A TensoRF Representation Details.

We illustrate the feature grid of our tensorial radiance field and the tensor factors in TensoRF with both CP and VM decompositions in Fig. 5.

Number of components. The total number of tensor components (#Comp) is $(R_{\sigma} + R_c)$ for TensoRF-CP and $3(R_{\sigma} + R_c)$ for TensoRF-VM (because VM has three types of components). Therefore, the R we use for TensoRF-CP is three times as large as the R used for TensoRF-VM to achieve the same number of components shown in Tab. 2. We also find that using $R_{\sigma} < R_c$ is usually better than $R_{\sigma} = R_c$ when R_{σ} is large enough (> 8). In particular, for TensoRF-VM, we use $R_{\sigma} = R_c = 8$ for #Comp = 48; $R_{\sigma} = 8, R_c = 24$ for #Comp = 96; $R_{\sigma} = 16, R_c = 48$ for #Comp = 192; $R_{\sigma} = 32, R_c = 96$ for #Comp = 384. Note that, as discussed in Eqn. 3,4, here we apply the same number of components for \mathcal{A}^X , \mathcal{A}^Y , \mathcal{A}^Z with $R_1 = R_2 = R_2 = R$ for both density and appearance (where R is R_{σ} and R_c respectively), assuming the three spatial dimensions are equally complex.

Forward-facing settings. We use the above settings with $R_1 = R_2 = R_2$, for all 360° object datasets in Tab. 1. On the other hand, Forward-facing scenes apparently appear differently in the three dimensions; especially, in NDC space, the X and Y spatial modes (corresponding to the image plane) contains more appearance information that is visible to rendering viewpoints. We therefore use more components for the X - Y plane, corresponding to $\mathcal{A}^Z = \mathbf{v}^Z \circ \mathbf{M}^{X,Y}$. In this case, these \mathcal{A}^Z components can also be seen as special compressed versions of neural MPIs. In particular, the detailed numbers of components we use for generating the results in Tab. 4 are: for #Comp=48 $R_{\sigma,1} = R_{\sigma,2} = 4, R_{\sigma,2} =$ $16, R_{c,1} = R_{c,2} = 4, R_{c,2} = 16$; for $\#\text{Comp}=96, R_{\sigma,1} = R_{\sigma,2} = 4, R_{\sigma,2} = 16, R_{c,1} =$ $R_{c,2} = 16, R_{c,48} = 16$.

Number of parameters. We briefly discuss the number of parameters in our model. With the same #Comp, when I = J = K and $R_{\sigma} + R_c = R$, the total number of parameters used for TensoRF-CP is $3KR + PR_c$; for Tensor-VM, the number is $K^2R + KR + PR_c$ (here considering $R_{\sigma}/3$, $R_c/3$ are used to make the #Comp the same as TensoRF-CP). For example, for a $300 \times 300 \times 300$ feature grid with P = 27 channels (plus one density channel), the total number of parameters in a dense grid is 756 M; the number of parameters used for TensoRF-CP (when R = 192) is 360 K; the number of parameters used for TensoRF-VM (when R = 192) is 17 M. Our CP and VM model can achieve 0.048% and 2.25% compression rates respectively.

B More Implementation Details.

Loss functions. As described in sec. 4.4, we apply a L2 rendering loss and additional regularization terms to optimize our tensor factors for radiance field reconstruction. In general, this loss function is expressed by

Fig. 5: Feature grids and factorized tensors in TensoRF. We leverage a regular voxel grid \mathcal{G} , covering a 3D scene, to model a radiance field of the scene. Each voxel of \mathcal{G} contains multi-channel features, where one channel represents the volume density (σ) and the remaining P channels lead to an appearance feature vector (f_c) for computing view-dependent colors. We split the density and appearance features into two feature grids \mathcal{G}_{σ} and \mathcal{G}_c , consider them as 3D and 4D tensors, and factorize them into compact factors with outer products. TensoRF with CP decomposition factorize the tensor into vector and matrix factors (Eqn. 7, 8). Note that, each voxel of the original grid is only related to one value from each XYZ-mode vector/matrix factor in both decompositions, which are marked in the figure.

$$\mathcal{L} = \|C - \tilde{C}\|_2^2 + \omega \cdot \mathcal{L}_{reg} \tag{17}$$

Where \tilde{C} is the groundtruth color, ω is weight of the regularization term.

To encourage the sparsity in the parameters of our tensor factors, we apply the standard L1 regularization, which we find is effective in improving the quality in extrapolating views and removing floaters/outerliers in final renderings. Note that, unlike previous methods [20,55] that penalize predicted per-point density with a Cauchy loss or entropy loss, our L1 regularizer is much simpler and directly applied on the parameters of tensor factors. We find that it is sufficient to apply the L1 sparsity loss only on the density parameters, expressed by

$$\mathcal{L}_{L1} = \frac{1}{N} \sum_{r=1}^{R_{\sigma}} (\|\mathbf{M}_{\sigma,r}\| + \|\mathbf{v}_{\sigma,r}\|),$$
(18)

where $\|\mathbf{M}_{\sigma,r}\|$ and $\|\mathbf{v}_{\sigma,r}\|$) are simply the sum of absolute values of all elements, and $N = R_{\sigma} \cdot (I \cdot J + I \cdot K + J \cdot K + I + J + K)$ is the total number of parameters. We use this L1 sparsity loss with a $\omega = 0.0004$ for the Synthetic NeRF and

21

Synthetic NSVF datasets. An ablation study on this L1 loss on the Synthetic NeRF dataset is shown in Tab. .

