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Abstract. Point cloud registration aims at estimating the geometric
transformation between two point cloud scans, in which point-wise cor-
respondence estimation is the key to its success. In addition to previous
methods that seek correspondences by hand-crafted or learnt geomet-
ric features, recent point cloud registration methods have tried to apply
RGB-D data to achieve more accurate correspondence. However, it is
not trivial to effectively fuse the geometric and visual information from
these two distinctive modalities, especially for the registration problem.
In this work, we propose a new Geometry-Aware Visual Feature Ex-
tractor (GAVE) that employs multi-scale local linear transformation to
progressively fuse these two modalities, where the geometric features
from the depth data act as the geometry-dependent convolution ker-
nels to transform the visual features from the RGB data. The resultant
visual-geometric features are in canonical feature spaces with alleviated
visual dissimilarity caused by geometric changes, by which more reliable
correspondence can be achieved. The proposed GAVE module can be
readily plugged into recent RGB-D point cloud registration framework.
Extensive experiments on 3D Match and ScanNet demonstrate that our
method outperforms the state-of-the-art point cloud registration meth-
ods even without correspondence or pose supervision.

Keywords: Point cloud registration, geometric-visual feature extractor,
local linear transformation

1 Introduction

Point cloud registration [15,5,8,19,3,21,1,38] is a task to estimate geometric
transformation, such as rotation and translation, between two point clouds. By
applying the geometric transformation, we can merge the partial scans from two
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views of the same 3D scene or object into a complete 3D point cloud, which is
a key component of numerous tasks in the community of robotics and AR/VR
and also plays an essential role on understanding the whole environment.

The common approach to point cloud registration relies on two processes: (1)
correspondence extraction and (2) geometric model fitting, where accurate corre-
spondence is the key for reliable model fitting. The recent 3D deep learning tech-
niques [9,10,8,15,16,19,39,12] outperform the traditional methods [5,31] by find-
ing more accurate correspondence based on learnable geometric features [10,16],
or further combining the model fitting process into an end-to-end learning frame-
work [19,15,16,8]. However, the geometric features from 3D points are still less
discriminative in comparison to visual features from the RGB images. Thanks
to the rapid popularization of RGB-D cameras, it becomes promising to collect
the RGB-D data for extracting more reliable correspondence, such that both
geometric and visual consistencies can be well examined between two views.
A couple of learning based works [15,16] belong to this line of work, which
achieve superior registration performance even without ground-truth poses or
correspondence as their supervision information. However, UR&R [15] just uses
RGB images for correspondence estimation, while BYOC [16] relies on pseudo-
correspondence from RGB images to train the geometric correspondence. Thus
both methods [15,16] do not fully leverage the complementary visual and geo-
metric information. Moreover, according to our experiments (see Section 4), we
can only achieve marginal gains by simply concatenating RGB-D data as the
input for correspondence estimation in UR&R [15]. A possible explanation that
it is hard to fully exploit the geometry clues by using the CNN networks due to
the intrinsic difference between the geometric and visual features.

To this end, we propose a Geometry-Aware Visual Feature Extractor (GAVE)
that can generate distinctive but comprehensive geometric-visual features from
RGB-D images, which facilitates reliable correspondence estimation for better
point cloud registration. This module can be readily used to replace the feature
extractor in UR&R [15], and significantly improve the point cloud registration
performance even trained in an unsupervised manner1. To be specific, in the
GAVE module, we propose a Local Linear Transformation (LLT) module, where
the geometric features (extracted from the geometric feature extractor) act as
the guided signal and are converted as point-wise linear coefficients to enhance
the visual features (extracted from the visual feature extractor), through point-
wise linear transformation. Moreover, to enhance the content awareness of the
transformation with respect to the input depth image, we borrow the idea from
the edge-aware image enhancement method [17], which employs the Bilateral
Grid and an edge-aware guidance map (both are estimated from the depth image)
to generate our content-aware linear coefficients. Note that this LLT module is
applied in the GAVE module in a multi-scale fashion, which thus enriches the
scale awareness of the generated visual-geometric features.

