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Abstract. We propose pose-guided multiplane image (MPI) synthesis
which can render an animatable character in real scenes with photore-
alistic quality. We use a portable camera rig to capture the multi-view
images along with the driving signal for the moving subject. Our method
generalizes the image-to-image translation paradigm, which translates
the human pose to a 3D scene representation — MPIs that can be ren-
dered in free viewpoints, using the multi-views captures as supervision.
To fully cultivate the potential of MPI, we propose depth-adaptive MPI
which can be learned using variable exposure images while being robust
to inaccurate camera registration. Our method demonstrates advanta-
geous novel-view synthesis quality over the state-of-the-art approaches
for characters with challenging motions. Moreover, the proposed method
is generalizable to novel combinations of training poses and can be ex-
plicitly controlled. Our method achieves such expressive and animatable
character rendering all in real time, serving as a promising solution for
practical applications.

1 Introduction

Using a handy camera rig for data capturing, can we synthesize a photorealistic
character with controllable viewpoints and body poses in real-time? Such a tech-
nique would democratize personalized, photorealistic avatars and enable various
intriguing applications such as telepresence, where people will feel the virtual
character of a remote person as a real person talking in real time.

Traditionally, free-viewpoint rendering of a moving person is approached by
capturing a high-fidelity 3D human model in a specialized studio [5,6,8,11], which
is a costly and brittle process and is not accessible to common users. Recently, re-
searchers use data-driven methods [19,12,18,44,3,20,46] to expedite this process.
These methods focus on rendering and animating human actors but do not ad-
dress the interactions between human and real scenes (e.g ., a person sitting on a
couch with arms on a table). Moreover, they cannot handle challenging motions
such as finger movements. Recently, deformable NeRF methods [27,28,32,40]
have been proposed to model the person and the scene by learning an implicit
deformation field along with a canonical radiance field that serves as the tem-
plate. However, these methods can only handle small deformations as it is hard to
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Fig. 1. Using images from a handy capture device, our method renders a photo-realistic
character in real time. The character is animatable through motion transfer.

model complex human motions with a single canonical representation. Besides,
the expensive volumetric rendering process prohibits real-time video synthesis.

For character modeling in unconstrained environments, we propose a novel
capture setup that comprises a portable capture rig and a fixed driving camera.
Synchronized mobile phone cameras are mounted on the rig, and the videogra-
pher slightly moves the camera rig to capture the light field of the scene. The
fixed camera is used to extract the driving keypoints that users can manipulate
for character retargeting. With this handy setup, we strike the desired balance
between 3D sensing accuracy and hardware affordability since the rig movement
greatly reduces the number of cameras needed.

We also introduce pose-guided multiplane images for fast and controllable
character rendering with high fidelity. The multiplane image (MPI) representa-
tion [49] uses a set of parallel semi-transparent planes to approximate the light
field and has shown compelling quality for complex scene modeling. Rather than
performing optimization directly upon MPI [49,9,25,45], we propose to use a
neural network to produce the planes with pose conditioning, and the whole
framework is essentially a pose-to-MPI translation network. We use 2D key-
points on the image plane of the driving camera to define the pose, and predict
the multiplane images in the frustum of the same camera. Hence, the two repre-
sentations are spatially aligned and compatible for network processing. During
inference, the keypoints serve as the driving signal, and one can obtain the cor-
responding character in novel views by rendering the predicted MPI from the
target viewpoint.

Our method brings several benefits. 1) Since we do not assume a human
model or a canonical template but learn character modeling purely in a data-
driven manner, our method offers improved flexibility to characterize the subject
as well as complex interactions with the scene. In particular, we observe sub-
stantial improvement for gesture modeling, which is challenging for prior arts.
2) Taking advantage of the inductive bias of convolutional neural networks, our
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method demonstrates improved generalization ability. Instead of memorizing the
scene, the network trained with large data can hallucinate plausible outputs for
diverse poses. 3) The MPI rendering is blazingly fast, and our network can syn-
thesize videos of 640× 360 resolution in real time.