For real datasets that have very few input images (like LLFF[36]) or imperfect capture conditions (like Tanks and Temples [26] that has varying exposure and inconsistent masks), we find a TV loss is more efficient than the L1 sparsity loss, expressed by

$$\mathcal{L}_{TV} = \frac{1}{N} \sum (\sqrt{\Delta^2 \mathcal{A}_{\sigma,r}^m} + 0.1 \cdot \sqrt{\Delta^2 \mathcal{A}_{C,r}^m}), \tag{19}$$

Here \triangle^2 is the squared difference between the neighboring values in the matrix/vector factors; we apply a smaller weight (weighted by 0.1 additionally) on appearance parameters in the TV loss. We use $\omega = 1$ when using this TV loss. **Binary occupancy volume.** To facilitate reconstruction, we compute a binary occupancy mask grid at steps 2000 and 4000 using the volume density prediction from the intermediate TensoRF model to avoid computation in empty space. For datasets that do not provide bounding boxes, we start from a conservatively large box and leverage the occupancy mask computed at step 2000 to re-compute a more compact bounding box, with which we shrink and resample our tensor factors, leading to more precise modeling. For forward-facing scenes in the LLFF dataset [36], we apply NDC transformation that bounds the scene in a perspective frustum.

More details. As described in Sec. 5, we use a small two-layer MLP with 128 channels in hidden layers as our neural decoding function. In particular, the input to this MLP contains the viewing direction and the features recovered by our tensor factors (no xyz positions are used). Similar to NeRF and NSVF [37,31], we also apply frequency encodings (with Sin and Cos functions) on both the viewing direction and features. Unlike NeRF that uses ten different frequencies, we use only two.

During optimization, we also apply an exponential learning rate decay to make the optimization more stable when the reconstruction is being finished. Specifically, we decay our initial learning rates at every training step, until decayed by a factor of 0.1 in the end of the optimization.

C More Evaluation.

We perform an ablation study to evaluate our L1 regularization. Tab. 5 shows how our framework performs by removing the L1 regularization on the Synthetic-NeRF dataset, our models exceed NeRF fidelity (31.01 in average) even without regularization. We observe the performance gap between w/ and w/o L1 regularization is mostly caused by the floaters in the empty space. We also provide more results on our model with different numbers of training steps in Tab. 6, which is basically a detailed version of Tab. 3 with more settings. These results showcase that our models consistently improve when training with more iterations. 22 A. Chen, Z. Xu et al.

	PSNR	SSIM	LPIPS_{VGG}	LPIPS_{Alex}
CP-384	31.56/31.23	0.949/0.947	0.076/0.078	0.041/0.043
VM-48	32.39/31.71	0.957/0.953	0.057/0.062	0.032/0.036
VM-192-SH	32.00/31.14	0.955/0.949	0.058/0.068	0.058/0.044
VM-192	33.14/32.43	0.963/0.960	0.047/0.052	0.027/0.030

Table 5: We compare the averaged scores against w/o L1 regularization on the Synthetic-NeRF dataset.

	5k	8k	10k	12k	15k	20k	30k	40k	60k	100k
CP-192	28.38	29.13	29.93	30.38	30.80	31.18	31.56	31.75	32.03	32.18
VM-48	29.28	30.39	31.11	31.47	31.80	32.08	32.39	32.55	32.68	32.84
VM-96	29.65	30.72	31.52	31.93	32.26	32.56	32.86	33.00	33.17	33.29
VM-192	29.86	30.93	31.74	32.17	32.52	32.85	33.14	33.27	33.44	33.54
VM-384	29.95	30.88	31.75	32.20	32.62	32.94	33.21	33.35	33.52	33.64

Table 6: PSNRs on the Synthetic NeRF datasets with different numbers of training steps. This is more detailed version than Tab. 3.

D Discussion

In fact, the reconstruction problem with dense feature grid representation is relatively over-parameterized/under-determined; e.g., a 300^3 grid with 27 channels has >700M parameters, while one hundred 800×800 images provide only 64M pixels for supervision. Therefore, many design choices – including pruning empty voxels, coarse-to-fine reconstruction, and adding additional losses, which have been similarly used in TensoRF and concurrent works (DVGO, Plenoxels) – are all essentially trying to reduce/constrain the parameter space and avoid over-fitting. In general, low-rank regularization is crucial in addressing many reconstruction problems, like matrix completion [6], compressive sensing [15], denoising [21]; tensor decomposition has also been widely used in tensor completion [30,16], which is similar to our task. Tensor decomposition naturally provides low-rank constraints and reduces parameters; this similarly benefits the radiance field reconstruction as demonstrated by our work.

Moreover, TensoRF represents a 5D radiance field function that expresses both scene geometry and appearance; hence, we believe our 4D tensor is generally low-rank, because a 3D scene typically contains a lot of similar geometry structures and material properties across different locations. Note that, in various appearance acquisition tasks, similar low-rank constraints have been successfully applied for reconstructing other functions, including the 4D light transport function in relighting [60] and the 6D SVBRDF function in material reconstruction [72,39] (where a common idea is to model a sparse set of basis BRDFs; this is similar to our modeling of vector components in the feature dimension in the matrix \mathbf{B}). We combine low-rank construction. TensoRF essentially models the scene with global basis components, discovering the scene geometry and appearance commonalities across the spatial and feature dimensions.

E Limitations and Future Work.

Our approach achieves high-quality radiance field reconstruction for 360° objects and forward-facing scenes; however, our method currently only supports bounded scenes with a single bounding box and cannot handle unbounded scenes with both foreground and background content. Combining our method with techniques like NeRF++ [70] to separately model a foreground field inside a regular box and a background field inside another box defined in a spherical coordinate space can potentially extend our method to address unbounded scenes. Despite the success in per-scene optimization shown in this paper, an interesting future direction is to discover and learn general basis factors across scenes on a large-scale dataset, leveraging data priors to further improve the quality or enable other applications like GANs (as done in GRAF [51], GIRRAF [40] and EG3D [8]).