1 As shown in the ablation study, GAVE module can also be applied into the supervised
pipelines.
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More specifically, the proposed LLT module can be viewed as multi-scale
dynamic convolutions over visual features that are guided by the geometric clues,
which offers more descriptive and complementary combination between visual
and geometric features than the common used operations such as concatenation,
summation or product. Since the goemetric feature can represent local geometric
structure and indicate local orientations, it is easier for dynamic convolution-
based fusion network to learn how to better project visual features into the new
feature space where the projected features are robust to geometric changes, which
is crucial for registration. To our best knowledge, it is the first work that applies
a dynamic convolution-based fusion strategy in RGB-D point cloud registration,
whose design is tailored to the nature of this particular task.

Our Geometry-Aware Visual Feature Extractor is trained in an end-to-end
manner together with the subsequent correspondence estimation and differen-
tiable geometric model fitting modules, e.g., those from UR&R [15]. The state-of-
the-art results are achieved on the standard point cloud registration benchmark
dataset ScanNet [11] with the models respectively trained based on the Scan-
Net [11] and 3D Match [39] datasets, which clearly outperform the existing point
cloud-based supervised baselines and RGB-D-based unsupervised methods.

2 Related Work

2.1 3D Feature Extractors.

To extract the useful 3D features for various 3D vision tasks, early methods
adopted the hand-crafted statistic-based strategies [5,27,4,32] to discover lo-
cal 3D geometries. With the recent success of deep learning techniques, many
learning-based 3D feature extraction methods [12,15,16,9,10,6] have been pro-
posed. While some of them are proposed for extracting the features from point
clouds [9,10,30,2], our methods are inspired more from those methods that ex-
tract the features from RGB-D images/videos [11,39,29,34,33]. However, most
existing geometric-visual feature extractors just simply combine the features re-
spectively from RGB images and depth maps without carefully considering how
to exploit their correlation.

2.2 Bilateral Feature Fusion

Several methods [22,17,18,36,37,7] have conducted feature fusion in a bilateral
manner. Particularly, the works [17,36,37] produce the edge-aware affine color
transformation by using the Bilateral Grid. Inspired by those methods, we also
develop the content-aware local linear coefficients through the Bilateral Grid,
which act as the geometry-guided convolution kernels to transform the visual
features.

2.3 3D Point Cloud Registration

The earlier 3D point cloud registration methods extracted point cloud features
and then align them with robust model fitting technologies [24,13,27,4,32,14,10].
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Some learning-based methods [10,19,8] leverage the extra ground-truth poses
to learn better geometric features from point clouds. However, it is not trivial
to collect such ground-truth annotations. Recently, the unsupervised learning
methods, such as UR&R [15] and BYOC [16], enforce cross-view geometric and
visual consistency to implicitly supervise the training of registration. But the fea-
tures used for correspondence extraction are either directly based on the RGB
data [15] or trained by the pseudo-correspondence labels from the visual corre-
spondences [15], where the extraction of visual and geometric clues are usually
independent without effectively exploiting their correlation. Our work is inspired
by [15,16], but would like to explore more reliable geometry-aware visual features
for more robust registration. In contrast to those existing methods adopting
the fusion operations such as concatenation, summation and attention [35], our
newly proposed LLT module explores the correlation between visual and geomet-
ric information by using multi-scale dynamic convolutions over visual features,
whose kernels are guided by the geometric clues.

3 Methodology

In this work, we propose a Geometry-Aware Visual Feature Extractor (GAVE) to
learn distinctive and comprehensive geometric-visual features. Specifically, given
each RGB-D image, the GAVE module extracts the visual features and geomet-
ric features in a parallel way, and then we densely apply the newly proposed
Local Linear Transformation (LLT) module in a multi-scale fashion to progres-
sively fuse the features from these two modalities. Therefore, a pair of RGB-D
images {IR, IT } (IR as the reference RGB-D image, IT as the target RGB-D
image) can be encoded as a pair of geometric-visual features {FR,FT }, which
are then inputted into a correspondence estimation module to calculate the cor-
respondence. The set of captured correspondence is finally used in a geometric
model fitting module (e.g., a differentiable alignment module in UR&R [15]), to-
gether with the point clouds PR and PT converted from IR and IT , to produce
the rotation matrix RR→T ∈ R3×3 and the translation vector tR→T ∈ R3×1

from the reference RGB-D image to the target RGB-D image. In our work, we
adopt the correspondence estimation and differentiable alignment modules from
UR&R [15] in addition to our GAVE module, thus the whole registration frame-
work can be trained in an end-to-end unsupervised learning manner. The overall
framework is shown in Figure 1.