We further propose several techniques to achieve better MPI synthesis. As
opposed to evenly placing the planes in disparity space, we propose adaptive
planes whose positions are jointly optimized during training, which considerably
improves the modeling quality because the planes are now densely placed near
the real surfaces of the scene. To compensate for the exposure mismatch among
different cameras, we also introduce a learnable exposure code for each camera.
Moreover, when dealing with long video sequences (e.g .,> 4k frames), we observe
unsatisfactory camera pose estimation using conventional structure-from-motion
(SfM) pipeline [34], which leads to blurry results. To solve this, we refine the
camera poses during training using the gradients of the static background pixels.

We demonstrate that our pose-guided MPI quantitatively and qualitatively
outperforms state-of-the-art approaches including Video-NeRF [17], Nerfies [27],
HyperNeRF [28], and NeX [45] on novel view synthesis for characters with com-
plex motion. Moreover, the character rendered by our method can be explicitly
controlled, and we achieve photorealistic results of character reenactment, as
illustrated in Fig. 1. The whole rendering framework runs in real time and is
scalable to high resolutions.

2 Related Work

Neural character rendering Traditional graphics pipelines [5,6,8,11] re-
quire a well-orchestrated studio with a dense array of cameras to build the
mesh for the characters. In the past years, deep generative neural networks
have been introduced to synthesize photorealistic characters [38,39]. A popular
synthesis paradigm is image-to-image translation [14,43], which learns the map-
ping from certain representations, such as joint heatmap [23,2,4,48,50], rendered
skeleton [7,31,36,35,42], and depth map [24], to real images of the character.
These works have certain generalization ability to novel poses and have shown
compelling rendering quality even for complex clothing and in-the-wild scenes.
However, they cannot guarantee view consistency as they learn the generation
in 2D screen space. More recent methods attempt to solve this by leveraging
a human model, e.g ., SMPL model [21]. One line of works [19,33,3] unwraps
the body mesh to 2D UV space where the network learns texture synthesis and
then translates the rendered textured mesh to images. Meanwhile, another line
of works improves view consistency by learning the deformation to a canonical
3D space enforced by the SMPL model [12]. In comparison, our method does
not assume an explicit human model and hence can model complicated finger
motions as well as the character’s interactions with the scene. Our method gen-
eralizes the image translation but the output representation we adopt ensures
multi-view consistency.
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Neural scene representation Instead of rendering with a black-box image
translation process, recent works turn to using neural networks to model some
intrinsic aspects of the scene followed by a physics-based differentiable renderer.
One recent notable work is to model the scene as a neural radiance field (NeRF)
whose color and volumetric density across the continuous coordinates are param-
eterized by the multilayer perceptron (MLP). The NeRF representation ensures
that the images rendered at different views have coherent geometry, and the
volumetric rendering is able to produce realistic outputs with stunning details.

Several NeRF variants [32,27,28,40,10,17] have been proposed to handle dy-
namic scenes. One category of these works is deformation-based [32,27,28,40]
which optimizes a deformation field that warps each observed point to a canoni-
cal NeRF. These approaches have shown impressive quality even for in-the-wild
scenes, but only simple deformation can be modeled as it is difficult to find
a template that accounts for all the observations. To render characters with
NeRF [18,44,46,29], there are works that use the SMPL model to enforce the
canonical NeRF, but they may suffer from the limited modeling capability of the
parametric human model. Some methods modulate NeRF with additional con-
ditioning [17,47] and achieve enhanced expressivity to model dramatic topology
change. Nonetheless, the majority of these methods are designed for replaying
the dynamic scene, and it is hard to generalize to novel character poses. This is
because the point-wise MLPs in NeRF models do not leverage a larger context
for generative modeling. In contrast, we employ a convolutional neural network
which leverages a large image context for hallucination, and thus our method
is more amenable to animation and generalizes better. Moreover, our method
renders characters much faster than NeRF-based approaches.