F Acknowledgements

We would like to thank Yannick Hold-Geoffroy for his useful tips in video animation, Qiangeng Xu for providing some baseline results, and, Katja Schwarz and Michael Niemeyer for providing helpful video materials. This project was supported by NSF grant IIS-1764078 and gift money from Kingstar. We would also like to thank all anonymous reviewers for their encouraging comments.

G Per-scene Breakdown.

Tab. 8-11 provide a per-scene break down for quantity metrics in Synthesis-nerf [34], Synthe-nsvf [31], Tanks&Templates [26] and forward-facing [36] dataset.

Methods	Avg.	Chair	Drums	Ficus	Hotdog	Lego	Materials	Mic	Ship					
PSNR↑														
SRN [54]	22.26	26.96	17.18	20.73	26.81	20.85	18.09	26.85	20.60					
NeRF [37]	31.01	33.00	25.01	30.13	36.18	32.54	29.62	32.91	28.65					
NSVF [31]	31.75	33.19	25.18	31.23	37.14	32.29	32.68	34.27	27.93					
SNeRG [20]	30.38	33.24	24.57	29.32	34.33	33.82	27.21	32.60	27.97					
PlenOctrees [68]	31.71	34.66	25.31	30.79	36.79	32.95	29.76	33.97	29.42					
Plenoxels [50]	31.71	33.98	25.35	31.83	36.43	34.10	29.14	33.26	29.62					
DVGO [55]	31.95	34.09	25.44	32.78	36.74	34.64	29.57	33.20	29.13					
Ours-CP-384	31.56	33.60	25.17	30.72	36.24	34.05	30.10	33.77	28.84					
Ours-VM-192-SH	32.00	34.68	25.37	32.30	36.30	35.42	29.30	33.21	29.46					
Ours-VM-48	32.39	34.68	25.58	33.37	36.81	35.51	29.45	33.59	30.12					
Ours-VM-192-15k	32.52	34.95	25.63	33.46	36.85	35.78	29.78	33.69	30.04					
Ours-VM-192-30k	33.14	35.76	26.01	33.99	37.41	36.46	30.12	34.61	30.77					

Table 7: PSNR results on each scene from the **Synthetic-NeRF** [37] dataset.

Methods	Avg.	Chair	Drums	Ficus	Hotdog	Lego	Materials	Mic	Ship					
SSIM↑														
SRN [54]	0.846	0.910	0.766	0.849	0.923	0.809	0.808	0.947	0.757					
NeRF $[37]$	0.947	0.967	0.925	0.964	0.974	0.961	0.949	0.980	0.856					
NSVF [31]	0.953	0.968	0.931	0.973	0.980	0.960	0.973	0.987	0.854					
SNeRG [20]	0.950	0.975	0.929	0.967	0.971	0.973	0.938	0.982	0.865					
PlenOctrees [68]	0.958	0.981	0.933	0.970	0.982	0.971	0.955	0.987	0.884					
Plenoxels [50]	0.958	0.977	0.933	0.976	0.980	0.976	0.949	0.985	0.890					
DVGO [55]	0.957	0.977	0.930	0.978	0.980	0.976	0.951	0.983	0.879					
Ours-CP-384	0.949	0.973	0.921	0.965	0.975	0.971	0.950	0.983	0.857					
Ours-VM-192-SH	0.955	0.979	0.928	0.976	0.977	0.978	0.941	0.983	0.875					
Ours-VM-48	0.957	0.980	0.929	0.979	0.979	0.979	0.942	0.984	0.883					
Ours-VM-192-15k	0.959	0.982	0.933	0.981	0.980	0.981	0.949	0.985	0.886					
Ours-VM-192-30k	0.963	0.985	0.937	0.982	0.982	0.983	0.952	0.988	0.895					
$\mathbf{LPIPS}_{VGG}\downarrow$														
SRN [54]	0.170	0.106	0.267	0.149	0.100	0.200	0.174	0.063	0.299					
NeRF [37]	0.081	0.046	0.091	0.044	0.121	0.050	0.063	0.028	0.206					
PlenOctrees [68]	0.053	0.022	0.076	0.038	0.032	0.034	0.059	0.017	0.144					
Plenoxels [50]	0.049	0.031	0.067	0.026	0.037	0.028	0.057	0.015	0.134					
DVGO [55]	0.053	0.027	0.077	0.024	0.034	0.028	0.058	0.017	0.161					
Ours-CP-384	0.076	0.044	0.114	0.058	0.052	0.038	0.068	0.035	0.196					
Ours-VM-192-SH	0.058	0.031	0.082	0.028	0.048	0.024	0.069	0.022	0.160					
Ours-VM-48	0.057	0.030	0.087	0.028	0.039	0.024	0.072	0.021	0.155					
Ours-VM-192-15k	0.053	0.026	0.078	0.025	0.038	0.021	0.063	0.020	0.153					
Ours-VM-192-30k	0.047	0.022	0.073	0.022	0.032	0.018	0.058	0.015	0.138					
$\overline{\mathbf{LPIPS}_{Alex}}\downarrow$														
NSVF [31]	0.047	0.043	0.069	0.017	0.025	0.029	0.021	0.010	0.162					
DVGO [55]	0.035	0.016	0.061	0.015	0.017	0.014	0.026	0.014	0.118					
Ours-CP-384	0.041	0.022	0.069	0.024	0.024	0.014	0.031	0.018	0.130					
Ours-VM-192-SH	0.058	0.031	0.082	0.028	0.048	0.024	0.069	0.022	0.160					
Ours-VM-48	0.032	0.014	0.059	0.015	0.017	0.009	0.036	0.012	0.098					
Ours-VM-192-15k	0.032	0.013	0.056	0.014	0.017	0.009	0.029	0.013	0.101					
Ours-VM-192-30k	0.027	0.010	0.051	0.012	0.013	0.007	0.026	0.009	0.085					
Table 8: Quantita	ative re	esults	on eacl	h scen	e from	the \mathbf{S}	ynthetic	-NeR	F [37]					
dataset.							-							

Fig. 6: Our rendering results on **Synthetic-NeRF** dataset. From top to bottom: Ship, Hotdog, Lego, Mic, Chair, Drums, Materials, Ficus.

