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A TensoRF Representation Details.

We illustrate the feature grid of our tensorial radiance field and the tensor factors
in TensoRF with both CP and VM decompositions in Fig. 5.

Number of components. The total number of tensor components (#Comp) is
(Rσ +Rc) for TensoRF-CP and 3(Rσ +Rc) for TensoRF-VM (because VM has
three types of components). Therefore, the R we use for TensoRF-CP is three
times as large as the R used for TensoRF-VM to achieve the same number of
components shown in Tab. 2. We also find that using Rσ < Rc is usually better
than Rσ = Rc when Rσ is large enough (> 8). In particular, for TensoRF-VM,
we use Rσ = Rc = 8 for #Comp = 48; Rσ = 8, Rc = 24 for #Comp = 96;
Rσ = 16, Rc = 48 for #Comp = 192; Rσ = 32, Rc = 96 for #Comp = 384. Note
that, as discussed in Eqn. 3,4, here we apply the same number of components for
AX , AY , AZ with R1 = R2 = R2 = R for both density and appearance (where
R is Rσ and Rc respectively), assuming the three spatial dimensions are equally
complex.

Forward-facing settings. We use the above settings with R1 = R2 = R2, for
all 360◦ object datasets in Tab. 1. On the other hand, Forward-facing scenes
apparently appear differently in the three dimensions; especially, in NDC space,
the X and Y spatial modes (corresponding to the image plane) contains more
appearance information that is visible to rendering viewpoints. We therefore use
more components for the X − Y plane, corresponding to AZ = vZ ◦MX,Y . In
this case, these AZ components can also be seen as special compressed versions
of neural MPIs. In particular, the detailed numbers of components we use for
generating the results in Tab. 4 are: for #Comp=48 Rσ,1 = Rσ,2 = 4,Rσ,2 =
16,Rc,1 = Rc,2 = 4,Rc,2 = 16; for #Comp=96, Rσ,1 = Rσ,2 = 4,Rσ,2 = 16,Rc,1 =
Rc,2 = 16,Rc,48 = 16.

Number of parameters. We briefly discuss the number of parameters in our
model. With the same #Comp, when I = J = K and Rσ + Rc = R, the total
number of parameters used for TensoRF-CP is 3KR + PRc; for Tensor-VM, the
number is K2R +KR + PRc (here considering Rσ/3, Rc/3 are used to make
the #Comp the same as TensoRF-CP ). For example, for a 300 × 300 × 300
feature grid with P = 27 channels (plus one density channel), the total number
of parameters in a dense grid is 756 M; the number of parameters used for
TensoRF-CP (when R = 192) is 360 K; the number of parameters used for
TensoRF-VM (when R = 192) is 17 M. Our CP and VM model can achieve
0.048% and 2.25% compression rates respectively.

B More Implementation Details.

Loss functions. As described in sec. 4.4, we apply a L2 rendering loss and
additional regularization terms to optimize our tensor factors for radiance field
reconstruction. In general, this loss function is expressed by
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Fig. 5: Feature grids and factorized tensors in TensoRF. We leverage a regular
voxel grid G, covering a 3D scene, to model a radiance field of the scene. Each voxel
of G contains multi-channel features, where one channel represents the volume
density (σ) and the remaining P channels lead to an appearance feature vector
(fc) for computing view-dependent colors. We split the density and appearance
features into two feature grids Gσ and Gc, consider them as 3D and 4D tensors,
and factorize them into compact factors with outer products. TensoRF with CP
decomposition factorize the tensors into only vectors and TensoRF with VM
decomposition factorize the tensor into vector and matrix factors (Eqn. 7, 8).
Note that, each voxel of the original grid is only related to one value from each
XYZ-mode vector/matrix factor in both decompositions, which are marked in
the figure.

L = ‖C − C̃‖22 + ω · Lreg (17)

Where C̃ is the groundtruth color, ω is weight of the regularization term.