3.1 Overview of Our Geometry-Aware Visual Feature Extractor

In our Geometry-Aware Visual feature Extractor, we have two parallel sub-
networks, namely a visual feature extractor and a geometric feature extractor
respectively, to extract the visual and geometric features from a RGB-D image.
The visual feature extractor contains 2 dilated convolution blocks to enlarge the
receptive fields that describes the visual contents. The geometric features after
the last 2 convolution blocks are converted into a set of Bilateral Grids [17],
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Depth Image

Geometry-Aware Visual Feature Extractor (GAVE)
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Fig. 1. The overview of our Geometry-Aware Visual Feature Extractor (GAVE) based
framework. We first generate the multi-scale visual features, multi-scale geometric fea-
tures and the guidance map, respectively. Then, we fuse the extracted visual and ge-
ometric features by using our proposed Local Linear Transformation (LLT) modules
with the learned guidance map to produce the intermediate visual-geometric features.
The intermediate features from two different scales are then averaged to generate the
final visual-geometric features. Once we obtain the pair of the visual-geometric fea-
tures (FR, FT ) from the reference RGB-D image and the target RGB-D image, we can
then perform the matching and registration operations to produce the rotation matrix
and the translation vector by using the correspondence generation and the differen-
tiable alignment module in [15]. The details of our proposed LLT module and the basic
ConvBlock and DilatedConvBlock modules will be illustrated in Figure 2.

which act as the source of the local linear coefficients for the proposed Local
Linear Transformation modules. In addition, based on depth image, we also
produce an edge-aware guidance map that further helps to interpolate geometry-
dependent linear coefficients from the predicted Bilateral Grids. Since then, the
LLT module progressively applies the extracted guidance map to slice the set
of Bilateral Grids, by which the resultant local linear coefficients are employed
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to transform the visual features, which are extracted after the last two dilated
convolutional blocks in the visual feature extractor. Since our GAVE module
adopts a multi-scale fusion strategy, we can produce the final visual-geometric
features by averaging the outputs from both LLT modules. More details of each
component will be respectively introduced in the following sections.

3.2 Visual Feature Extractor

We apply dilated convolutions to enlarge the receptive fields in the visual fea-
ture extractor. Specifically, the visual feature extractor at first extracts an initial
visual feature map V0 ∈ RH×W×Dc by using a ConvBlock(64, 3, 1) operation
(i.e., Dc = 64). H and W are the height and width of the input RGB image.
Then, two dilated convolution blocks DilatedConvBlock(64, 3, 1, 2) are stacked
thereafter, where visual feature maps V1 ∈ RH×W×Dc and V2 ∈ RH×W×Dc are
generated from each block, as the sources for multi-scale feature fusion. There
are no downsampling operations in this module, thus the output visual feature
maps have the same spatial size as the input image. Note that the definitions
of ConvBlock(N,K, S) and DilatedConvBlock(N,K, S, d) are depicted in Fig-
ure 2(b), where N is the number of output channel, K is the kernel size, S is
the stride and d refers to the dilation factor.

3.3 Geometric Feature Extractor

The input depth image is at first normalized to [0, 1) through some linear normal-
ization operations with a sigmoid function. Since raw depth image may contain
holes due to sensor’s systematic errors, thus in the pre-processing step, we also
apply the Joint Bilateral Filtering (JBF) method [26] to fill the depth holes with
the aid of the corresponding RGB image.

Once we produce the normalized depth map, we first encode it by using a
stack of convolution operations (i.e., ConvBlock(32, 3, 2), ConvBlock(256, 3, 2)
and Conv(768, 3, 2)2) to generate an initial down-scaled geometric feature map
B0 ∈ R(H/8)×(W/8)×Dd (we use Dd = 768 in this work, so as to match the size
of the visual features, which will be explained in Section 3.5). Since then, we
use two ConvBlock(768, 3, 1) modules to respectively generate two geometric
feature maps representing two different scales. Each Bilateral Grid is reshaped
from each geometric feature map as Bi ∈ R(H/8)×(W/8)×(Dd/ngrid)×ngrid , where
i = 1, 2, and ngrid is the depth of the Bilateral Grid (in this work we set ngrid = 3
for balancing the efficiency and effectiveness). Please refer to [17] for more details
about Bilateral Grid.