Methods	Avg.	Wineholder	Steam train	Toad	Robot	Bike	Palace	Spaceship	Lifestyle				
PSNR↑													
SRN [54]	24.33	20.74	25.49	25.36	22.27	23.76	24.45	27.99	24.58				
NeRF [37]	30.81	28.23	30.84	29.42	28.69	31.77	31.76	34.66	31.08				
NSVF [31]	35.13	32.04	35.13	33.25	35.24	37.75	34.05	39.00	34.60				
DVGO [55]	35.08	30.26	36.56	33.10	36.36	38.33	34.49	37.71	33.79				
Ours-CP-384	34.48	29.92	36.07	31.37	35.92	36.74	36.26	37.01	32.54				
Ours-VM-192-SH	35.30	29.72	37.33	34.03	37.59	38.61	36.09	35.82	33.21				
Ours-VM-48	35.34	30.46	37.06	33.13	36.92	37.98	36.32	37.19	33.68				
Ours-VM-192-15k	35.59	30.31	37.20	33.63	37.29	38.33	36.57	37.77	33.62				
Ours-VM-192-30k	36.52	31.32	37.87	34.85	38.26	39.23	37.56	38.60	34.51				
SSIM↑		·											
SRN [54]	0.882	0.850	0.923	0.822	0.904	0.926	0.792	0.945	0.892				
NeRF [37]	0.952	0.920	0.966	0.920	0.960	0.970	0.950	0.980	0.946				
NSVF [31]	0.979	0.965	0.986	0.968	0.988	0.991	0.969	0.991	0.971				
DVGO [55]	0.975	0.949	0.989	0.966	0.992	0.991	0.962	0.988	0.965				
Ours-CP-384	0.971	0.947	0.986	0.950	0.990	0.987	0.971	0.984	0.951				
Ours-VM-192-SH	0.977	0.953	0.988	0.974	0.993	0.991	0.972	0.982	0.964				
Ours-VM-48	0.976	0.952	0.988	0.968	0.992	0.990	0.973	0.985	0.962				
Ours-VM-192-15k	0.978	0.953	0.989	0.972	0.993	0.991	0.975	0.987	0.964				
Ours-VM-192-30k	0.982	0.961	0.991	0.978	0.994	0.993	0.979	0.989	0.968				
$\mathbf{LPIPS}_{VGG}\downarrow$													
DVGO [55]	0.033	0.055	0.019	0.047	0.013	0.011	0.043	0.019	0.054				
Ours-CP-384	0.045	0.082	0.031	0.067	0.016	0.023	0.031	0.028	0.084				
Ours-VM-192-SH	0.031	0.057	0.024	0.035	0.011	0.013	0.030	0.026	0.051				
Ours-VM-48	0.034	0.061	0.023	0.047	0.013	0.014	0.029	0.025	0.059				
Ours-VM-192-15k	0.031	0.060	0.020	0.040	0.011	0.012	0.028	0.022	0.055				
Ours-VM-192-30k	0.026	0.051	0.017	0.031	0.010	0.010	0.022	0.020	0.048				
$\mathbf{LPIPS}_{Alex}\downarrow$													
SRN [54]	0.141	0.224	0.082	0.204	0.120	0.075	0.240	0.061	0.120				
NeRF [37]	0.043	0.096	0.031	0.069	0.038	0.019	0.031	0.016	0.047				
NSVF [31]	0.015	0.020	0.010	0.032	0.007	0.004	0.018	0.006	0.020				
DVGO [55]	0.019	0.038	0.010	0.030	0.005	0.004	0.027	0.009	0.027				
Ours-CP-384	0.021	0.040	0.010	0.039	0.006	0.007	0.014	0.015	0.042				
Ours-VM-192-SH	0.015	0.030	0.008	0.021	0.003	0.003	0.016	0.016	0.025				
Ours-VM-48	0.016	0.031	0.008	0.025	0.004	0.004	0.015	0.013	0.026				
Ours-VM-192-15k	0.015	0.033	0.008	0.022	0.004	0.004	0.015	0.011	0.026				
Ours-VM-192-30k	0.012	0.024	0.006	0.016	0.003	0.003	0.011	0 000	0.021				

Table 9: Quantitative results on each scene from the **Synthetic-NSVF** [31] dataset.

Fig. 7: Our rendering results on ${\bf NSVF}$ [31] dataset. From top to bottom: Spaceship, Robot, Toad, Lifestyle, Palace, Wineholder, Steamtrain.