To encourage the sparsity in the parameters of our tensor factors, we apply
the standard L1 regularization, which we find is effective in improving the quality
in extrapolating views and removing floaters/outerliers in final renderings. Note
that, unlike previous methods [20,55] that penalize predicted per-point density
with a Cauchy loss or entropy loss, our L1 regularizer is much simpler and directly
applied on the parameters of tensor factors. We find that it is sufficient to apply
the L1 sparsity loss only on the density parameters, expressed by

LL1 =
1

N

Rσ∑
r=1

(‖Mσ,r‖+ ‖vσ,r‖), (18)

where ‖Mσ,r‖ and ‖vσ,r‖) are simply the sum of absolute values of all elements,
and N = Rσ · (I ·J + I ·K+J ·K+ I+J +K) is the total number of parameters.
We use this L1 sparsity loss with a ω = 0.0004 for the Synthetic NeRF and



TensoRF: Tensorial Radiance Fields 21

Synthetic NSVF datasets. An ablation study on this L1 loss on the Synthetic
NeRF dataset is shown in Tab. .

For real datasets that have very few input images (like LLFF[36]) or imperfect
capture conditions (like Tanks and Temples [26] that has varying exposure and
inconsistent masks), we find a TV loss is more efficient than the L1 sparsity loss,
expressed by

LTV =
1

N

∑
(
√

△2Am
σ,r + 0.1 ·

√
△2Am

C,r), (19)

Here △2 is the squared difference between the neighboring values in the
matrix/vector factors; we apply a smaller weight (weighted by 0.1 additionally)
on appearance parameters in the TV loss. We use ω = 1 when using this TV loss.

Binary occupancy volume. To facilitate reconstruction, we compute a binary
occupancy mask grid at steps 2000 and 4000 using the volume density prediction
from the intermediate TensoRF model to avoid computation in empty space. For
datasets that do not provide bounding boxes, we start from a conservatively
large box and leverage the occupancy mask computed at step 2000 to re-compute
a more compact bounding box, with which we shrink and resample our tensor
factors, leading to more precise modeling. For forward-facing scenes in the LLFF
dataset [36], we apply NDC transformation that bounds the scene in a perspective
frustum.

More details. As described in Sec. 5, we use a small two-layer MLP with 128
channels in hidden layers as our neural decoding function. In particular, the input
to this MLP contains the viewing direction and the features recovered by our
tensor factors (no xyz positions are used). Similar to NeRF and NSVF [37,31],
we also apply frequency encodings (with Sin and Cos functions) on both the
viewing direction and features. Unlike NeRF that uses ten different frequencies,
we use only two.

During optimization, we also apply an exponential learning rate decay to
make the optimization more stable when the reconstruction is being finished.
Specifically, we decay our initial learning rates at every training step, until
decayed by a factor of 0.1 in the end of the optimization.

C More Evaluation.

We perform an ablation study to evaluate our L1 regularization. Tab. 5 shows
how our framework performs by removing the L1 regularization on the Synthetic-
NeRF dataset, our models exceed NeRF fidelity (31.01 in average) even without
regularization. We observe the performance gap between w/ and w/o L1 regular-
ization is mostly caused by the floaters in the empty space. We also provide more
results on our model with different numbers of training steps in Tab. 6, which is
basically a detailed version of Tab. 3 with more settings. These results showcase
that our models consistently improve when training with more iterations.
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PSNR SSIM LPIPSV GG LPIPSAlex

CP-384 31.56/31.23 0.949/0.947 0.076/0.078 0.041/0.043
VM-48 32.39/31.71 0.957/0.953 0.057/0.062 0.032/0.036

VM-192-SH 32.00/31.14 0.955/0.949 0.058/0.068 0.058/0.044
VM-192 33.14/32.43 0.963/0.960 0.047/0.052 0.027/0.030

Table 5: We compare the averaged scores against w/o L1 regularization on the
Synthetic-NeRF dataset.

5k 8k 10k 12k 15k 20k 30k 40k 60k 100k

CP-192 28.38 29.13 29.93 30.38 30.80 31.18 31.56 31.75 32.03 32.18
VM-48 29.28 30.39 31.11 31.47 31.80 32.08 32.39 32.55 32.68 32.84
VM-96 29.65 30.72 31.52 31.93 32.26 32.56 32.86 33.00 33.17 33.29
VM-192 29.86 30.93 31.74 32.17 32.52 32.85 33.14 33.27 33.44 33.54
VM-384 29.95 30.88 31.75 32.20 32.62 32.94 33.21 33.35 33.52 33.64

Table 6: PSNRs on the Synthetic NeRF datasets with different numbers of
training steps. This is more detailed version than Tab. 3.