Multiplane images representation The MPI representation uses a stack of
RGBα layers arranged at various depths to approximate the light field. Initially,
the MPI is used for the stereo magnification problem [49] where an MPI is
predicted from a CNN given a stereo pair input. Later, a few works extend the
MPI for view synthesis where images from a variable number of viewpoints can
be accessed [9,25,45,37,41,16]. The multiplane images can be optimized in three
ways: direct optimization [25,45,37], using a CNN to learn gradient updates upon
MPI [9] or directly predicting the MPI using CNN [41,16]. The main drawback
of MPI methods is that the rendered view range is limited by the number of
planes. To solve this, [25] proposes to use multiple MPIs to account for local light
fields, which are further blended for the final output. MPI-based approaches have
limited power for handling non-Lambertian surfaces and wide viewing angles,
and they are outshined by the recent advances of NeRF-based methods. Very
recently, NeX [45] tackles view-dependent modeling by representing the pixel
color of MPI as a combination of spherical basis functions, and it excels over
NeRF in visual quality with much faster rendering speed. However, no existing
method ever studies the controllability of such a representation. Our approach is
motivated by the recent success of MPI, and we demonstrate the great potential
of this representation for animatable character rendering.
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Fig. 2. Overview of our method. (a) The device we use to capture data for building an
animatable character in a real scene. (b) The built character is controllable. Given any
pose Pt at time step t, we feed its pose image into a pre-trained network Gθ to acquire
a 3D character represented in MPI (Mt). The character has the same pose with Pt,
and can also be efficiently rendered in free views.

3 Approach

We aim to render an animatable character that can be controlled by a driving
input. To this end, we devise a portable data capture setup to ease the multi-
view capture in open scenes (Section 3.1). Once we finish the data capture for
the moving character, we train a neural network conditioned on character poses
to predict the multiplane images that explain the multi-view observations (Sec-
tion 3.2). During inference, we can render realistic characters given a driving
input (Section 3.3). Next, we elaborate on these three parts respectively.

3.1 Data capture

In our design, data capturing should meet the following requirements. First, the
capture device should be portable, lightweight, and low-cost to benefit as many
users as possible for their character creation. Second, the captured images for the
moving subject should resolve most motion ambiguity. Otherwise, the character
reconstruction from sparse views is highly ill-posed. Third, we need to use some
driving signal handy for user control, and such signal should be readily obtained
from the same capture setup.

Taking these into consideration, we propose a novel character capture setup
as shown in Fig. 2 (a), which consists of a moving camera rig along with a static
camera fixed on a tripod. We mount four smartphone cameras on the capture
rig, which the videographer can hold and move to capture the subject. Such
capturing manner is motivated by Nerfies [27] that uses a single moving camera
for selfies. In our early attempts, we find a single camera does not suffice to
resolve the ambiguity for complex non-rigid motion, whereas adding a few more
cameras significantly improves the modeling quality. Also, the rig motion makes
the capture to cover various combinations of viewpoints and character poses,



6 Ouyang et al.

which helps to reduce the number of multi-view cameras by requiring longer
sequence capturing. On the other hand, we propose to use body keypoints as the
driving signal for character animation. We believe manipulating 2D keypoints is
easy for most users since people can extract such keypoints from their monocular
videos to drive the virtual character. Hence, we also require a fixed camera, or
“driving camera”, which is used to extract the driving keypoints. Compared to a
specialized lab, it is much cheaper to build this capture setup. Once we capture
the data, we use audio to synchronize the multi-view videos with the driving
camera and run COLMAP [34] to estimate the camera poses for each frame.

3.2 Conditional MPI representation

Our method builds on the multiplane image (MPI) scene representation, which
consists ofD fronto-parallel planes, each with an associatedH×W×4 RGBα im-
age. As illustrated in Fig. 2 (b), the multiplane images are scaled and positioned
at different depths d1, ..., dD within the view frustum of the driving camera. Typ-
ically, the planes are placed equally in the depth space (for the bounded scene)
or in the disparity space (for the unbounded scene).