TensoRF: Tensorial Radiance Fields

PSNR↑ SRN [54] 24.10 26.70 22.62 22.44 21.14 27.57 NeRF [37] 25.78 25.43 25.36 24.05 23.75 30.29 NSVF [31] 28.48 27.91 26.92 27.16 26.44 33.58 PlenOctrees [68] 27.99 28.19 26.83 26.80 25.29 32.85 Ours-VM-192-SH 27.51 26.55 26.74 24.73 32.39 Ours-VM-192-SH 27.81 27.78 26.73 26.03 25.37 33.12 Ours-VM-192-30k 28.56 28.34 27.14 27.22 26.19 33.92 SSIM↑ SSIM↑ SSIM↑ SSIM↑ SSIM↑ SSIM↑ SSIM↑ SSIM↑ SSIM \uparrow 0.910 0.920 0.832 0.741 0.834 0.908 PlenOctrees [68] 0.917 0.948 0.914 0.856 0.907 0.962 Ours-VM-192-SH 0.907 0.943 0.901 0.829 0.902 0.956<	Methods	Avg.	Ignatius	Truck	Barn	Caterpillar	Family
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PSNR ↑						
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	SRN [54]	24.10	26.70	22.62	22.44	21.14	27.57
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	NeRF [37]	25.78	25.43	25.36	24.05	23.75	30.29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NSVF [31]	28.48	27.91	26.92	27.16	26.44	33.58
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	PlenOctrees [68]	27.99	28.19	26.83	26.80	25.29	32.85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Plenoxels [50]	27.43	27.51	26.59	26.07	24.64	32.33
Ours-CP-384 27.59 27.86 26.25 26.74 24.73 32.39 Ours-VM-192-SH 27.81 27.78 26.73 26.03 25.37 33.12 Ours-VM-48 28.06 28.22 26.81 26.70 25.43 33.12 Ours-VM-192-15k 28.07 28.27 26.57 26.93 25.35 33.22 Ours-VM-192-30k 28.56 28.34 27.14 27.22 26.19 33.92 SSIM↑ 28.56 28.34 27.742 26.93 25.35 SIM↑ 0.847 0.920 0.832 0.741 0.834 0.908 NeRF [37] 0.864 0.920 0.866 0.750 0.860 0.932 NSVF [31] 0.901 0.930 0.895 0.823 0.900 0.942 Ours-VM-192-SH 0.907 0.942 0.900 0.834 0.897 0.960 Ours-VM-192-Sk 0.909 0.943 0.902 </td <td>DVG [55]</td> <td>28.41</td> <td>28.16</td> <td>27.15</td> <td>27.01</td> <td>26.00</td> <td>33.75</td>	DVG [55]	28.41	28.16	27.15	27.01	26.00	33.75
Ours-VM-192-SH 27.81 27.78 26.73 26.03 25.37 33.12 Ours-VM-48 28.06 28.22 26.81 26.70 25.43 33.12 Ours-VM-192-15k 28.07 28.27 26.57 26.93 25.35 33.22 Ours-VM-192-30k 28.56 28.34 27.14 27.22 26.19 33.92 SSIM↑ S8.66 0.832 0.741 0.834 0.908 NeRF [37] 0.844 0.920 0.860 0.750 0.860 0.932 NSVF [31] 0.901 0.930 0.895 0.823 0.900 0.954 PlenOctrees [68] 0.917 0.948 0.914 0.856 0.907 0.962 Ours-VM-192-SH 0.907 0.942 0.900 0.834 0.897 0.948 Ours-VM-192-SH 0.907 0.942 0.900 0.834 0.897 0.946 Ours-VM-192-SM 0.920 0.948 0.914 0.864 0.912	Ours-CP-384	27.59	27.86	26.25	26.74	24.73	32.39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ours-VM-192-SH	27.81	27.78	26.73	26.03	25.37	33.12
Ours-VM-192-15k 28.07 28.27 26.57 26.93 25.35 33.22 Ours-VM-192-30k 28.56 28.34 27.14 27.22 26.19 33.92 SSIM↑ 0.847 0.920 0.832 0.741 0.834 0.908 NeRF [37] 0.864 0.920 0.860 0.750 0.860 0.932 NSVF [31] 0.901 0.930 0.895 0.823 0.900 0.954 Plenoctrees [68] 0.917 0.948 0.914 0.856 0.907 0.962 Ours-CP-384 0.897 0.934 0.885 0.839 0.879 0.948 Ours-VM-192-SH 0.907 0.942 0.900 0.834 0.897 0.960 Ours-VM-192-SH 0.907 0.948 0.914 0.864 0.912 0.960 Ours-VM-192-30k 0.920 0.948 0.914 0.864 0.912 0.965 LPIP_VGG ↓ 0.920 <td< td=""><td>Ours-VM-48</td><td>28.06</td><td>28.22</td><td>26.81</td><td>26.70</td><td>25.43</td><td>33.12</td></td<>	Ours-VM-48	28.06	28.22	26.81	26.70	25.43	33.12
Ours-VM-192-30k 28.56 28.34 27.14 27.22 26.19 33.92 SSIM↑ SRN [54] 0.847 0.920 0.832 0.741 0.834 0.908 NeRF [37] 0.864 0.920 0.860 0.750 0.860 0.932 NSVF [31] 0.901 0.930 0.895 0.823 0.900 0.954 PlenOctrees [68] 0.917 0.948 0.914 0.856 0.907 0.962 Ours-CP-384 0.897 0.934 0.885 0.839 0.877 0.962 Ours-VM-192-SH 0.907 0.942 0.900 0.834 0.897 0.960 Ours-VM-48 0.909 0.943 0.902 0.845 0.899 0.957 Ours-VM-48 0.909 0.943 0.902 0.845 0.899 0.957 Ours-VM-192-SH 0.913 0.944 0.905 0.855 0.902 0.960 Ours-VM-192-30k 0.920 0.948 0.914 0.864 0.912 </td <td>Ours-VM-192-15k</td> <td>28.07</td> <td>28.27</td> <td>26.57</td> <td>26.93</td> <td>25.35</td> <td>33.22</td>	Ours-VM-192-15k	28.07	28.27	26.57	26.93	25.35	33.22
SSIM↑ SSIN↑ SRN [54] 0.847 0.920 0.832 0.741 0.834 0.908 NeRF [37] 0.864 0.920 0.860 0.750 0.860 0.932 NSVF [31] 0.901 0.930 0.895 0.823 0.900 0.954 PlenOctrees [68] 0.917 0.948 0.914 0.856 0.907 0.962 DVGO [55] 0.911 0.944 0.906 0.838 0.906 0.943 Ours-CP-384 0.897 0.934 0.885 0.839 0.879 0.948 Ours-VM-192-SH 0.907 0.942 0.900 0.834 0.897 0.960 Ours-VM-192-15k 0.913 0.944 0.905 0.855 0.902 0.965 LPIP_{VGG} ↓ 0.920 0.948 0.914 0.864 0.912 0.965 LPIP_VGG ↓ 0.920 0.948 0.914 0.864 0.912 0.965 <t< td=""><td>Ours-VM-192-30k</td><td>28.56</td><td>28.34</td><td>27.14</td><td>27.22</td><td>26.19</td><td>33.92</td></t<>	Ours-VM-192-30k	28.56	28.34	27.14	27.22	26.19	33.92