D Discussion

In fact, the reconstruction problem with dense feature grid representation is
relatively over-parameterized/under-determined; e.g., a 3003 grid with 27 channels
has >700M parameters, while one hundred 800× 800 images provide only 64M
pixels for supervision. Therefore, many design choices – including pruning empty
voxels, coarse-to-fine reconstruction, and adding additional losses, which have
been similarly used in TensoRF and concurrent works (DVGO, Plenoxels) – are all
essentially trying to reduce/constrain the parameter space and avoid over-fitting.
In general, low-rank regularization is crucial in addressing many reconstruction
problems, like matrix completion [6], compressive sensing [15], denoising [21];
tensor decomposition has also been widely used in tensor completion [30,16],
which is similar to our task. Tensor decomposition naturally provides low-rank
constraints and reduces parameters; this similarly benefits the radiance field
reconstruction as demonstrated by our work.

Moreover, TensoRF represents a 5D radiance field function that expresses both
scene geometry and appearance; hence, we believe our 4D tensor is generally low-
rank, because a 3D scene typically contains a lot of similar geometry structures
and material properties across different locations. Note that, in various appearance
acquisition tasks, similar low-rank constraints have been successfully applied
for reconstructing other functions, including the 4D light transport function in
relighting [60] and the 6D SVBRDF function in material reconstruction [72,39]
(where a common idea is to model a sparse set of basis BRDFs; this is similar to
our modeling of vector components in the feature dimension in the matrix B). We
combine low-rank constraints and neural networks from a novel perspective, in
tensor-based radiance field reconstruction. TensoRF essentially models the scene
with global basis components, discovering the scene geometry and appearance
commonalities across the spatial and feature dimensions.
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E Limitations and Future Work.

Our approach achieves high-quality radiance field reconstruction for 360◦ objects
and forward-facing scenes; however, our method currently only supports bounded
scenes with a single bounding box and cannot handle unbounded scenes with
both foreground and background content. Combining our method with techniques
like NeRF++ [70] to separately model a foreground field inside a regular box and
a background field inside another box defined in a spherical coordinate space can
potentially extend our method to address unbounded scenes. Despite the success
in per-scene optimization shown in this paper, an interesting future direction is
to discover and learn general basis factors across scenes on a large-scale dataset,
leveraging data priors to further improve the quality or enable other applications
like GANs (as done in GRAF [51], GIRRAF [40] and EG3D [8]).
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G Per-scene Breakdown.

Tab. 8-11 provide a per-scene break down for quantity metrics in Synthesis-nerf
[34], Synthe-nsvf [31], Tanks&Templates [26] and forward-facing [36] dataset.
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Methods Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

PSNR↑
SRN [54] 22.26 26.96 17.18 20.73 26.81 20.85 18.09 26.85 20.60
NeRF [37] 31.01 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
NSVF [31] 31.75 33.19 25.18 31.23 37.14 32.29 32.68 34.27 27.93
SNeRG [20] 30.38 33.24 24.57 29.32 34.33 33.82 27.21 32.60 27.97
PlenOctrees [68] 31.71 34.66 25.31 30.79 36.79 32.95 29.76 33.97 29.42
Plenoxels [50] 31.71 33.98 25.35 31.83 36.43 34.10 29.14 33.26 29.62
DVGO [55] 31.95 34.09 25.44 32.78 36.74 34.64 29.57 33.20 29.13

Ours-CP-384 31.56 33.60 25.17 30.72 36.24 34.05 30.10 33.77 28.84
Ours-VM-192-SH 32.00 34.68 25.37 32.30 36.30 35.42 29.30 33.21 29.46
Ours-VM-48 32.39 34.68 25.58 33.37 36.81 35.51 29.45 33.59 30.12
Ours-VM-192-15k 32.52 34.95 25.63 33.46 36.85 35.78 29.78 33.69 30.04
Ours-VM-192-30k 33.14 35.76 26.01 33.99 37.41 36.46 30.12 34.61 30.77

Table 7: PSNR results on each scene from the Synthetic-NeRF [37] dataset.
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Methods Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

SSIM↑
SRN [54] 0.846 0.910 0.766 0.849 0.923 0.809 0.808 0.947 0.757
NeRF [37] 0.947 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856
NSVF [31] 0.953 0.968 0.931 0.973 0.980 0.960 0.973 0.987 0.854
SNeRG [20] 0.950 0.975 0.929 0.967 0.971 0.973 0.938 0.982 0.865
PlenOctrees [68] 0.958 0.981 0.933 0.970 0.982 0.971 0.955 0.987 0.884
Plenoxels [50] 0.958 0.977 0.933 0.976 0.980 0.976 0.949 0.985 0.890
DVGO [55] 0.957 0.977 0.930 0.978 0.980 0.976 0.951 0.983 0.879