3.4 Guidance Map Extractor

In order to provide the content-structural information when generating the local
linear coefficients, we define a guidance map by using a point-wise nonlinear

2 Conv(N,K, S) is a standard convolution operation with the output channel N , the
kernel size K and the stride size S.
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Fig. 2. For our “Local Linear Transformation” in (a), we first produce the sliced coef-
ficients from the guidance map and Bilateral Grid by using the slicing operation in [17].
Then, at each position, the sliced coefficient matrix will be split in to group-wise coef-
ficient matrix. To produce the transformed feature at each group, we then perform the
applying operation (i.e., the linear transformation) between each group-wise coefficient
and each group-wise visual feature, which is also split from the previously learned visual
feature. Finally, we generate the final output feature by using the channel-wise concate-
nation operation on these transformed features from all groups. The basic module is
shown in (b) “Basic Network Structure”. “Conv(N,K, S)” represents the convolution
operation with the output channel, the kernel size and the stride as N , K ×K and S,
respectively. “d” in “DilatedConv(N,K, S, d)” refers to the dilation parameter of the
dilated convolution operation.

transformation on the depth map. Specifically, we input the normalized and
hole-filled depth map and then directly employ several convolution operations
(i.e., ConvBlock(3, 3, 1) and Conv(1, 3, 1)) and a sigmoid activation function to
produce a learned guidance map G ∈ RH×W×1, which preserves the piece-wise
smoothness as well as discontinuity presented in the depth image.

3.5 Multi-scale Local Linear Transformation

In order to effectively fuse the visual and geometric clues, we progressively apply
the local linear transformation to learn the visual-geometric features in a multi-
scale manner. To be specific, in each LLT module, we would like to slice the
generated Bilateral Grids to produce the content-aware local linear coefficients,
and then apply the sliced coefficients to transform the visual features. For the
sake of efficiency, we also split the local linear transformation into several groups
evenly along the channel dimension, and then concatenate these group-wise out-
puts as the final visual-geometric features.

Slicing The slicing operation is performed between a Bilateral Grid B (i.e.,
B1 or B2) and the guidance map G. At each spatial location in the guidance
map, we use its spatial coordinates and the value at that location to sample
nearest points in the Bilateral Grid, and then bilinearly interpolate the sampled
coefficients to eventually generate the sliced linear coefficients. Therefore, the
sliced coefficients become a tensor Ã ∈ RH×W×(Dd/ngrid). Note that we split the
local linear transformation into ngroup (ngroup = 16 in this work) groups, namely
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the sliced coefficients Ã can be reshaped as A ∈ RH×W×Dc×(Dc/ngroup). Note
that when Dc = 64 and Dd = 768, ngrid = 3 and ngroup = 16, Ã and A have
the same number of elements. In this way, the context of the sliced coefficient
tensor will be conditioned on the content structure from the guidance map,
and such slicing operation is more computational-friendly than softmax-based
interpolation.

Apply After evenly splitting the sliced linear coefficients A to produce A(g) ∈
RH×W×(Dc/ngroup)×(Dc/ngroup), g = 1, . . . , ngroup, the final local linear transfor-
mation can be obtained by first using a point-wise transformation and then using
a channel-wise concatenation, such as

F =
ngroup

∥
g=1

A(g) ⊗V(g) (1)

where
ngroup

∥
g=1

means channel-wise concatenation among ngroup linearly trans-

formed group-wise features, ⊗ indicates the matrix multiplication operation at
every spatial position. V(g) ∈ RH×W×(Dc/ngroup) is the g-th group of V, which
is evenly split from V along the channel dimension. Moreover, F ∈ RH×W×Dc

has the same size as the visual feature V. Note that we take the LLT module
from one scale as an example for better illustration. We omit the superscript i
(i.e., the scale index) in V, V(g) and F for brevity, as the LLT module from
each scale shares the same process. Thus, our local linear transformation-based
fusion method inherently takes advantage of both modalities and provide a more
flexible fusion strategy than simple concatenation or summation operations.

Multi-scale Fusion The fused visual-geometric features Fi ∈ RH×W×Dc , i =
1, 2 in both scales are then averaged at the end of the GAVE module, so as to
fulfill the multi-scale awareness of the features, which is essential for correspon-
dence estimation in point cloud registration.