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SSIM↑	I	1				
NeRF [37] 0.864 0.920 0.860 0.750 0.860 0.932 NSVF [31] 0.901 0.930 0.895 0.823 0.900 0.954 PlenOctrees [68] 0.917 0.948 0.914 0.856 0.907 0.962 Plenoxels [50] 0.906 0.943 0.901 0.829 0.902 0.956 DVGO [55] 0.911 0.944 0.906 0.838 0.906 0.962 Ours-CP-384 0.897 0.934 0.885 0.839 0.879 0.948 Ours-VM-192-SH 0.907 0.942 0.900 0.834 0.897 0.960 Ours-VM-192-Jak 0.913 0.944 0.905 0.855 0.902 0.960 Ours-VM-192-30k 0.920 0.948 0.914 0.864 0.912 0.965 LPIP VGG [55] 0.155 0.083 0.160 0.226 0.148 0.678 DVGO [55] 0.155 0.083 0.160 0.294 0.167 0.069 Ours-VM-192-SH 0.156 0.089 0.161 <	SRN [54]	0.847	0.920	0.832	0.741	0.834	0.908
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NeRF [37]	0.864	0.920	0.860	0.750	0.860	0.932
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NSVF [31]	0.901	0.930	0.895	0.823	0.900	0.954
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PlenOctrees [68]	0.917	0.948	0.914	0.856	0.907	0.962
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Plenoxels [50]	0.906	0.943	0.901	0.829	0.902	0.956
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DVGO [55]	0.911	0.944	0.906	0.838	0.906	0.962
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ours-CP-384	0.897	0.934	0.885	0.839	0.879	0.948
Ours-VM-480.9090.9430.9020.8450.8070.907Ours-VM-192-15k0.9130.9440.9050.8550.9020.960Ours-VM-192-30k0.9200.9480.9140.8640.9120.965LPIP $_{VGG} \downarrow$ 0.9260.1480.069PlenOctrees [68]0.1310.0800.1300.2260.1480.069Plenoxels [50]0.1620.1020.1630.3030.1660.078DVGO [55]0.1550.0830.1600.2940.1670.070Ours-CP-3840.1810.1060.2020.2830.2270.088Ours-VM-192-SH0.1560.0890.1610.2860.1750.069Ours-VM-192-15k0.1520.0840.1620.2690.1730.071Ours-VM-192-30k0.1400.0780.1450.2520.1590.064LPIPS_Alex \downarrow 0.1550.1060.4480.2780.134NeRF [37]0.1980.1110.1920.3950.1960.0980.098NSVF [31]0.1550.1060.1480.3070.1410.063DVGO [55]0.1480.0900.1450.2370.1760.063Ours-VM-192-SH0.1640.0980.1680.3090.1750.072Ours-VM-480.1450.0890.1450.2400.1570.066Ours-VM-192-SH0.164<	Ours-VM-192-SH	0.907	0.942	0.900	0.834	0.897	0.960
Ours-VM-192-15k Ours-VM-192-30k0.913 0.9200.944 0.9480.905 0.9140.855 0.8550.902 0.9020.960 0.960LPIP $_{VGG} \downarrow$ PlenOctrees [68] DVGO [55]0.131 0.1620.080 0.1020.130 0.1630.226 0.3030.148 0.069DVGO [55] Ours-VM-192-SH Ours-VM-192-15k0.155 0.1520.083 0.1610.161 0.278 0.1610.278 0.2780.177 0.070Ours-VM-192-15k Ours-VM-192-30k0.152 0.1400.084 0.0780.161 0.278 0.1450.278 0.177 0.173 0.071DVGO [55] Ours-VM-192-30k0.140 0.1400.078 0.1450.145 0.2520.159 0.161 0.278LPIPS Alex \downarrow SRN [54] 0.1550.251 0.128 0.1480.266 0.148 0.307 0.1410.161 0.063 0.141 0.063 0.1410.063 0.145DVGO [55] Ours-VM-192-SH0.144 0.089 0.1450.237 0.176 0.1410.063 0.064LPIPS Alex \downarrow 0.144 0.089 0.1450.237 0.290 0.1520.161 0.063 0.175Ours-VM-192-SH Ours-VM-192-SH0.164 0.098 0.168 0.168 0.3090.175 0.176 0.066 0.161Ours-VM-192-15k Ours-VM-480.145 0.1400.087 0.1550.161 0.266 0.161 0.161Ours-VM-192-SH Ours-VM-480.145 0.1400.087 0.150 0.2400.157 0.1570.062 0.240	Ours-VM-48	0.909	0.943	0.902	0.845	0.899	0.957
Ours-VM-192-30k0.9200.9480.9140.8640.9120.965LPIP $_{VGG} \downarrow$ PlenOctrees [68]0.1310.0800.1300.2260.1480.069Plenoxels [50]0.1620.1020.1630.3030.1660.078DVGO [55]0.1550.0830.1600.2940.1670.070Ours-CP-3840.1810.1060.2020.2830.2270.088Ours-VM-192-SH0.1560.0890.1610.2860.1750.069Ours-VM-480.1550.0850.1610.2780.1770.074Ours-VM-192-15k0.1520.0840.1620.2690.1730.071Ours-VM-192-30k0.1400.0780.1450.2520.1590.064LPIPS_Alex \downarrow SRN [54]0.2510.1280.2660.4480.2780.134NeRF [37]0.1980.1110.1920.3950.1960.098NSVF [31]0.1550.1060.1480.3070.1410.063DVGO [55]0.1480.0900.1450.2370.1760.063Ours-VM-192-SH0.1640.0980.1680.3090.1750.072Ours-VM-192-SH0.1640.0980.1680.3090.1750.072Ours-VM-192-SH0.1450.0890.1450.2660.1610.066Ours-VM-192-SH0.1250.0810.1450.2020.1570.066Ours-VM-192-SH <td>Ours-VM-192-15k</td> <td>0.913</td> <td>0.944</td> <td>0.905</td> <td>0.855</td> <td>0.902</td> <td>0.960</td>	Ours-VM-192-15k	0.913	0.944	0.905	0.855	0.902	0.960
LPIP $_{VGG} \downarrow$ PlenOctrees [68] 0.131 0.080 0.130 0.226 0.148 0.069 Plenoxels [50] 0.162 0.102 0.163 0.303 0.166 0.078 DVGO [55] 0.155 0.083 0.160 0.294 0.167 0.070 Ours-CP-384 0.181 0.106 0.202 0.283 0.227 0.088 Ours-VM-192-SH 0.156 0.089 0.161 0.286 0.175 0.069 Ours-VM-48 0.155 0.085 0.161 0.278 0.177 0.074 Ours-VM-192-15k 0.152 0.084 0.162 0.269 0.173 0.071 Ours-VM-192-30k 0.140 0.078 0.145 0.252 0.159 0.064 LPIPS_Alex \downarrow SRN [54] 0.251 0.128 0.266 0.448 0.278 0.134 NeRF [37] 0.198 0.111 0.192 0.395 0.196 0.098 NSVF [31] 0.155 0.106	Ours-VM-192-30k	0.920	0.948	0.914	0.864	0.912	0.965