Ours-CP-384 0.949 0.973 0.921 0.965 0.975 0.971 0.950 0.983 0.857
Ours-VM-192-SH 0.955 0.979 0.928 0.976 0.977 0.978 0.941 0.983 0.875
Ours-VM-48 0.957 0.980 0.929 0.979 0.979 0.979 0.942 0.984 0.883
Ours-VM-192-15k 0.959 0.982 0.933 0.981 0.980 0.981 0.949 0.985 0.886
Ours-VM-192-30k 0.963 0.985 0.937 0.982 0.982 0.983 0.952 0.988 0.895

LPIPSV GG ↓
SRN [54] 0.170 0.106 0.267 0.149 0.100 0.200 0.174 0.063 0.299
NeRF [37] 0.081 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
PlenOctrees [68] 0.053 0.022 0.076 0.038 0.032 0.034 0.059 0.017 0.144
Plenoxels [50] 0.049 0.031 0.067 0.026 0.037 0.028 0.057 0.015 0.134
DVGO [55] 0.053 0.027 0.077 0.024 0.034 0.028 0.058 0.017 0.161

Ours-CP-384 0.076 0.044 0.114 0.058 0.052 0.038 0.068 0.035 0.196
Ours-VM-192-SH 0.058 0.031 0.082 0.028 0.048 0.024 0.069 0.022 0.160
Ours-VM-48 0.057 0.030 0.087 0.028 0.039 0.024 0.072 0.021 0.155
Ours-VM-192-15k 0.053 0.026 0.078 0.025 0.038 0.021 0.063 0.020 0.153
Ours-VM-192-30k 0.047 0.022 0.073 0.022 0.032 0.018 0.058 0.015 0.138

LPIPSAlex ↓
NSVF [31] 0.047 0.043 0.069 0.017 0.025 0.029 0.021 0.010 0.162
DVGO [55] 0.035 0.016 0.061 0.015 0.017 0.014 0.026 0.014 0.118

Ours-CP-384 0.041 0.022 0.069 0.024 0.024 0.014 0.031 0.018 0.130
Ours-VM-192-SH 0.058 0.031 0.082 0.028 0.048 0.024 0.069 0.022 0.160
Ours-VM-48 0.032 0.014 0.059 0.015 0.017 0.009 0.036 0.012 0.098
Ours-VM-192-15k 0.032 0.013 0.056 0.014 0.017 0.009 0.029 0.013 0.101
Ours-VM-192-30k 0.027 0.010 0.051 0.012 0.013 0.007 0.026 0.009 0.085

Table 8: Quantitative results on each scene from the Synthetic-NeRF [37]
dataset.
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Fig. 6: Our rendering results on Synthetic-NeRF dataset. From top to bottom:
Ship, Hotdog, Lego, Mic, Chair, Drums, Materials, Ficus.
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Methods Avg. Wineholder Steamtrain Toad Robot Bike Palace Spaceship Lifestyle

PSNR↑
SRN [54] 24.33 20.74 25.49 25.36 22.27 23.76 24.45 27.99 24.58
NeRF [37] 30.81 28.23 30.84 29.42 28.69 31.77 31.76 34.66 31.08
NSVF [31] 35.13 32.04 35.13 33.25 35.24 37.75 34.05 39.00 34.60
DVGO [55] 35.08 30.26 36.56 33.10 36.36 38.33 34.49 37.71 33.79

Ours-CP-384 34.48 29.92 36.07 31.37 35.92 36.74 36.26 37.01 32.54
Ours-VM-192-SH 35.30 29.72 37.33 34.03 37.59 38.61 36.09 35.82 33.21
Ours-VM-48 35.34 30.46 37.06 33.13 36.92 37.98 36.32 37.19 33.68
Ours-VM-192-15k 35.59 30.31 37.20 33.63 37.29 38.33 36.57 37.77 33.62
Ours-VM-192-30k 36.52 31.32 37.87 34.85 38.26 39.23 37.56 38.60 34.51