3.6 Correspondence, Registration and Objective Functions

Correspondence and Registration After feeding two RGB-D images (IR, IT )
to our GAVE extractor to produce the visual-geometric feature pairs (FR, FT ),
we can then perform the following correspondence estimation and differentiable
alignment operations. Specifically, we first follow the work in [15] to compute the
top-k (we set k = 400 in this work) correspondence pairs and then employ such
correspondence pairs to estimate the rotation matrix RR→T and the translation
vector tR→T by using the differentiable alignment module [15].

Objective Function As proposed by UR&R [15], we also apply the photo-
metric, depth and correspondence consistencies to train the whole RGB-D point
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Table 1. Pairwise registration errors on the ScanNet [11] dataset. We report the mean
and median errors in terms of rotation error (°), translation error (mm), and Chamfer
distance (cm). Features for correspondence estimation may come from visual or geo-
metric/3D modality. The training set can be 3D Match [39] or ScanNet [11]. “Sup”
means training with ground-truth pose supervision.

Methods Train Set Sup
Features Rotation Translation Chamfer

FMR
Visual 3D Mean Med. Mean Med. Mean Med.

SIFT [27] N/A ✓ 18.6 4.3 26.5 11.2 42.6 1.7 -

SuperPoint [14] N/A ✓ 8.9 3.6 16.1 9.7 19.2 1.2 -

FCGF [10] N/A ✓ 9.5 3.3 23.6 8.3 24.4 0.9 -

BYOC [16] 3D Match ✓ ✓ 7.4 3.3 16.0 8.2 9.5 0.9 -

DGR [8] 3D Match ✓ ✓ 9.4 1.8 18.4 4.5 13.7 0.4 -

3D MV Reg [19] 3D Match ✓ ✓ 6.0 1.2 11.7 2.9 10.2 0.2 -

UR&R [15] 3D Match ✓ 4.3 1.0 9.5 2.8 7.2 0.2 0.78

UR&R (RGB-D) 3D Match ✓ ✓ 3.8 1.1 8.5 3.0 6.5 0.2 0.78

Ours 3D Match ✓ ✓ 3.0 0.9 6.4 2.4 5.3 0.1 0.87

BYOC [16] ScanNet ✓ ✓ 3.8 1.7 8.7 4.3 5.6 0.3 -

UR&R [15] ScanNet ✓ 3.4 0.8 7.3 2.3 5.9 0.1 0.85

UR&R (RGB-D) ScanNet ✓ ✓ 2.6 0.8 5.9 2.3 5.0 0.1 0.91

Ours ScanNet ✓ ✓ 2.5 0.8 5.5 2.2 4.6 0.1 0.94

cloud registration framework. The photometric consistency is measured by com-
paring the target image with the differentiably rendered reference image, ac-
cording to the estimated rotation and translation parameters. The depth consis-
tency is similar to the photometric consistency, but it compares the depth value
instead. Correspondence consistency directly measures the matching errors be-
tween the corresponded points. Please refer to [15] for more details.

4 Experiments

4.1 Datasets and Experimental Setup

Datasets We follow UR&R [15] and adopt the large-scale indoor RGB-D dataset
ScanNet [11] for evaluating our proposed GAVE module. Specifically, there are
1513 scenes in the ScanNet dataset [11] and each scene contains both RGB-D im-
ages and their ground-truth camera poses. We use its original training/testing
split, which respectively contain 1045 and 312 scenes. In addition, as in [15],
we also provide more evaluation results, in which we train our model based on
another smaller point cloud dataset 3D Match [39] with 101 real-world indoor
scenes and then evaluate the learnt model on the ScanNet dataset. Each scene
in 3D Match also provides RGB-D images and point clouds data.

Evaluation Metrics We adopt the evaluation metrics, i.e., the rotation error,
the translation error and the Chamfer distance, as used in UR&R [15]. We report
both the mean and the median values for these three error metrics in Section 4.2
and Section 4.3. In addition, we report the registration accuracy, i.e., the rotation
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Table 2. Pairwise registration accuracies on the ScanNet [11] dataset. We report the
rotation accuracy with different angles (i.e., 5°, 10° and 45°), the translation accuracy
with different lengths (i.e., 5cm, 10cm and 25cm) and the Chamfer accuracy with
different metric distances (i.e., 1mm, 5mm and 10mm).