PlenOctrees [68] 0.131 0.080 0.130 0.226 0.148 0.069 Plenoxels [50] 0.162 0.102 0.163 0.303 0.166 0.078 DVGO [55] 0.155 0.083 0.160 0.294 0.167 0.070 Ours-CP-384 0.181 0.106 0.202 0.283 0.227 0.088 Ours-VM-192-SH 0.156 0.089 0.161 0.286 0.175 0.069 Ours-VM-48 0.155 0.085 0.161 0.278 0.177 0.074 Ours-VM-192-15k 0.152 0.084 0.162 0.269 0.173 0.071 Ours-VM-192-30k 0.140 0.078 0.145 0.252 0.159 0.064 LPIPS_Alex \downarrow SRN [54] 0.251 0.128 0.266 0.448 0.278 0.134 NeRF [37] 0.198 0.111 0.192 0.395 0.196 0.098 NSVF [31] 0.155 0.106 0.148 0.307 <							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1}{2} \frac{1}{2} \frac{1}$	0.131	0.080	0.130	0.226	0 148	0.069
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Plenovels [50]	0.162	0.000	0.100	0.220	0.166	0.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DVGO [55]	0.102	0.083	0.160	0.303 0.294	0.167	0.070
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ours-CP-384	0.180	0.106	0.100	0.283	0.227	0.088
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ours-VM-192-SH	0.156	0.089	0.161	0.286	0.175	0.069
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ours-VM-48	0.155	0.085	0 161	0.278	0.177	0.074
Ours-VM-192-30k0.1400.0780.1450.2520.1760.177Ours-VM-192-30k0.1400.0780.1450.2520.1590.064LPIPS $A_{lex} \downarrow$ </td <td>Ours-VM-192-15k</td> <td>0.152</td> <td>0.084</td> <td>0.162</td> <td>0.269</td> <td>0.173</td> <td>0.071</td>	Ours-VM-192-15k	0.152	0.084	0.162	0.269	0.173	0.071
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ours-VM-192-30k	0.102	0.078	0.145	0.252	0.179 0.159	0.064
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		01110	0.010	01110	0.202	01100	01001
NeRF [37] 0.198 0.111 0.192 0.395 0.196 0.098 NSVF [31] 0.155 0.106 0.148 0.307 0.141 0.063 DVGO [55] 0.148 0.090 0.145 0.290 0.152 0.064 Ours-CP-384 0.144 0.089 0.154 0.237 0.176 0.063 Ours-VM-192-SH 0.164 0.098 0.168 0.309 0.175 0.072 Ours-VM-48 0.145 0.089 0.145 0.266 0.161 0.066 Ours-VM-192-15k 0.140 0.087 0.150 0.240 0.157 0.066 Ours-VM-192-30k 0.125 0.081 0.120 0.217 0.127 0.267	$\frac{\text{SRN} \left[54 \right]}{\text{SRN} \left[54 \right]}$	0.251	0.128	0.266	0.448	0.278	0.134
NSVF [31] 0.155 0.106 0.148 0.307 0.141 0.038 DVGO [55] 0.148 0.090 0.145 0.290 0.152 0.064 Ours-CP-384 0.144 0.089 0.154 0.237 0.176 0.063 Ours-VM-192-SH 0.164 0.098 0.168 0.309 0.175 0.072 Ours-VM-48 0.145 0.089 0.145 0.266 0.161 0.066 Ours-VM-192-15k 0.140 0.087 0.150 0.240 0.157 0.066 Ours-VM-192-15k 0.140 0.087 0.150 0.240 0.157 0.066	NeRF $[37]$	0.108	0.111	0.200	0.305	0.196	0.104
DVGO [55] 0.148 0.090 0.145 0.290 0.152 0.064 Ours-CP-384 0.144 0.089 0.154 0.237 0.176 0.063 Ours-VM-192-SH 0.164 0.098 0.168 0.309 0.175 0.072 Ours-VM-48 0.145 0.089 0.145 0.266 0.161 0.066 Ours-VM-192-15k 0.140 0.087 0.150 0.240 0.157 0.066 Ours-VM-192-30k 0.125 0.081 0.120 0.217 0.120 0.257	NSVF [31]	0.155	0.106	0.132	0.307	0.141	0.053
D v GC [05] 0.145 0.055 0.145 0.255 0.152 0.064 Ours-CP-384 0.144 0.089 0.154 0.237 0.176 0.063 Ours-VM-192-SH 0.164 0.098 0.168 0.309 0.175 0.072 Ours-VM-48 0.145 0.089 0.145 0.266 0.161 0.066 Ours-VM-192-15k 0.140 0.087 0.150 0.240 0.157 0.066 Ours-VM-192-30k 0.125 0.081 0.120 0.217 0.120 0.257	DVGO [55]	0.148	0.100	0.145	0.200	0.159	0.000
Ours-VM-192-SH 0.144 0.065 0.154 0.257 0.170 0.005 Ours-VM-192-SH 0.164 0.098 0.168 0.309 0.175 0.072 Ours-VM-48 0.145 0.089 0.145 0.266 0.161 0.066 Ours-VM-192-15k 0.140 0.087 0.150 0.240 0.157 0.066 Ours-VM-192-30k 0.125 0.081 0.120 0.217 0.120 0.257	$\frac{D_{100}}{Ours} CP 384$	0.140	0.090	0.140	0.290	0.152	0.004
Ours-VM-192-511 0.104 0.095 0.108 0.309 0.175 0.072 Ours-VM-48 0.145 0.089 0.145 0.266 0.161 0.066 Ours-VM-192-15k 0.140 0.087 0.150 0.240 0.157 0.066 Ours-VM 102-30k 0.125 0.081 0.120 0.217 0.120 0.257	Ours VM 109 CU	0.144	0.009	0.134	0.201	0.175	0.003
Ours-VM-192-15k 0.143 0.065 0.143 0.200 0.101 0.000 Ours-VM-192-15k 0.140 0.087 0.150 0.240 0.157 0.066 Ours-VM 102 30k 0.125 0.081 0.120 0.217 0.120 0.057	Ours VM 48	0.104	0.090	0.100	0.309	0.170	0.072
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ours VM 109 151	0.140	0.009	0.140	0.200	0.101	0.000
	Ours- v Ivi-192-10K	0.140	0.081	0.100	0.240	0.107	0.000