While MPI-based methods have shown impressive quality in modeling static
scenes from sparse views, its ability to model a moving character, especially
those with complex motions, remains underexplored. To accomplish this, we for-
mulate the character rendering by pose-guided MPI synthesis framework, which
is illustrated in Fig. 2 (b). Given the pose image Pt extracted from the driving
camera at time t, we train a convolutional neural network Gθ to translate this
input to multiplane images Mt = Gθ(Pt), using the supervision of the multi-view
observations {Int }Nn=1. Here, N denotes the number of cameras we use for data
capture. During training, we extract rich character pose information using [22],
which includes facial landmarks, body keypoints, and finger keypoints that are
extracted from the driving frames. Note that both Pt and Mt are spatially
aligned as they are viewed from the same driving camera; hence their mapping
is naturally suitable for the CNN learning.

The synthesized MPI can be rendered in the target view by compositing the
colors along the rays. The implementation is efficient: the image planes are first
warped towards the target view and then alpha-blended. Specifically, we refer to
the RGB channels of the MPI as C = {c1, ..., cD} and the corresponding alpha
channels as A = {α1, ..., αD}. The MPI rendering can be formulated as

Ĩ = O
(
W(C),W(A)

)
, (1)

where the warping operator W warps the images via a homography function [49]
depending on the relative rotation R and translation t from the target to the
source view and the layer depth di. Formally, the warping matrix is

Ks(R− tnT

di
)K−1

t , (2)
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where n is the normal vector; Ks and Kt respectively are intrinsic matrix of
source camera and target camera. Besides, O in Equation 1 denotes the compo-
sition [30] of the warped images (c′i and α′

i) from back to front, i.e.,

O(C,A) =

D∑
i=1

(
c′iα

′
i

D∏
j=i+1

(1− α′
j)
)
. (3)

The above rendering process is fully differentiable, so the MPI synthesis network
can be trained end-to-end using 2D supervision.

This pose-guided MPI enjoys many features of CNNs and shows various
advantages over implicit approaches. First of all, we do not explicitly model
the geometry of the scene or assume a template for all the character motions,
so our model is more expressive and can better fit challenging motions and
delicate details, as proved in our view synthesis experiments. Second, compared
to implicit neural representation, our method can generalize better thanks to
the inductive bias of CNNs. Intuitively, it seems that our approach is good at
hallucinating plausible outputs, even for unseen poses. Third, manipulating the
keypoints is more straightforward for character animation instead of using latent
code or body parameters. Finally, the MPI is inferred with a single feed-forward
pass of the network, and its rendering is also fast.

To cultivate the full potential of the above framework and achieve state-of-
the-art quality, we introduce the following key components.

Depth-adaptive MPI We argue that manually placing the multiplane images
at fixed depth may not be optimal. Ideally, the planes should be distributed more
densely around the real scene surfaces. Otherwise, some planes are wasted for
modeling the vacant space. More importantly, in our scenario the bound of the
scene cannot be reliably estimated because we have to mask out the moving
foreground when computing the COLMAP. As a result, the MPIs initialized
with a mistaken depth range may lead to scene clipping modeling.

In view of this, we propose to make the MPI depth as learnable parameters
so that MPIs positions can be adaptive to the scene content. Formally, we refer
to the initialized depth as diniti . During training, we learn the residual δi which
is initialized with zeros, so the refined depth becomes di = diniti + δi. As we
know, the homography warping W in Equation 1 is the function of di; hence the
gradient can be back-propagated to update the depth as the training proceeds.

However, one may notice that the depth refinement may alter the plane
orderings, which will mislead the alpha composition (Equation 3) that renders
the planes from back to front. Therefore, we need to enforce the depth order to
be unchanged in the depth refinement. To achieve this, we clamp the value of δi
once we find the plane shift causes the crossing over the adjacent planes. During
training, the depth refinement uses 0.1x learning rate compared to the network.