Methods Train Set Sup
Features Rotation Translation Chamfer

Visual 3D 5 10 45 5 10 25 1 5 10

SIFT [27] N/A ✓ 55.2 75.7 89.2 17.7 44.5 79.8 38.1 70.6 78.3

SuperPoint [14] N/A ✓ 65.5 86.9 96.6 21.2 51.7 88.0 45.7 81.1 88.2

FCGF [10] N/A ✓ 70.2 87.7 96.2 27.5 58.3 82.9 52.0 78.0 83.7

BYOC [16] 3D Match ✓ ✓ 66.5 85.2 97.8 30.7 57.6 88.9 54.1 82.8 89.5

DGR [8] 3D Match ✓ ✓ 81.1 89.3 94.8 54.5 76.2 88.7 70.5 85.5 89.0

3D MV Reg [19] 3D Match ✓ ✓ 87.7 93.2 97.0 69.0 83.1 91.8 78.9 89.2 91.8

UR&R [15] 3D Match ✓ 87.6 93.1 98.3 69.2 84.0 93.8 79.7 91.3 94.0

UR&R (RGB-D) [15] 3D Match ✓ ✓ 87.6 93.7 98.8 67.5 83.8 94.6 78.6 91.7 94.6

Ours 3D Match ✓ ✓ 93.4 96.5 98.8 76.9 90.2 96.7 86.4 95.1 96.8

BYOC [16] ScanNet ✓ ✓ 86.5 95.2 99.1 56.4 80.6 96.3 78.1 93.9 86.4

UR&R [15] ScanNet ✓ 92.7 95.8 98.5 77.2 89.6 96.1 86.0 94.6 96.1

UR&R (RGB-D) [15] ScanNet ✓ ✓ 94.1 97.0 99.1 78.4 91.1 97.3 87.3 95.6 97.2

Ours ScanNet ✓ ✓ 95.5 97.6 99.1 80.4 92.2 97.6 88.9 96.4 97.6

accuracy within three thresholds of angles, the translation accuracy within three
thresholds of lengths and the Chamfer accuracy within three thresholds of metric
distances, as introduced in UR&R [15]. We also include FMR [10,12] to directly
compare the extracted correspondence with the reference methods, in which we
use rigorous thresholds τ1 = 0.05 and τ2 = 0.5.

Baseline Methods We compare our work with the conventional registra-
tion methods, which extract 3D features by SIFT [27], SuperPoint [14] and
FCGF [10], and then estimate the geometric transformation via RANSAC. More-
over, we compare with the learning-based registration approaches, such as DGR [8]
and 3D MV Reg [19] as the supervised approaches, and UR&R [15], BYOC [16]
as the unsupervised approaches. The results of these methods are borrowed
from [15,16]. Last, we also use the RGB-D images as the input for correspon-
dence estimation in UR&R [15] (i.e., UR&R (RGB-D)), as another important
baseline method.

Training Details For fair comparison, we follow the same training scheme as
in [15]. Specifically, we train our model based on the 3D Match dataset for only
14 epochs with the learning rate of 1e-4. We also train our model based on the
ScanNet dataset for only 1 epoch with the learning rate 1e-4. All models are
trained on the machine with one NVIDIA Tesla V100 GPU. The batch size is 8.
We use Adam Optimizer [25] with epsilon 1e-4 and momentum 0.9.

4.2 Experimental Results

We provide our experimental results, i.e., registration errors in Table 1 and reg-
istration accuracies in Table 2. It is observed that our newly proposed method
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Table 3. Comparision between our complete method (i.e., the 4th row) and three
alternative methods, which directly adopt the concatenation of RGB images and depth
maps for generating the intermediate feature. “MS” means multi-scale strategy, “DC”
means dilated convolutions in the visual feature extractor, and “LLT” is the local linear
transformation module. All models are trained based on the 3D Match dataset.