SSIM↑
SRN [54] 0.882 0.850 0.923 0.822 0.904 0.926 0.792 0.945 0.892
NeRF [37] 0.952 0.920 0.966 0.920 0.960 0.970 0.950 0.980 0.946
NSVF [31] 0.979 0.965 0.986 0.968 0.988 0.991 0.969 0.991 0.971
DVGO [55] 0.975 0.949 0.989 0.966 0.992 0.991 0.962 0.988 0.965

Ours-CP-384 0.971 0.947 0.986 0.950 0.990 0.987 0.971 0.984 0.951
Ours-VM-192-SH 0.977 0.953 0.988 0.974 0.993 0.991 0.972 0.982 0.964
Ours-VM-48 0.976 0.952 0.988 0.968 0.992 0.990 0.973 0.985 0.962
Ours-VM-192-15k 0.978 0.953 0.989 0.972 0.993 0.991 0.975 0.987 0.964
Ours-VM-192-30k 0.982 0.961 0.991 0.978 0.994 0.993 0.979 0.989 0.968

LPIPSV GG ↓
DVGO [55] 0.033 0.055 0.019 0.047 0.013 0.011 0.043 0.019 0.054
Ours-CP-384 0.045 0.082 0.031 0.067 0.016 0.023 0.031 0.028 0.084
Ours-VM-192-SH 0.031 0.057 0.024 0.035 0.011 0.013 0.030 0.026 0.051
Ours-VM-48 0.034 0.061 0.023 0.047 0.013 0.014 0.029 0.025 0.059
Ours-VM-192-15k 0.031 0.060 0.020 0.040 0.011 0.012 0.028 0.022 0.055
Ours-VM-192-30k 0.026 0.051 0.017 0.031 0.010 0.010 0.022 0.020 0.048

LPIPSAlex ↓
SRN [54] 0.141 0.224 0.082 0.204 0.120 0.075 0.240 0.061 0.120
NeRF [37] 0.043 0.096 0.031 0.069 0.038 0.019 0.031 0.016 0.047
NSVF [31] 0.015 0.020 0.010 0.032 0.007 0.004 0.018 0.006 0.020
DVGO [55] 0.019 0.038 0.010 0.030 0.005 0.004 0.027 0.009 0.027

Ours-CP-384 0.021 0.040 0.010 0.039 0.006 0.007 0.014 0.015 0.042
Ours-VM-192-SH 0.015 0.030 0.008 0.021 0.003 0.003 0.016 0.016 0.025
Ours-VM-48 0.016 0.031 0.008 0.025 0.004 0.004 0.015 0.013 0.026
Ours-VM-192-15k 0.015 0.033 0.008 0.022 0.004 0.004 0.015 0.011 0.026
Ours-VM-192-30k 0.012 0.024 0.006 0.016 0.003 0.003 0.011 0.009 0.021

Table 9: Quantitative results on each scene from the Synthetic-NSVF [31]
dataset.
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Fig. 7: Our rendering results on NSVF [31] dataset. From top to bottom: Space-
ship, Robot, Toad, Lifestyle, Palace, Wineholder, Steamtrain.
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Methods Avg. Ignatius Truck Barn Caterpillar Family

PSNR↑
SRN [54] 24.10 26.70 22.62 22.44 21.14 27.57
NeRF [37] 25.78 25.43 25.36 24.05 23.75 30.29
NSVF [31] 28.48 27.91 26.92 27.16 26.44 33.58
PlenOctrees [68] 27.99 28.19 26.83 26.80 25.29 32.85
Plenoxels [50] 27.43 27.51 26.59 26.07 24.64 32.33
DVG [55] 28.41 28.16 27.15 27.01 26.00 33.75

Ours-CP-384 27.59 27.86 26.25 26.74 24.73 32.39
Ours-VM-192-SH 27.81 27.78 26.73 26.03 25.37 33.12
Ours-VM-48 28.06 28.22 26.81 26.70 25.43 33.12
Ours-VM-192-15k 28.07 28.27 26.57 26.93 25.35 33.22
Ours-VM-192-30k 28.56 28.34 27.14 27.22 26.19 33.92

SSIM↑
SRN [54] 0.847 0.920 0.832 0.741 0.834 0.908
NeRF [37] 0.864 0.920 0.860 0.750 0.860 0.932
NSVF [31] 0.901 0.930 0.895 0.823 0.900 0.954
PlenOctrees [68] 0.917 0.948 0.914 0.856 0.907 0.962
Plenoxels [50] 0.906 0.943 0.901 0.829 0.902 0.956
DVGO [55] 0.911 0.944 0.906 0.838 0.906 0.962