Learning with variable exposure images There always exist exposure and
color differences among cameras even if we employ cameras of the same type and
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manually choose the ISO and exposure time. To use different exposed images
for our training, we assume that the MPI rendering models the true light inten-
sity of the scene but we introduce learnable exposure coefficients to account for
the exposure variance among cameras. Specifically, we adopt a linear exposure
model [26,1] which outputs the image as

Î = clamp
(
(Ĩ+ β) ◦ γ

)
, (4)

where clamp(·) = min(max(·, 0), 1) whereas β ∈ R3 and γ ∈ R3 are learnable
exposure coefficients associated with each camera. Here, γ accounts for the ex-
posure time whereas β is for compensating the shift of black level.

Learnable camera poses In our experiments, the model sometimes fails to
reconstruct the static background because of the inaccurate camera pose estima-
tion from SfM. The problem becomes even worse when dealing with long video
sequences to capture more diverse character poses.

To improve the robustness of inaccurate camera registration, we jointly re-
fine the camera poses during training. The gradient through the homography
warping can be used to update the camera poses for each frame. Note that the
pose refinement can only leverage the gradient of a static background, whereas
the MPI synthesis is updated using the whole image. Therefore, the optimization
follows an alternative manner: we take two consecutive training steps to alter-
natively optimize the MPI synthesis network and the camera pose, with the loss
computing over the whole image and the background, respectively. Since this
may slow down the training speed, we only apply this strategy for sequences
with blurry background reconstruction.

Sharing textures for compact MPI It is known that a large number of
RGBA layers are helpful for high-fidelity modeling, but this brings huge memory
costs when directly using the network for the MPI synthesis. To make the MPI
more compact, we follow the strategy of NeX [45] and share the RGB textures
for every K layers. In this way, we reduce the output channels from 4D to
(D + 3D/K) without obvious degradation in visual quality.

Losses To optimize our model, we feed input pose to generate the MPI and
render an output image Î using the camera pose of the ground-truth image I.
We use three losses for reconstruction: mean square error between I and Î as
L2: ||I− Î||2, gradient difference along the width and height dimension as Lgrad:

||∇I − ∇Î||2 and the perceptual loss of the difference between VGG features:

Lperceptual: ||V GGF (I)− V GGF (Î)||1. In total we optimize:

min
θ,d,R,t,β,γ

L2 + λ1Lgrad + λ2Lperceptual. (5)

Note that for L2 loss and the Lgrad, we apply a 10× weight on the foreground
person using the object mask detected by [13].
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3.3 Motion transfer

Our pose-to-MPI translation network learns to generate 3D representation with
a conditional pose. Given a trained model of a character, we can transfer the
motion from the driving character and generate novel views. Since characters
differ in height, limb length and body shape, it is not suitable to transfer the
absolute pose directly from the driving character to the source character built
by our method. Relative motion transfer, which keeps the physical characteris-
tics of the source character, is desired. Our input pose comprises face keypoints,
body keypoints, and finger keypoints. Denote the face landmarks of the driving
character by t and that of the source character by s. To transfer the relative
motion, we find the landmarks t′ most similar to s in the driving video. Thus,
the transferred pose for the source character becomes s + t − t′. We treat the
body landmarks as a tree structure for body motion transfer. We generate the
transferred body keypoints by keeping the same limb length as the source body
while utilizing the limb direction of the driving body. The tree root is the mid-
point of the left shoulder and right shoulder. Finger motion transfer is similar
to body transfer, except that the tree root is changed to the wrist. Please refer
to the supplementary material for more details.

4 Experiments

4.1 Implementation details

The output MPI is composed of 192 alpha layers, with every 12 alpha layers
sharing the same RGB texture layer, which leads to 192/12 = 16 RGB texture
layers. The total number of channels to output thus becomes 192+16×3 = 240.
Our video sequences are all captured in 1080p resolution. The temporal length
of each captured sequence lies between 1 to 3 minutes. For each sequence, 1/16
frames are selected as a validation set with the rest for training. We down-sample
each video frame to 360× 640 for fast inference. However, the resolution of each
output MPI layer is larger than this to support rendering with wider view angles:
it is equal to padding 180 pixels to all four sides of the 360×640 frame. We train
the model using Adam[15] optimizer and decay the learning rate from 1e-3 to
1e-4 in 500 epochs. The training takes 12 hours with four Tesla V100 GPUs.