MS DC LLT
Rotation Translation Chamfer

Accuracy Error Accuracy Error Accuracy Error

5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

88.4 94.2 98.6 3.8 1.1 67.3 83.8 94.5 8.5 3.0 78.9 91.7 94.6 6.5 0.2

✓ 88.5 94.4 98.6 3.8 1.1 68.1 84.5 94.8 8.3 3.0 79.5 92.1 94.9 6.3 0.2

✓ ✓ 90.4 95.0 98.6 3.6 1.0 70.8 86.5 95.3 8.1 2.8 81.8 93.1 95.4 6.2 0.2

✓ ✓ ✓ 93.4 96.5 98.8 3.0 0.9 76.9 90.2 96.7 6.4 2.4 86.4 95.1 96.8 5.3 0.1

not only outperforms UR&R (RGB-D), but also achieves significant improve-
ment over the baseline methods [27,14,10,16,20,19,15]. Specifically, our method
trained on the 3D Match dataset achieves much better results than all other end-
to-end optimized methods that are also trained on the 3D Match dataset. For ex-
ample, when compared to the most recent unsupervised point cloud registration
method UR&R [15], we respectively reduce 21.1% mean rotation error, 24.7%
mean translation error, and 18.5% mean Chamfer distance. We also increase the
FMR performance for about 11.54%, which directly validates the superior corre-
spondence estimation performance of our method. With respect to registration
accuracies, we also achieve significant gains at the strictest thresholds. These re-
sults demonstrate that our proposed network has universal registration ability,
because significant gains can be achieved on the large-scale ScanNet dataset by
simply training the network in a smaller 3D Match dataset.

We have similar observations when compared with these methods trained on
the ScanNet dataset. But without any domain gap between training & testing
data, the baseline methods can achieve almost saturated performance (over 90%
in terms of most metrics for UR&R). While it is non-trivial to achieve further
gains in this case, our method still reduces up to 23.7%/9.3%/12.6% relative
error rate over the baselines in terms of rotation/translation/Chamfer distance.

4.3 Ablation Study and Analysis

Analysis of Each Component In Table 3, we analyse the effectiveness of
each proposed component, i.e., the local linear transformation (LLT) module,
the multi-scale (MS) fusion strategy and dilated convolution (DC), by comparing
our complete method to three alternative methods. We train all models based on
the 3D Match dataset. The first variant in the 1st row replaces the dilation con-
volutions with regular convolutions, and does not adopt either multi-scale fusion
strategy or the LLT module. The second variant in the 2nd row introduces the
multi-scale fusion strategy upon the first alternative, and the third variant in
the 3rd row further includes dilated convolution in the visual feature extractor.
The first variant achieves the worst registration performance, while the second
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Table 4. Comparision between our complete method and four variants, which are (1)
the method without adopting the fusion mechanism at all (i.e., the 3rd row in Table 3),
(2) the method without the guidance map, and (3) the method that replaces LLT by the
affine transformation. (4) the method that replaces LLT by multi-head cross-attention
(MHCA). All models are trained on the 3D Match dataset.

Fusion
Strategies

Rotation Translation Chamfer
Accuracy Error Accuracy Error Accuracy Error

5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

no fusion 90.4 95.0 98.6 3.6 1.0 70.8 86.5 95.3 8.1 2.8 81.8 93.1 95.4 6.2 0.2

LLT w/o
guidance map

92.3 95.9 98.8 3.2 0.9 74.7 88.7 96.3 7.0 2.5 84.6 94.4 96.2 5.4 0.1

Affine
transformation

92.3 96.0 98.8 3.1 0.9 75.3 89.0 96.3 6.7 2.5 85.2 94.5 96.3 5.4 0.1

MHCA 91.3 95.1 98.4 3.8 0.9 73.5 87.6 95.2 8.4 2.6 83.4 93.3 95.4 6.5 0.2

LLT (Ours) 93.4 96.5 98.8 3.0 0.9 76.9 90.2 96.7 6.4 2.4 86.4 95.1 96.8 5.3 0.1

Table 5. Comparision between our method and UR&R (RGB-D) when trained based
on ground truth camera poses. All models are trained on the 3D Match dataset.

Methods
Rotation Translation Chamfer

Accuracy Error Accuracy Error Accuracy Error

5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

UR&R (RGB-D) 92.3 95.3 98.2 3.8 0.8 77.6 89.4 95.5 7.8 2.3 86.1 94.0 95.6 6.7 0.1

Ours 96.5 97.8 98.8 2.7 0.8 83.8 93.8 97.6 5.8 2.0 91.2 96.7 97.6 4.8 0.1

one reduces 2.4% mean translation error and 3.1% mean Chamfer distance when
compared to the first variant. The third variant further reduces 7.6% mean rota-
tion error, 2.4% mean translation error and 1.6% mean Chamfer distance when
compared to the second alternative method. Note that our complete method in
the 4th row after using the LLT module can bring the most significant gains.