Ours-CP-384 0.897 0.934 0.885 0.839 0.879 0.948
Ours-VM-192-SH 0.907 0.942 0.900 0.834 0.897 0.960
Ours-VM-48 0.909 0.943 0.902 0.845 0.899 0.957
Ours-VM-192-15k 0.913 0.944 0.905 0.855 0.902 0.960
Ours-VM-192-30k 0.920 0.948 0.914 0.864 0.912 0.965

LPIPV GG ↓
PlenOctrees [68] 0.131 0.080 0.130 0.226 0.148 0.069
Plenoxels [50] 0.162 0.102 0.163 0.303 0.166 0.078
DVGO [55] 0.155 0.083 0.160 0.294 0.167 0.070

Ours-CP-384 0.181 0.106 0.202 0.283 0.227 0.088
Ours-VM-192-SH 0.156 0.089 0.161 0.286 0.175 0.069
Ours-VM-48 0.155 0.085 0.161 0.278 0.177 0.074
Ours-VM-192-15k 0.152 0.084 0.162 0.269 0.173 0.071
Ours-VM-192-30k 0.140 0.078 0.145 0.252 0.159 0.064

LPIPSAlex ↓
SRN [54] 0.251 0.128 0.266 0.448 0.278 0.134
NeRF [37] 0.198 0.111 0.192 0.395 0.196 0.098
NSVF [31] 0.155 0.106 0.148 0.307 0.141 0.063
DVGO [55] 0.148 0.090 0.145 0.290 0.152 0.064

Ours-CP-384 0.144 0.089 0.154 0.237 0.176 0.063
Ours-VM-192-SH 0.164 0.098 0.168 0.309 0.175 0.072
Ours-VM-48 0.145 0.089 0.145 0.266 0.161 0.066
Ours-VM-192-15k 0.140 0.087 0.150 0.240 0.157 0.066
Ours-VM-192-30k 0.125 0.081 0.129 0.217 0.139 0.057

Table 10: Quantitative results on each scene from the Tanks&Temples [26]
dataset.



30 A. Chen, Z. Xu et al.

!"#$%&$'() *+!"#$,-$./0$12 !"#$,-$)( !"#$,-$./0

Fig. 8: Our rendering results on Tanks&Temples[26] dataset. From top to
bottom: Family, Ignatius, Truck, Caterpillar, Barn.
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Methods Avg. Room Fern Leaves Fortress Orchids Flower T-Rex Horns

PSNR↑
NeRF [37] 26.50 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45
Plenoxels [50] 26.29 30.22 25.46 21.41 31.09 20.24 27.83 26.48 27.58

Ours-VM-48 26.51 31.80 25.31 21.34 31.14 20.02 28.22 26.61 27.64
Our-VM-96 26.73 32.35 25.27 21.30 31.36 19.87 28.60 26.97 28.14

SSIM↑
NeRF [37] 0.811 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828
Plenoxels [50] 0.839 0.937 0.832 0.760 0.885 0.687 0.862 0.890 0.857

Ours-VM-48 0.832 0.946 0.816 0.746 0.889 0.655 0.859 0.890 0.859
Ours-VM-96 0.839 0.952 0.814 0.752 0.897 0.649 0.871 0.900 0.877

LPIPSV GG ↓
NeRF [37] 0.250 0.178 0.280 0.316 0.171 0.321 0.219 0.249 0.268
Plenoxels [50] 0.210 0.192 0.224 0.198 0.180 0.242 0.179 0.238 0.231

Ours-VM-48 0.217 0.181 0.237 0.230 0.159 0.283 0.187 0.236 0.221
Ours-VM-96 0.204 0.167 0.237 0.217 0.148 0.278 0.169 0.221 0.196

LPIPSAlex ↓
Ours-VM-48 0.135 0.093 0.161 0.167 0.084 0.204 0.121 0.108 0.146
Ours-VM-96 0.124 0.082 0.155 0.153 0.075 0.201 0.106 0.099 0.123

Table 11: Quantitative results on each scene from the forward-facing [31]
dataset.
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Fig. 9: Our rendering results on forward-facing [31] dataset. From top to bottom:
Flower, Fern, Fortress, Horn, Leaves, Orchids, T-Rex, Room.