4.2 Evaluation

Both quantitative and qualitative analysis is conducted to evaluate our methods
thoroughly w.r.t the following two aspects: (i) the ability to synthesize novel
views (ii) the ability to generalize to novel poses. We highly recommend the
readers to watch our supplementary video for a more comprehensive evaluation.
Novel view synthesis We compare our approach with four other scene repre-
sentation methods. Among them, NeX [45] is the state-of-the-art MPI-based
method. It is proposed to represent only static scenes. The other three are
NeRF-variants, which comprise different extensions to handle dynamic scenes.
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Sequence 1 Sequence 2 Sequence 3
(755 images) (755 images) (755 images) MEAN

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NeX[45] 24.05 0.919 0.168 22.63 0.921 0.197 24.26 0.908 0.225 23.65 0.916 0.197
Video-Nerf[17] 27.74 0.940 0.189 26.94 0.932 0.230 27.20 0.931 0.221 27.30 0.934 0.213
Nerfies[27] 27.91 0.938 0.180 26.90 0.922 0.180 26.84 0.932 0.191 27.22 0.931 0.187
HyperNerf[28] 28.10 0.946 0.162 27.13 0.942 0.178 27.23 0.939 0.193 27.48 0.942 0.178

Ours 28.20 0.954 0.062 26.72 0.957 0.082 26.95 0.945 0.092 27.29 0.952 0.079

Table 1. Quantitative comparisons on different datasets in terms of PNSR↑, SSIM↑,
and LPIPS↓. The best results are highlighted in bold.

Sequence 3 Sequence 4 Sequence 5
(755 images) (755 images) (5000 images) MEAN

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Ours w/o AD 18.00 0.793 0.314 23.27 0.918 0.110 20.34 0.812 0.205 20.54 0.841 0.210
Ours w/o EC 26.70 0.940 0.092 26.53 0.922 0.078 21.82 0.822 0.187 25.02 0.895 0.119
Ours-s 26.88 0.940 0.103 26.21 0.928 0.090 21.22 0.817 0.190 24.77 0.895 0.128
Ours 26.95 0.945 0.092 26.63 0.932 0.077 21.92 0.823 0.186 25.17 0.900 0.118
Ours w/ LCP 27.01 0.943 0.091 26.48 0.920 0.084 23.12 0.845 0.162 25.54 0.902 0.112

Table 2. Quantitative ablation results. The best results are highlighted in bold.

In specific, Video-NeRF [17] conditions NeRF functions on an extra time-variant
latent code; Nerfies [27] introduces dynamic deformations into NeRF; HyperN-
eRF [28], on the other hand, combines both the latent code and the deforma-
tion into NeRF representation and achieves better performance. Moreover, we
also introduce weighted sampling to emphasize the foreground training. Some
dataset-specific settings are adopted for the baselines to ensure a fair compar-
ison. We also make sure that images with the same timestamp share the same
learned latent code and images from the same camera share the same appearance
code. During training, we raise the sampling probability of foreground rays to
be 10× of the sampling probability corresponding to background. We find that
employing these settings generally improves the results of baseline methods.

We illustrate visual comparisons in Fig. 3. Without a dynamic modeling
capability, NeX fails to capture motions and generates only blurry bodies and
faces. As for Video-NeRF, Nerfies, and Hyper-NeRF, they hardly capture the
complex motion of hands since their conditioning input is latent vectors, which
are too compressed to represent a detailed pose of a character. In comparison,
our method well handles the challenging motions with delicate details.