Table 10: Quantitative results on each scene from the **Tanks&Temples** [26] dataset.

29

Fig. 8: Our rendering results on **Tanks&Temples**[26] dataset. From top to bottom: Family, Ignatius, Truck, Caterpillar, Barn.

Methods	Avg.	Room	Fern	Leaves	Fortress	Orchids	Flower	T- Rex	Horns

$\mathbf{PSNR}\uparrow$									
NeRF $[37]$	26.50	32.70	25.17	20.92	31.16	20.36	27.40	26.80	27.45
Plenoxels [50]	26.29	30.22	25.46	21.41	31.09	20.24	27.83	26.48	27.58
Ours-VM-48	26.51	31.80	25.31	21.34	31.14	20.02	28.22	26.61	27.64
Our-VM-96	26.73	32.35	25.27	21.30	31.36	19.87	28.60	26.97	28.14
$\mathbf{SSIM}\uparrow$									
NeRF [37]	0.811	0.948	0.792	0.690	0.881	0.641	0.827	0.880	0.828
Plenoxels [50]	0.839	0.937	0.832	0.760	0.885	0.687	0.862	0.890	0.857
Ours-VM-48	0.832	0.946	0.816	0.746	0.889	0.655	0.859	0.890	0.859
Ours-VM-96	0.839	0.952	0.814	0.752	0.897	0.649	0.871	0.900	0.877
$\mathbf{LPIPS}_{VGG}\downarrow$									
NeRF [37]	0.250	0.178	0.280	0.316	0.171	0.321	0.219	0.249	0.268
Plenoxels [50]	0.210	0.192	0.224	0.198	0.180	0.242	0.179	0.238	0.231
Ours-VM-48	0.217	0.181	0.237	0.230	0.159	0.283	0.187	0.236	0.221
Ours-VM-96	0.204	0.167	0.237	0.217	0.148	0.278	0.169	0.221	0.196
$\mathbf{LPIPS}_{Alex}\downarrow$									
Ours-VM-48	0.135	0.093	0.161	0.167	0.084	0.204	0.121	0.108	0.146
Ours-VM-96	0.124	0.082	0.155	0.153	0.075	0.201	0.106	0.099	0.123

Table 11: Quantitative results on each scene from the **forward-facing** [31] dataset.

Fig. 9: Our rendering results on **forward-facing** [31] dataset. From top to bottom: Flower, Fern, Fortress, Horn, Leaves, Orchids, T-Rex, Room.