future research.

Supplementary for ARAH 13

A-NeRF Ani-NeRF Neural Body Ours GT

Fig. 6: Novel View Synthesis Results on the training poses of ZJU-MoCap.

14 Wang et al.

A-NeRF Ani-NeRF Neural Body Ours GT

Fig. 7: Additional Generalization Results on ZJU-MoCap Test Poses.

Supplementary for ARAH 15

Fig. 8: Additional Generalization Results on Out-of-distribution Poses.
From top to bottom: Neural Body, Ani-NeRF, ours, and our geometry.

16 Wang et al.

Fig. 9: Closest Training Poses to Out-of-distribution Test Poses. We
show rendering results of out-of-distribution poses on the left-most column, while
demonstrating 4 training images of the closest training pose to each of the test
poses.

Fig. 10: Generalization to AIST++ [7] Poses with Models Trained from
Monocular Videos.

Supplementary for ARAH 17

A-NeRF Ani-NeRF Neural Body Ours GT (NeuS) Image

Fig. 11: Shape-Appearance Ambiguity. The Neural Rendering-based recon-
struction tends to bake complex textures into the geometry, resulting in a biased
geometry reconstruction.

18 Wang et al.

References

1. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Video based re-
construction of 3d people models. In: Proc. of CVPR (2018) 5

2. Chan, E., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In: Proc. of
CVPR (2021) 4

3. Chen, X., Zheng, Y., Black, M., Hilliges, O., Geiger, A.: Snarf: Differentiable for-
ward skinning for animating non-rigid neural implicit shapes. In: Proc. of ICCV
(2021) 3, 4, 5, 8, 12

4. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric reg-
ularization for learning shapes. In: Proc. of ICML (2020) 1

5. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelligence 36(7), 1325–1339
(jul 2014) 9

6. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proc. of
ICLR (2015) 3, 6

7. Li, R., Yang, S., Ross, D.A., Kanazawa, A.: Ai choreographer: Music conditioned
3d dance generation with aist++. In: Proc. of ICCV (2021) 11, 16

8. Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black, M.J.:
Learning to dress 3D people in generative clothing. In: Proc. of CVPR (2020) 3

9. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Proc.
of ECCV (2020) 8

10. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018) 3

11. Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In:
Proc. of ICCV (2021) 10

12. Peng, S., Dong, J., Wang, Q., Zhang, S., Shuai, Q., Zhou, X., Bao, H.: Animatable
neural radiance fields for modeling dynamic human bodies. In: Proc. of ICCV
(2021) 7, 8, 9, 10

13. Peng, S., Zhang, Y., Xu, Y., Wang, Q., Shuai, Q., Bao, H., Zhou, X.: Neural
body: Implicit neural representations with structured latent codes for novel view
synthesis of dynamic humans. In: Proc. of CVPR (2021) 3, 7, 8, 9

14. Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.C.: Film: Visual
reasoning with a general conditioning layer. In: Proc. of AAAI (2018) 4

15. Salimans, T., Kingma, D.P.: Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. In: Proc. of NeurIPS (2016) 3

16. Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit
neural representations with periodic activation functions. In: Proc. of NeurIPS
(2020) 4

17. Su, S.Y., Yu, F., Zollhoefer, M., Rhodin, H.: A-neRF: Articulated neural radiance
fields for learning human shape, appearance, and pose. In: Proc. of NeurIPS (2021)
7

18. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. In:
Proc. of NeurIPS (2021) 8

19. Wang, S., Mihajlovic, M., Ma, Q., Geiger, A., Tang, S.: Metaavatar: Learning
animatable clothed human models from few depth images. In: Proc. of NeurIPS
(2021) 3, 6

Supplementary for ARAH 19

20. Xu, H., Alldieck, T., Sminchisescu, C.: H-neRF: Neural radiance fields for rendering
and temporal reconstruction of humans in motion. In: Proc. of NeurIPS (2021) 6

21. Xu, T., Fujita, Y., Matsumoto, E.: Surface-aligned neural radiance fields for con-
trollable 3d human synthesis. In: CVPR (2022) 10

22. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. In: Proc. of NeurIPS (2021) 8

23. Yariv, L., Kasten, Y., Moran, D., Galun, M., Atzmon, M., Ronen, B., Lipman, Y.:
Multiview neural surface reconstruction by disentangling geometry and appear-
ance. In: Proc. of NeurIPS (2020) 2, 5, 6