We also conduct a quantitative comparison using three metrics: LPIPS, MS-
SSIM, and PSNR. We report scores on three testing sequences in Table 1. Our
method achieves better SSIM and LPIPS on all sequences but relatively inferior
PSNR on Sequences 2 and 3. We agree with [27] that PSNR is very sensitive
to small misalignments between prediction and ground truth hence it might not
well reflect real perceptual quality under these cases. Moreover, we report the
inference time of all these methods in Table 3. NeRF-base methods rely on a
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Fig. 3. Visual comparisons of different methods on validation novel views.
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Accurate camera poses Inaccurate camera poses

w/o AD Ours w/ LCP GT Ours w/ LCP GT

Fig. 4. Qualitative results for the ablation study.

Method NeX VideoNerf Nerfies HyperNerf Ours Ours-s

Inference Time (s) 3.232 12.315 18.661 19.676 0.049 0.031

FPS 0.309 0.081 0.053 0.051 20.41 32.26

Table 3. Inference speed comparison. The performance is measured on images with
360× 640 resolution using a single Tesla V100 GPU.

densely sampling procedure, both time and memory-consuming. Instead, our
results is inferred with a single forward pass of a CNN, which leads to hundreds
of times of acceleration over all the other baseline methods.
Novel poses As shown in Fig. 5, we introduce three settings to illustrate the
capability of our method in handling novel poses. Interpolation: unseen poses
are smoothly interpolated between two given poses. As shown by Fig. 5 (a), our
method can generate a character that smoothly acts following the interpolated
poses. Novel combination: unseen poses are generated by combining different
parts of given poses. As shown by Fig. 5 (b), the 3D character generated from
our method faithfully combines the two poses, e.g . the tilted-head man with
thumb-up gestures, the girl with both hands waving to the same side. These
poses are never observed in the training dataset. Small extrapolation: As shown
by Fig. 5 (c), our framework can also handle small extrapolation as the trained
network is essentially a generative model for a single person. Please refer to our
supplemental material for more results on novel poses.
Ablation study We conduct an ablation study to evaluate the effectiveness of
each proposed design. We report scores in Table 2, with results visualized in
Fig. 4. AD stands for the “adaptive depth”, EC means to use the “exposure
coefficients”, while LCP stands for the “learnable camera poses”. We have the
following findings: (i) Without the adaptive plane depth, the learning process is
sensitive to the initial plane depth assignment and fails to represent the details
of some objects, e.g . the book. (ii) In cases where the initial camera registration
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Fig. 5. Generalization study. Our approach performs well on motion interpolation and
novel pose combination, and allows pose extrapolation to some extent.

is inaccurate, the learnable pose adjusts the initial camera poses and leads to
obvious improvement in generating clearer faces. (iii) Besides, the exposure code
helps adjust the global luminance level, which results in slight improvements in
quantitative metrics. (iv) We also test our method with smaller U-Nets (Ours-s
in Table 2) with fewer channels and only observe minor quality degradation.

Applications As a straightforward application, our framework can synchronize
different 3D characters with the same pose, as shown by Fig. 6. With the learned
representation of a 3D character, we extract a 2D pose motion from the driving
character and transfer it to the character. The 3D character can be controllable
by any given 2D poses and rendered to novel views in real time.
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Fig. 6. The generated character (rightmost results) can be driven by the subject with
photorealistic quality.

GT Ours GT Ours GT Ours

Fig. 7. Failure cases. Our model fails to generate the reflection effects and may present
undesired layered textures. The quality also degrades for large extrapolated motions.

5 Limitations and Conclusion

This work studies a controllable representation of a real-scene 3D character based
on a pose-guided MPI. Extensive experiments show that our approach is able
to represent a 3D character in real scenes with unprecedented quality, which
can be not only rendered into novel views in real-time speed but also be con-
trollably guided by different human poses. Still, our method suffers from some
artifacts as shown in Fig. 7. Our MPI representation only outputs diffuse col-
ors, and the rendered images thus cannot handle view-dependent effects such
as the reflections. Our method also suffers from typical MPI artifacts, such as
the layered section exposed near the boundary. Even though our framework can
generalize to some new unseen poses fairly well, the quality of synthesis would
still degrade, especially when the new pose deviates too far away from the train-
ing data. The proposed method is promising to serve as a practical solution for
character rendering and we expect further works to solve the remaining issues.
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