Different Fusion Strategies In Table 4, we further compare our LLT based
fusion module with the other alternatives. We train these models on the 3D
Match dataset. The first variant in the 1st row does not adopt the fusion mech-
anism at all, which achieves the worst registration performance. The second one
in the 2nd row directly uses the Bilateral Grid without using the guidance map,
while the third variant in the 3rd row replaces the linear transformation by the
affine transformation. It is observed that both the second and the third variants
can intuitively bring some performance improvements. In contrast, our proposed
LLT module in the 5th row can bring the most significant gains. It is interesting
that the variant using affine transformation is worse than that using the lin-
ear transformation. A possible explanation is that the bias term in the affine
transformation indicates another summation operation between the geometric
features and the visual features, which may deteriorate the feature representa-
tion if two modalities are quite different. Last, in the 4th row, we adopt the
fast multi-head cross attention (MHCA) mechanism of Linear Transformer [23]



RGB-D Point Cloud Registration by Multi-scale LLT 13

Fig. 3. Visualization of pairwise matching results by UR&R (RGB-D) [15] and our
method (trained on the 3D Match dataset [39]). We show the positive correspondence
(i.e., the matching error < 10cm) and the negative correspondence (i.e., the matching
error ≥ 10cm) as the green lines and the red lines, respectively. Best viewed on screen.

Fig. 4. Visualization of point cloud registration results from UR&R (RGB-D) [15] and
our method (trained on the 3D Match dataset [39]). In the 1st, the 3rd and the 5th

columns, we show the stitched 3D scenes; while we use the purple and yellow points to
represent the point clouds from the target and reference viewpoints (see the 2nd, the
4th and the 6th columns). Best viewed on screen.

to replace the LLT module. Here, we do not apply vanilla MHCA [35] to avoid
huge memory and computational costs. The results show that LLT is better than
this variant in terms of all evaluation metrics.

Supervised Learning In Table 5, our proposed feature extractor can be trained
under the supervised learning setting. Specifically, as in [8], we adopt the camera
pose data as the ground-truth labels during the training procedure, for both our
method and our baseline UR&R (RGB-D). The results show that our method is
much better than UR&R (RGB-D) in terms of all metrics.

4.4 Qualitative Results

Visual Comparison about Correspondence Estimation and Registra-
tion In Figure 3, we visualize the matching results for both UR&R [15] (RGB-D)
and our proposed method, in which we use the models trained on 3D Match. It
is observed that our method provides more accurate matching results across two
views. Taking the results in the left of Figure 3 as an example, UR&R (RGB-
D) finds false correspondence around the plain area within the floor and wall,
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Fig. 5. The 3rd and the 4th columns represent the projected 3D features, which are
the input to our LLT, while the 5th and the 6th columns represent the projected 3D
features, which are the output from our LLT. We use t-SNE [28] for visualization, in
which each 3D feature is mapped to the corresponding color.

while our method pays more attention to salient objects, such as the chairs,
where the correspondence can be found in a more reliable and repeatable way.
In Figure 4, we visualize the registration results for both UR&R [15] (RGB-D)
and our method. It is observed that our method achieves better registration
results. For example, in the 1st and 4th rows, our method generates very close
stitching results to the ground-truth, while the results from the UR&R (RGB-D)
method are completely failed. As we can already produce more accurate match-
ing results, it is not surprised that we can achieve better point cloud registration
performance than UR&R (RGB-D).

Feature Visualization In Figure 5, the 3rd and 4th columns and the 5th and 6th

columns are the projected 3D features from left and right images by using t-SNE,
before and after using the LLT module. We observe that the learnt features (e.g.
within the table area) after using our LLT are more likely to follow the geometric
structure, and have become more consistent across two views.

5 Conclusion

In this work, we have proposed a new geometric-aware visual feature extractor
(GAVE) to effectively learn visual-geometric features, in which we propose multi-
scale local linear transformation to progressively fuse the geometric and visual
features. Our proposed GAVE module can be easily plugged into different end-to-
end point cloud registration pipelines like [15] (as already discussed in this work),
which significantly enhances the point cloud registration performance. Extensive
experiments not only show our method outperforms the existing registration
methods, but also indicate the effectiveness of our newly proposed LLT module
and multi-scale fusion strategy. It is possible to further extend and apply our
proposed GAVE feature extractor for more RGB-D based 3D computer vision
tasks, such as recognition, tracking, reconstruction and etc., which will be studied
in our future work.
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